Advanced Machine Learning

Bandit Problems
Multi-Armed Bandit Problem

Problem: which arm of a K-slot machine should a gambler pull to maximize his cumulative reward over a sequence of trials?

- stochastic setting.
- adversarial setting.
Motivation

- Clinical trials: potential treatments for a disease to select from, new patient or category at each round (Thompson, 1933).

- Ads placement: selection of ad to display out of a finite set (which could vary with time though) for each new web page visitor.

- Adaptive routing: alternative paths for routing packets through a “series of tubes” or alternative roads for driving from a source to a destination.

- Games: different moves at each round of a game such as chess, or Go.
Key Problem

- Exploration vs exploitation dilemma (or trade-off):
 - inspect new arms with possibly better rewards.
 - use existing information to select best arm.
Outline

- Stochastic bandits
- Adversarial bandits
Stochastic Model

- K arms: for each arm $i \in \{1, \ldots, K\}$,
 - reward distribution P_i.
 - reward mean μ_i.
 - gap to best: $\Delta_i = \mu^* - \mu_i$, where $\mu^* = \arg\max_{i \in [1,K]} \mu_i$.
Bandit Setting

For $t = 1$ to T do

- player selects action $I_t \in \{1, \ldots, K\}$ (randomized).
- player receives reward $X_{I_t, t} \sim P_{I_t}$.

Equivalent descriptions:

- on-line learning with partial information (≠ full).
- one-state MDPs (Markov Decision Processes).
Objectives

- **Expected regret**

\[
\mathbb{E}[R_T] = \mathbb{E} \left[\max_{i \in [1,K]} \sum_{t=1}^{T} X_{i,t} - \sum_{t=1}^{T} X_{I_t,t} \right].
\]

- **Pseudo-regret**

\[
\overline{R}_T = \max_{i \in [1,K]} \mathbb{E} \left[\sum_{t=1}^{T} X_{i,t} - \sum_{t=1}^{T} X_{I_t,t} \right].
\]

\[
= \mu^* T - \mathbb{E} \left[\sum_{t=1}^{T} X_{I_t,t} \right].
\]

- **By Jensen’s inequality,** \(\overline{R}_T \leq \mathbb{E}[R_T] \).
Expected Regret

- If for all $t \in [1, T]$ and $i \in [1, K]$, $|X_{i,t} - X_{I_t,t}| \leq r$, then

 $$E[R_T] = E\left[\max_{i \in [1, K]} \sum_{t=1}^{T} (X_{i,t} - X_{I_t,t}) \right] \leq r \sqrt{2T \log K}. $$

- But, $O(\sqrt{T})$ dependency cannot be improved;

 better guarantees can be achieved for pseudo-regret.
Pseudo-Regret

Expression in terms of Δ_is:

$$\overline{R}_T = \sum_{i=1}^{K} E[T_i(T)] \Delta_i,$$

where $T_i(t)$ denotes the number of times arm i was pulled up to time t, $T_i(t) = \sum_{s=1}^{t} 1_{I_t=i}$.

$$\overline{R}_T = \mu^* T - E\left[\sum_{t=1}^{T} X_{I_t,t} \right] = E\left[\sum_{t=1}^{T} (\mu^* - X_{I_t,t}) \right] = E\left[\sum_{t=1}^{T} \sum_{i=1}^{K} (\mu^* - X_{i,t}) 1_{I_t=i} \right]$$

$$= E\left[\sum_{t=1}^{T} \sum_{i=1}^{K} (\mu^* - \mu_i) 1_{I_t=i} \right]$$

$$= E\left[\sum_{i=1}^{K} T_i(T) (\mu^* - \mu_i) \right]$$

$$= \sum_{i=1}^{K} E[T_i(T)] \Delta_i.$$
\(\epsilon\)-Greedy Strategy

(Auer et al. 2002a)

- At time \(t\),
 - with probability \(1 - \epsilon_t\), select arm \(i\) with best emp. mean.
 - with probability \(\epsilon_t\), select random arm.

- For \(\epsilon_t = \min(\frac{6K}{\Delta^2 t}, 1)\), with \(\Delta = \min_{i: \Delta_i > 0} \Delta_i\),
 - for \(t \geq \frac{6K}{\Delta^2}\), \(\Pr[I_t \neq i^*] \leq \frac{C}{\Delta^2 t}\) for some \(C > 0\).
 - thus, \(\mathbb{E}[T_i(T)] \leq \frac{C}{\Delta^2} \log T\) and \(\overline{R}_T \leq \sum_{i: \Delta_i > 0} \frac{C \Delta_i}{\Delta^2} \log T\).

- Logarithmic regret but,
 - requires knowledge of \(\Delta\).
 - sub-optimal arms treated similarly (naive search).
UCB Strategy

(Lai and Robbins, 1985; Agrawal 1995; Auer et al. 2002a)

- Optimism in face of uncertainty:
 - at each time $t \in [1, T]$ compute upper confidence bound (UCB) on the expected reward of each arm $i \in [1, K]$.
 - select arm with largest UCB.

- Idea: wrong arm i cannot be selected for long.
 - by definition, $\mu_i \leq \mu^* \leq \text{UCB}_i$.
 - pulling i often UCB closer to μ_i.

UCB Strategy

- Average reward estimate for arm i by time t:
 \[
 \hat{\mu}_{i,t} = \frac{1}{T_i(t)} \sum_{s=1}^{t} X_{i,s} 1_{I_s=i}.
 \]

- Concentration inequality (e.g., Hoeffding’s ineq.):
 \[
 \Pr[\mu_i - \hat{\mu}_{i,t} > \epsilon] \leq e^{-T_i(t)\psi^*(\epsilon)}.
 \]

- Thus, for any $\delta > 0$, with probability at least $1 - \delta$,
 \[
 \mu_i < \hat{\mu}_{i,t} + \psi^*-1\left(\frac{1}{T_i(t)} \log \frac{1}{\delta}\right).
 \]
(\alpha, \psi)-UCB Strategy

Parameter \(\alpha > 0 \); (\alpha, \psi)-UCB strategy consists of selecting at time \(t \)

\[
I_t \in \arg\min_{i \in [1, K]} \left[\hat{\mu}_{i,t-1} + \psi^{-1}\left(\frac{\alpha \log t}{T_i(t - 1)}\right)\right].
\]
(α, ψ)-UCB Guarantee

Theorem: for $\alpha > 2$, the pseudo-regret of (α, ψ)-UCB satisfies

$$\overline{R}_T \leq \sum_{i: \Delta_i > 0} \left(\frac{\alpha \Delta_i}{\psi^* \left(\frac{\Delta_i}{2} \right)} \log T + \frac{\alpha}{\alpha - 2} \right).$$

- for Hoeffding’s lemma, α-UCB, $\psi^*(\epsilon) = 2\epsilon^2$ (Auer et al. 2002a),

$$\overline{R}_T \leq \sum_{i: \Delta_i > 0} \left(\frac{2\alpha}{\Delta_i} \log T + \frac{\alpha}{\alpha - 2} \right).$$
Proof

For any i and t define $\eta_{i,t-1} = \psi^*\left(\frac{\alpha \log t}{T_i(t-1)}\right)$. At time t, if i is selected, then

$$(\hat{\mu}_{i,t-1} + \eta_{i,t-1}) - (\hat{\mu}_{i^*,t} + \eta_{i^*,t-1}) \geq 0$$

$$\Leftrightarrow [\hat{\mu}_{i,t-1} - \mu_{i,t-1} - \eta_{i,t-1}] + [2\eta_{i,t-1} - \Delta_i] + [\mu^* - \hat{\mu}_{i^*,t-1} - \eta_{i^*,t-1}] \geq 0.$$

Thus, at least of one of these three terms is non-negative. Also, if one is non-positive, at least one of the other two is non-negative.
Proof

To bound the pseudo-regret, we bound $\mathbb{E}[T_i(T)]$. But, observe first that

$$T_i(t - 1) \geq s = \left\lfloor \frac{\alpha \log T}{\psi^*(\frac{\Delta_i}{2})} \right\rfloor \geq \frac{\alpha \log t}{\psi^*(\frac{\Delta_i}{2})} \Rightarrow \Delta_i - 2\eta_{i,t-1} \geq 0.$$

Thus,

$$\mathbb{E}[T_i(T)] = \mathbb{E}\left[\sum_{t=1}^{T} 1_{I_t=i} \right]$$

$$\leq s + \mathbb{E}\left[\sum_{T_{t=s+1}}^{T} 1_{I_t=i} \land T_i(t - 1) \geq s \right]$$

$$\leq s + \sum_{t=s+1}^{T} \text{Pr}[\hat{\mu}_{i,t-1} - \mu_{i,t-1} - \eta_{i,t-1} \geq 0] + \text{Pr}[\mu^* - \hat{\mu}_{i^*,t-1} - \eta_{i^*,t-1} \geq 0].$$
Proof

Each of the two probability terms can be bounded as follows using the union bound:

\[
\Pr[\mu^* - \hat{\mu}_{i^*,t-1} - \eta_{i^*,t-1} \geq 0] \\
\leq \Pr \left[\exists s \in [1, t]: \mu^* - \hat{\mu}_{i^*,s} - \psi^{-1}\left(\frac{\alpha \log t}{s}\right) \geq 0 \right] \\
\leq \sum_{s=1}^{t} \frac{1}{t^\alpha} = \frac{1}{t^{\alpha-1}}.
\]

Final constant of the bound obtained by further simple calculations.
Lower Bound

(Lai and Robbins, 1985)

Theorem: for any strategy such that $E[T_i(T)] = o(T^\beta)$ for any arm i and any $\beta > 0$ for any set of Bernoulli reward distributions, the following holds for all Bernoulli reward distributions:

$$\liminf_{T \to +\infty} \frac{R_T}{\log T} \geq \sum_{i: \Delta_i > 0} \frac{\Delta_i}{D(\mu_i \parallel \mu^*)}.$$

- a more general result holds for general distributions.
Observe that

$$
\sum_{i: \Delta_i > 0} \frac{\Delta_i}{D(\mu_i \mid \mu^*)} \geq \mu^*(1 - \mu^*) \sum_{i: \Delta_i > 0} \frac{1}{\Delta_i},
$$

since

$$
D(\mu_i \mid \mu^*) = \mu_i \log \frac{\mu_i}{\mu^*} + (1 - \mu_i) \log \frac{1 - \mu_i}{1 - \mu^*}
\leq \mu_i \frac{\mu_i - \mu^*}{\mu^*} + (1 - \mu_i) \frac{\mu^* - \mu_i}{1 - \mu^*}
= \frac{(\mu - \mu^*)^2}{\mu^*(1 - \mu^*)} = \frac{\Delta_i^2}{\mu^*(1 - \mu^*)}.
$$
Let X be a random variable such that for all $t \geq 0$,
\[
\log \mathbb{E} \left[e^{t(X-\mathbb{E}[X])} \right] \leq \Psi(t),
\]
where Ψ is a convex function. For Hoeffding’s inequality and $X \in [a, b]$, $\Psi(t) = \frac{(b-a)^2}{8}$.

Then, $\Pr[X - \mathbb{E}[X] > \epsilon] = \Pr[e^{t(X-\mathbb{E}[X])} > e^{t\epsilon}]$
\[
\leq \inf_{t > 0} e^{-t\epsilon} \mathbb{E}[e^{t(X-\mathbb{E}[X])}]
\leq \inf_{t > 0} e^{-t\epsilon} e^{\Psi(t)}
= e^{-\sup_{t > 0} (t\epsilon - \Psi(t))}
= e^{-\Psi^*(\epsilon)}.\]
Outline

- Stochastic bandits
- Adversarial bandits
Adversarial Model

- K arms: for each arm $i \in \{1, \ldots, k\}$,
 - no stochastic assumption.
 - rewards in $[0, 1]$.
Bandit Setting

For $t = 1$ to T do

- player selects action $I_t \in \{1, \ldots, k\}$ (randomized).
- player receives reward $x_{I_t,t}$.

Notes:

- rewards $x_{i,t}$ for all arms determined by adversary simultaneously with the selection I_t of an arm by player.
- adversary oblivious or nonoblivious (or adaptive).
- strategies: deterministic, regret of at least $\frac{T}{2}$ for some (bad) sequences, thus must consider randomized.
Objectives

- Minimize regret \((\ell_{i,t} = 1 - x_{i,t})\), expectation or high prob.:

\[
R_T = \max_{i \in [1,K]} \sum_{t=1}^{T} x_{i,t} - \sum_{t=1}^{T} x_{I_t,t} = \sum_{t=1}^{T} \ell_{I_t,t} - \min_{i \in [1,K]} \sum_{t=1}^{T} \ell_{i,t}.
\]

- Pseudo-regret:

\[
\overline{R}_T = E \left[\sum_{t=1}^{T} \ell_{I_t,t} \right] - \min_{i \in [1,K]} E \left[\sum_{t=1}^{T} \ell_{i,t} \right].
\]

- By Jensen’s inequality, \(\overline{R}_T \leq E[R_T]\).
Importance Weighting

- In the bandit setting, the cumulative loss of each arm is not observed.

- Instead, estimates via surrogate loss:

\[\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_{i,t}} 1_{I_t=i}, \]

where \(p_t = (p_1,t, \ldots, p_K,t) \) is the probability distribution the player uses at time \(t \) to draw an arm \((p_{i,t} > 0) \).

- Unbiased estimate:

\[
E_{I_t \sim p_t} [\tilde{\ell}_{i,t}] = \sum_{j=1}^{K} p_{j,t} \frac{\ell_{i,t}}{p_{i,t}} 1_{j=i} = \ell_{i,t}.
\]
EXP3

EXP3(\(K\))

1. \(p_1 \leftarrow (\frac{1}{K}, \ldots, \frac{1}{K})\)
2. for \(t \leftarrow 1\) to \(T\) do
3. \(\text{SAMPLE}(I_t \sim p_t)\)
4. \(\text{RECEIVE}(\ell_{I_t,t})\)
5. for \(i \leftarrow 1\) to \(K\) do
6. \(\tilde{\ell}_{i,t} \leftarrow \frac{\ell_{i,t}}{p_{i,t}} 1_{I_t=i}\)
7. \(\tilde{L}_{i,t} \leftarrow \sum_{s=1}^{t} \tilde{\ell}_{i,s}\)
8. \(p_{i,t+1} \leftarrow \frac{e^{-\eta \tilde{L}_{i,t}}}{\sum_{j=1}^{K} e^{-\eta \tilde{L}_{j,t}}}\)
9. return \(p_{T+1}\)

EXP3 (Exponential weights for Exploration and Exploitation)

(Auer et al. 2002b)
EXP3 Guarantee

Theorem: the pseudo-regret of EXP3 can be bounded as follows:

\[
\overline{R}_T \leq \frac{\log K}{\eta} + \frac{\eta KT}{2}.
\]

Choosing \(\eta \) to minimize the bound gives

\[
\overline{R}_T \leq \sqrt{2KT \log K}.
\]

Proof: similar to that of EG, but we cannot use Hoeffding's inequality since \(\tilde{\ell}_{i,t} \) is unbounded.
Proof

- **Potential:** \(\Phi_t = \log \sum_{i=1}^{K} e^{-\eta \tilde{L}_{i,t}}. \)

- **Upper bound:**

\[
\begin{align*}
\Phi_t - \Phi_{t-1} &= \log \frac{\sum_{i=1}^{K} e^{-\eta \tilde{L}_{i,t}}}{\sum_{i=1}^{N} e^{-\eta \tilde{L}_{i,t-1}}} = \log \frac{\sum_{i=1}^{K} e^{-\eta \tilde{L}_{i,t-1}} e^{-\eta \tilde{\ell}_{i,t}}}{\sum_{i=1}^{N} e^{-\eta \tilde{L}_{i,t-1}}} \\
&= \log \mathbb{E}_{i \sim p_t} [e^{-\eta \tilde{\ell}_{i,t}}] \\
&\leq \mathbb{E}_{i \sim p_t} [e^{-\eta \tilde{\ell}_{i,t}}] - 1 \quad (\log x \leq x - 1) \\
&\leq \mathbb{E}_{i \sim p_t} [- \eta \tilde{\ell}_{i,t} + \frac{\eta^2}{2} \tilde{\ell}_{i,t}^2] \quad (e^{-x} \leq 1 - x + \frac{x^2}{2}) \\
&= -\eta \mathbb{E}_{i \sim p_t} [\tilde{\ell}_{i,t}] + \frac{\eta^2}{2} \mathbb{E}_{i \sim p_t} \left[\frac{\tilde{l}_{i,t}^2 1_{I_t = i}}{p_{i,t}^2} \right] \\
&= -\eta \tilde{\ell}_{I_t,t} + \frac{\eta^2}{2} \frac{l_{I_t,t}^2}{p_{I_t,t}} \leq -\eta \tilde{\ell}_{I_t,t} + \frac{\eta^2}{2} \frac{1}{p_{I_t,t}}.
\end{align*}
\]
Proof

- **Upper bound:** summing up the inequalities yields

\[
E[\Phi_T - \Phi_0] \leq -\eta \cdot E_{I_t \sim p_t} \left[\sum_{t=1}^{T} \tilde{\ell}_{I_t,t} \right] + \frac{\eta^2 K}{2} \geq -\eta \cdot E \left[\sum_{t=1}^{T} \tilde{\ell}_{I_t,t} \right] + \frac{\eta^2 KT}{2}.
\]

- **Lower bound:** for all \(j \in [1, K] \),

\[
E[\Phi_T - \Phi_0] = E \left[\log \left(\sum_{i=1}^{K} e^{-\eta \tilde{L}_{i,T}} \right) \right] - \log K \geq -\eta E[\tilde{L}_{j,T}] - \log K.
\]

- **Comparison:**

\[
\forall j \in [1, K], \quad \eta E \left[\sum_{t=1}^{T} \tilde{\ell}_{I_t,t} \right] - \eta E[\tilde{L}_{j,T}] \leq \log K + \frac{\eta^2}{2} KT
\]

\[
\Rightarrow \bar{R}_T \leq \frac{\log K}{\eta} + \frac{\eta KT}{2}.
\]
Notes

- When T is not known:
 - standard doubling trick.
 - or, use $\eta_t = \sqrt{\frac{\log K}{K_t}}$, then $\overline{R}_T \leq 2\sqrt{KT\log K}$.

- High probability bounds:
 - importance weighting problem: unbounded second moment (see (Cortes, Mansour, MM, 2010)), $E_{i \sim p_t} [\overline{\ell}_{i,t}^2] = \frac{\ell_{I_t,t}^2}{p_{I_t,t}}$.
 - (Auer et al., 2002b): mixing probability with a uniform distribution to ensure a lower bound on $p_{i,t}$; not sufficient for high probability bound.
 - solution: biased estimate $\overline{\ell}_{i,t} = \frac{\ell_{i,t}1_{I_t = i} + \beta}{p_{i,t}}$ with $\beta > 0$ a parameter to tune.
Lower Bound

Sufficient lower bound in a stochastic setting for the pseudo-regret (and therefore for the expected regret).

Theorem: for any $T \geq 1$ and any player strategy, there exists a distribution of losses in $\{0, 1\}$ for which

$$\overline{R}_T \geq \frac{1}{20} \sqrt{KT}.$$
Notes

- Bound of EXP3 matching lower bound modulo Log term.
- Log-free bound: $p_{i,t+1} = \psi(C_t - \tilde{L}_{i,t})$ where C_t is a constant ensuring $\sum_{i=1}^{K} p_{i,t+1} = 1$ and ψ increasing, convex, twice differentiable over \mathbb{R}^*_+ (Audibert and Bubeck, 2010).
 - EXP3 coincides with $\psi(x) = e^{\eta x}$.
 - log-free bound with $\psi(x) = (-\eta x)^{-q}$ and $q = 2$.
 - formulation as mirror descent.
References

References

