

Optimal Algorithm for the Contextual Bandit problem

Alekh Agarwal[†] Daniel Hsu[‡] Satyen Kale[#]
John Langford[†] Lihong Li[†] Rob Schapire[†]

[†]Microsoft Research, [‡]Columbia University,
[#]Google Research, ^{*}Princeton University

1. Introduction

Learning to interact: example #1

Loop:

1. Patient arrives with symptoms, medical history, genome ...
2. Physician prescribes treatment.
3. Patient's health responds (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

Learning to interact: example #2

Loop:

1. User visits website with profile, browsing history ...
2. Website operator chooses content/ads to display.
3. User reacts to content/ads (e.g., click, "like").

Goal: choose content/ads that yield desired user behavior.

Contextual bandit setting (i.i.d. version)

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual bandit setting (i.i.d. version)

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual setting: use features x_t to choose good actions a_t .

Contextual bandit setting (i.i.d. version)

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

Task: Design an algorithm for choosing a_t 's that yield high reward.

Contextual setting: use features x_t to choose good actions a_t .

Bandit setting: $r_t(a)$ for $a \neq a_t$ is not observed.

⇒ Exploration vs. exploitation dilemma

(cf. non-bandit setting: whole reward vector $\mathbf{r}_t \in [0, 1]^{\mathcal{A}}$ observed.)

Learning objective in the contextual bandit setting

No single action is good in all situations: **must exploit context.**

Learning objective in the contextual bandit setting

No single action is good in all situations: **must exploit context**.

Policy class Π : set of functions (“policies”) $\pi : \mathcal{X} \rightarrow \mathcal{A}$
(e.g., advice of experts, linear classifiers, neural networks).

Learning objective in the contextual bandit setting

No single action is good in all situations: **must exploit context**.

Policy class Π : set of functions (“policies”) $\pi : \mathcal{X} \rightarrow \mathcal{A}$
(e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class Π :

$$\underbrace{\max_{\pi \in \Pi} \sum_{t=1}^T r_t(\pi(x_t))}_{\text{total reward of best policy}} - \underbrace{\sum_{t=1}^T r_t(a_t)}_{\text{total reward of learner}}$$

... a strong benchmark when Π contains a policy with high reward.

Learning objective in the contextual bandit setting

No single action is good in all situations: **must exploit context**.

Policy class Π : set of functions (“policies”) $\pi : \mathcal{X} \rightarrow \mathcal{A}$
(e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class Π :

$$\underbrace{\max_{\pi \in \Pi} \sum_{t=1}^T r_t(\pi(x_t))}_{\text{total reward of best policy}} - \underbrace{\sum_{t=1}^T r_t(a_t)}_{\text{total reward of learner}}$$

... a strong benchmark when Π contains a policy with high reward.

Regret is sublinear (in T) \implies (Avg.) per-round regret $\rightarrow 0$.

Challenge #1: computation

Feedback that learner observes: reward of chosen action $r_t(a_t)$
→ only directly relevant to $\pi \in \Pi$ s.t. $\pi(x_t) = a_t$.

Challenge #1: computation

Feedback that learner observes: reward of chosen action $r_t(a_t)$
→ only directly relevant to $\pi \in \Pi$ s.t. $\pi(x_t) = a_t$.

Separate explicit bookkeeping for each policy $\pi \in \Pi$ becomes
computationally intractable when Π is large (or infinite!).

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\arg \max_{\pi \in \Pi} \sum_{i=1}^t \rho_i(\pi(x_i)).$$

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\arg \max_{\pi \in \Pi} \sum_{i=1}^t \rho_i(\pi(x_i)).$$

AMO is an abstraction for efficient search through Π .

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\arg \max_{\pi \in \Pi} \sum_{i=1}^t \rho_i(\pi(x_i)).$$

AMO is an abstraction for efficient search through Π .

In practice: implement using standard heuristics—e.g., convex relaxations, backpropagation—for cost-sensitive multi-class learning.

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design efficient algorithms or heuristics!

Given **fully labeled** data $(x_1, \rho_1), \dots, (x_t, \rho_t) \in \mathcal{X} \times [0, 1]^{\mathcal{A}}$, the AMO returns

$$\arg \max_{\pi \in \Pi} \sum_{i=1}^t \rho_i(\pi(x_i)).$$

AMO is an abstraction for efficient search through Π .

In practice: implement using standard heuristics—e.g., convex relaxations, backpropagation—for cost-sensitive multi-class learning.

But requires **complete reward vectors** ρ_i ; not directly usable for contextual bandits.

Challenge #2: exploration

Possible approach: AMO + **simple random exploration**

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates \hat{r}_t of r_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := \text{AMO}(\{(x_t, \hat{r}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

Challenge #2: exploration

Possible approach: AMO + **simple random exploration**

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates $\hat{\mathbf{r}}_t$ of \mathbf{r}_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := \text{AMO}(\{(x_t, \hat{\mathbf{r}}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

But $\mathbb{E}_{(x, \mathbf{r})}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x, \mathbf{r})}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$

(Dependencies on $|\mathcal{A}|$ and $|\Pi|$ hidden.)

Challenge #2: exploration

Possible approach: AMO + **simple random exploration**

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates $\hat{\mathbf{r}}_t$ of \mathbf{r}_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := \text{AMO}(\{(x_t, \hat{\mathbf{r}}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

But $\mathbb{E}_{(x, \mathbf{r})}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x, \mathbf{r})}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$
... so regret with this approach (with best T_0) could be as large as

$$\Omega\left(T_0 + \frac{1}{\sqrt{T_0}}(T - T_0)\right)$$

(Dependencies on $|\mathcal{A}|$ and $|\Pi|$ hidden.)

Challenge #2: exploration

Possible approach: AMO + **simple random exploration**

- 1: In first T_0 rounds, choose $a_t \in \mathcal{A}$ u.a.r. to get unbiased estimates $\hat{\mathbf{r}}_t$ of \mathbf{r}_t for all $t \in [T_0]$.
- 2: Get $\tilde{\pi} := \text{AMO}(\{(x_t, \hat{\mathbf{r}}_t)\}_{t \in [T_0]})$.
- 3: Use $a_t := \tilde{\pi}(x_t)$ in round $t > T_0$.

But $\mathbb{E}_{(x, \mathbf{r})}[r(\tilde{\pi}(x))] \approx \max_{\pi \in \Pi} \mathbb{E}_{(x, \mathbf{r})}[r(\pi(x))] - \Omega\left(\frac{1}{\sqrt{T_0}}\right)$
... so regret with this approach (with best T_0) could be as large as

$$\Omega\left(T_0 + \frac{1}{\sqrt{T_0}}(T - T_0)\right) \sim T^{2/3} \gg T^{1/2}.$$

(Dependencies on $|\mathcal{A}|$ and $|\Pi|$ hidden.)

Algorithms for contextual bandits

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

$\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Algorithms for contextual bandits

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

$\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Previous work:

[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound $O(\sqrt{KT \log N})$.

Requires explicit enumeration of Π in every round.

Algorithms for contextual bandits

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

$\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Previous work:

[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound $O(\sqrt{KT \log N})$.

Requires explicit enumeration of Π in every round.

[LZ'07] ϵ -greedy variant (uniform exploration).

Suboptimal regret bound $\tilde{O}(T^{2/3}(K \log N)^{1/3})$.

One call to AMO overall.

Algorithms for contextual bandits

Let $K := |\mathcal{A}|$ and $N := |\Pi|$.

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

$\tilde{O}(\sqrt{TK})$ calls to AMO overall.

Previous work:

[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound $O(\sqrt{KT \log N})$.

Requires explicit enumeration of Π in every round.

[LZ'07] ϵ -greedy variant (uniform exploration).

Suboptimal regret bound $\tilde{O}(T^{2/3}(K \log N)^{1/3})$.

One call to AMO overall.

[DHKKLRZ'11] “efficient” algorithm (careful exploration).

Optimal regret bound $\tilde{O}(\sqrt{KT \log N})$.

$O(T^6 K^4)$ calls to AMO overall.

Rest of the talk

Components of the new algorithm: Importance-weighted
LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS

1. “Classical” tricks: randomization, inverse probability weighting.
2. Efficient algorithm for balancing exploration/exploitation.
3. Additional tricks: warm-start and epoch structure.

Note: we assume (x_t, \mathbf{r}_t) i.i.d. from \mathcal{D}
(whereas Exp4 also works in adversarial setting).

Outline

1. Introduction
2. Classical tricks
3. Construction of good policy distributions
4. Additional tricks: warm-start and epoch structure

2. Classical tricks

What would've happened if I had done X?

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, r_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

What would've happened if I had done X?

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, r_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

Q: How do I learn about $r_t(a)$ for actions a I don't actually take?

What would've happened if I had done X?

For $t = 1, 2, \dots, T$:

0. Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
1. Observe context x_t .
2. Choose action $a_t \in \mathcal{A}$.
3. Collect reward $r_t(a_t)$.

Q: How do I learn about $r_t(a)$ for actions a I don't actually take?

A: *Randomize.* Draw $a_t \sim \mathbf{p}_t$ for some pre-specified prob. dist. \mathbf{p}_t .

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A} . \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)}$$

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A} . \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$$

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A} . \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$$

Unbiasedness:

$$\mathbb{E}_{a_t \sim p_t} [\hat{r}_t(a)] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1}\{a = a'\}}{p_t(a')} = r_t(a).$$

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A}. \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$$

Unbiasedness:

$$\mathbb{E}_{a_t \sim p_t} [\hat{r}_t(a)] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1}\{a = a'\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A}. \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$$

Unbiasedness:

$$\mathbb{E}_{a_t \sim p_t} [\hat{r}_t(a)] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1}\{a = a'\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Expected reward of policy: $\text{Rew}(\pi) = \mathbb{E}_{(x, r)}[r(\pi(x))]$

Unbiased estimator of total reward: $\widehat{\text{Rew}}_t(\pi) := \sum_{i=1}^t \hat{r}_i(\pi(x_i))$.

Inverse probability weighting

Importance-weighted estimate of reward from round t :

$$\forall a \in \mathcal{A}. \quad \hat{r}_t(a) := \frac{r_t(a_t) \cdot \mathbb{1}\{a = a_t\}}{p_t(a_t)} = \begin{cases} \frac{r_t(a_t)}{p_t(a_t)} & \text{if } a = a_t \\ 0 & \text{otherwise} \end{cases}$$

Unbiasedness:

$$\mathbb{E}_{a_t \sim p_t} [\hat{r}_t(a)] = \sum_{a' \in \mathcal{A}} p_t(a') \cdot \frac{r_t(a') \cdot \mathbb{1}\{a = a'\}}{p_t(a')} = r_t(a).$$

Range and variance: upper-bounded by $1/p_t(a)$.

Expected reward of policy: $\text{Rew}(\pi) = \mathbb{E}_{(x, r)}[r(\pi(x))]$

Unbiased estimator of total reward: $\widehat{\text{Rew}}_t(\pi) := \sum_{i=1}^t \hat{r}_i(\pi(x_i))$.

How should we choose the p_t ?

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\mathbf{W}, x)}_{\text{(policy distribution, context)}} \mapsto \underbrace{\mathbf{p}}_{\text{action distribution}}$$

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\mathbf{W}, x)}_{\text{(policy distribution, context)}} \mapsto \underbrace{\mathbf{p}}_{\text{action distribution}}$$

Policy distribution: $\mathbf{W} = (W(\pi) : \pi \in \Pi)$
probability dist. over policies π in the policy class Π

Hedging over policies

Get action distributions via policy distributions.

$$\underbrace{(\mathbf{W}, x)}_{\text{(policy distribution, context)}} \mapsto \underbrace{\mathbf{p}}_{\text{action distribution}}$$

- 1: Pick initial distribution \mathbf{W}_1 over policies Π .
- 2: **for round** $t = 1, 2, \dots$ **do**
- 3: Nature draws (x_t, \mathbf{r}_t) from dist. \mathcal{D} over $\mathcal{X} \times [0, 1]^{\mathcal{A}}$.
- 4: Observe context x_t .
- 5: Compute distribution \mathbf{p}_t over \mathcal{A} (using \mathbf{W}_t and x_t).
- 6: Pick action $a_t \sim \mathbf{p}_t$.
- 7: Collect reward $r_t(a_t)$.
- 8: Compute new distribution \mathbf{W}_{t+1} over policies Π .
- 9: **end for**

Projections of policy distributions

Given policy distribution \mathbf{W} and context x ,

$$\forall a \in \mathcal{A} . \quad W(a|x) := \sum_{\pi \in \Pi} W(\pi) \cdot \mathbb{1}\{\pi(x) = a\}$$

(so $\mathbf{W} \mapsto \mathbf{W}(\cdot|x)$ is a linear map).

Projections of policy distributions

Given policy distribution \mathbf{W} and context x ,

$$\forall a \in \mathcal{A} . \quad W(a|x) := \sum_{\pi \in \Pi} W(\pi) \cdot \mathbb{1}\{\pi(x) = a\}$$

(so $\mathbf{W} \mapsto \mathbf{W}(\cdot|x)$ is a linear map).

We actually use

$$\mathbf{p}_t := \mathbf{W}_t^{\mu_t}(\cdot|x_t) := (1 - K\mu_t)\mathbf{W}_t(\cdot|x_t) + \mu_t$$

so every action has probability at least μ_t (*to be determined*).

Basic algorithm structure

```
1: Pick initial distribution  $\mathbf{W}_1$  over policies  $\Pi$ .  
2: for round  $t = 1, 2, \dots$  do  
3:   Nature draws  $(x_t, \mathbf{r}_t)$  from dist.  $\mathcal{D}$  over  $\mathcal{X} \times [0, 1]^{\mathcal{A}}$ .  
4:   Observe context  $x_t$ .  
5:   Compute action distribution  $\mathbf{p}_t := \mathbf{W}_t^{\mu_t}(\cdot | x_t)$ .  
6:   Pick action  $a_t \sim \mathbf{p}_t$ .  
7:   Collect reward  $r_t(a_t)$ .  
8:   Compute new distribution  $\mathbf{W}_{t+1}$  over policies  $\Pi$ .  
9: end for
```

Q: How do we choose \mathbf{W}_t for good exploration/exploitation?

Basic algorithm structure

```
1: Pick initial distribution  $\mathbf{W}_1$  over policies  $\Pi$ .  
2: for round  $t = 1, 2, \dots$  do  
3:   Nature draws  $(x_t, \mathbf{r}_t)$  from dist.  $\mathcal{D}$  over  $\mathcal{X} \times [0, 1]^{\mathcal{A}}$ .  
4:   Observe context  $x_t$ .  
5:   Compute action distribution  $\mathbf{p}_t := \mathbf{W}_t^{\mu_t}(\cdot | x_t)$ .  
6:   Pick action  $a_t \sim \mathbf{p}_t$ .  
7:   Collect reward  $r_t(a_t)$ .  
8:   Compute new distribution  $\mathbf{W}_{t+1}$  over policies  $\Pi$ .  
9: end for
```

Q: How do we choose \mathbf{W}_t for good exploration/exploitation?

Caveat: \mathbf{W}_t must be efficiently computable + representable!

3. Construction of good policy distributions

Our approach

- ▶ Define convex feasibility problem (over distributions W on Π) such that solutions yield optimal regret bounds.

Our approach

- ▶ Define convex feasibility problem (over distributions \mathbf{W} on Π) such that solutions yield optimal regret bounds.
- ▶ Design algorithm that finds a *sparse* solution \mathbf{W} .

Our approach

- ▶ Define convex feasibility problem (over distributions \mathbf{W} on Π) such that solutions yield optimal regret bounds.
- ▶ Design algorithm that finds a *sparse* solution \mathbf{W} .

Algorithm only accesses Π via calls to AMO

$$\implies \text{nnz}(\mathbf{W}) = \# \text{ calls to AMO}$$

An optimal but inefficient algorithm

Policy_Elimination

Let $\Pi_1 = \Pi$.

An optimal but inefficient algorithm

Policy_Elimination

Let $\Pi_1 = \Pi$. For each $t = 1, 2, \dots$:

1. Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \quad \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

An optimal but inefficient algorithm

Policy_Elimination

Let $\Pi_1 = \Pi$. For each $t = 1, 2, \dots$:

1. Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \quad \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

2. Let $\overline{\text{Rew}}_t(\pi) = \frac{1}{t} \widehat{\text{Rew}}_t(\pi)$, i.e. the average of all the estimators for $\text{Rew}(\pi)$ so far. Let

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta \left(\frac{1}{\sqrt{t}} \right) \right\}$$

Analysis Sketch: Distribution Selection Step

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

Analysis Sketch: Distribution Selection Step

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

- ▶ Ensures that $\forall \pi \in \Pi_t :$

$$\mathbf{Var}_x[\hat{r}_t(\pi(x_t))] \leq O(1).$$

Analysis Sketch: Distribution Selection Step

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

- ▶ Ensures that $\forall \pi \in \Pi_t :$

$$\mathbf{Var}_x[\hat{r}_t(\pi(x_t))] \leq O(1).$$

- ▶ Hence, averaging over t iterations, we have $\forall \pi \in \Pi_t :$

$$\mathbf{Var}_x[\overline{\text{Rew}}_t(\pi)] \leq O\left(\frac{1}{t}\right).$$

Analysis Sketch: Distribution Selection Step

Choose distribution W_t over Π_t such that

$$\forall \pi \in \Pi_t : \mathbb{E}_x \left[\frac{1}{W_t(\pi(x)|x)} \right] \leq K$$

- ▶ Ensures that $\forall \pi \in \Pi_t :$

$$\mathbf{Var}_x[\hat{r}_t(\pi(x_t))] \leq O(1).$$

- ▶ Hence, averaging over t iterations, we have $\forall \pi \in \Pi_t :$

$$\mathbf{Var}_x[\overline{\text{Rew}}_t(\pi)] \leq O\left(\frac{1}{t}\right).$$

- ▶ Martingale concentration bounds imply that w.h.p. $\forall \pi \in \Pi_t :$

$$|\overline{\text{Rew}}_t(\pi) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

Analysis Sketch: Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

Analysis Sketch: Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

- W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\text{Rew}}_t(\pi) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

Analysis Sketch: Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

- W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\text{Rew}}_t(\pi) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

- W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\text{Rew}(\pi^*) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

Analysis Sketch: Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

- W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\text{Rew}}_t(\pi) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

- W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\text{Rew}(\pi^*) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

- Thus, expected regret in time $t + 1$ is $O(\frac{1}{\sqrt{t}})$.

Analysis Sketch: Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

- W.h.p. $\forall \pi \in \Pi_t$:

$$|\overline{\text{Rew}}_t(\pi) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

- W.h.p. $\forall \pi \in \Pi_{t+1}$:

$$|\text{Rew}(\pi^*) - \text{Rew}(\pi)| \leq O\left(\frac{1}{\sqrt{t}}\right).$$

- Thus, expected regret in time $t + 1$ is $O(\frac{1}{\sqrt{t}})$.

- Thus, total regret is $\sum_{t=1}^T O(\frac{1}{\sqrt{t}}) = O(\sqrt{T})$.

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\min_W \max_{\pi} \mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] = \min_W \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right]$$

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\begin{aligned} \min_W \max_{\pi} \mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] &= \min_W \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &= \max_U \min_W \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \end{aligned}$$

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\begin{aligned} \min_W \max_{\pi} \mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] &= \min_W \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &= \max_U \min_W \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &\leq \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{U(\pi(x)|x)} \right] \end{aligned}$$

Existence of Distribution

Key step: Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Why should such a distribution exist?

Answer: Minimax magic.

$$\begin{aligned} \min_W \max_{\pi} \mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] &= \min_W \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &= \max_U \min_W \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{W(\pi(x)|x)} \right] \\ &\leq \max_U \mathbb{E}_{x, \pi \sim U} \left[\frac{1}{U(\pi(x)|x)} \right] \\ &= \max_U \mathbb{E}_x \left[\sum_{a \in [K]} \frac{U(a|x)}{U(a|x)} \right] \leq K. \end{aligned}$$

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- ▶ Computing P is a convex optimization problem and takes $\text{poly}(N)$ time.

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- ▶ Computing P is a convex optimization problem and takes $\text{poly}(N)$ time.
- ▶ Computing P requires knowledge of actual data distribution.

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- ▶ Computing P is a convex optimization problem and takes $\text{poly}(N)$ time.
- ▶ Computing P requires knowledge of actual data distribution.

Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

Problems with the algorithm

Distribution Selection Step

Choose W s.t. $\forall \pi \in \Pi_t$, we have $\mathbb{E}_x \left[\frac{1}{W(\pi(x)|x)} \right] \leq K$.

- ▶ Computing P is a convex optimization problem and takes $\text{poly}(N)$ time.
- ▶ Computing P requires knowledge of actual data distribution.

Policy Elimination Step

$$\Pi_{t+1} = \left\{ \pi \in \Pi_t : \overline{\text{Rew}}_t(\pi) \geq \max_{\pi' \in \Pi_t} \overline{\text{Rew}}_t(\pi') - \Theta\left(\frac{1}{\sqrt{t}}\right) \right\}$$

- ▶ Policy Elimination Step takes $\Omega(N)$ time.

Properties of a good policy distribution

Low Regret and Low Variance constraints on W :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq \sqrt{Kt \log N}, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{\sqrt{Kt \log N}} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Properties of a good policy distribution

Low Regret and Low Variance constraints on W :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq \sqrt{Kt \log N}, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{\sqrt{Kt \log N}} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Intuition: Allow higher variance for policies π with larger regret, as they should have low weight anyway.

Properties of a good policy distribution

Low Regret and Low Variance constraints on W :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Intuition: Allow higher variance for policies π with larger regret, as they should have low weight anyway.

Properties of a good policy distribution

Low Regret and Low Variance constraints on W :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

$$(\text{LV}) \implies \text{Reg}(\pi) \leq O\left(\widehat{\text{Reg}}_t(\pi) + Kt \cdot \mu_t\right) \quad \forall \pi \in \Pi;$$

$$(\text{LR}, \text{LV}) \implies \sum_{\pi \in \Pi} W_t(\pi) \cdot \text{Reg}(\pi) \leq O(Kt \cdot \mu_t).$$

Properties of a good policy distribution

Low Regret and Low Variance constraints on \mathbf{W} :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Theorem: If we pick \mathbf{W}_t satisfying (LR,LV) in every round t ,
then regret over all T rounds is $O\left(\sqrt{KT \log N}\right)$.

Properties of a good policy distribution

Low Regret and Low Variance constraints on W :

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq Kt \cdot \mu_t, \quad (\text{LR})$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right) \quad \forall \pi \in \Pi \quad (\text{LV})$$

$$\widehat{\text{Reg}}_t(\pi) := \max_{\pi' \in \Pi} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi), \quad \mu_t := \sqrt{\frac{\log N}{Kt}}, \quad H_t := (x_1, \dots, x_t)$$

Theorem: If we pick W_t satisfying (LR,LV) in every round t ,
then regret over all T rounds is $O\left(\sqrt{KT \log N}\right)$.

Critical question: Is it even feasible to satisfy (LR,LV)?

Minmax proof of feasibility (simplified)

$$\sum_{\pi \in \Pi} W(\pi) \cdot \widehat{\text{Reg}}_t(\pi) \leq \sqrt{Kt \log N},$$

$$\widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W(\pi(x)|x)} \right] \leq K \left(1 + \frac{\widehat{\text{Reg}}_t(\pi)}{\sqrt{Kt \log N}} \right) \quad \forall \pi \in \Pi$$

Minmax proof of feasibility (simplified)

$$\sum_{\pi \in \Pi} b(\pi) \mathcal{W}(\pi) - 1 \leq 0,$$

$$\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{\mathcal{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \leq 0 \quad \forall \pi \in \Pi$$

$$b(\pi) := \widehat{\text{Reg}}_t(\pi) / \sqrt{Kt \log N}$$

Minmax proof of feasibility (simplified)

$$\begin{aligned} & \min_{\mathbf{W} \in \Delta^N} \max_{(\mathbf{U}_o, \mathbf{U}) \in \Delta^{N+1}} \mathbf{U}_o \left(\sum_{\pi \in \Pi} b(\pi) \mathbf{W}(\pi) - 1 \right) \\ & + \sum_{\pi \in \Pi} \mathbf{U}(\pi) \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{\mathbf{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0 \end{aligned}$$

$$b(\pi) := \widehat{\text{Reg}}_t(\pi) / \sqrt{Kt \log N}$$

Minmax proof of feasibility (simplified)

$$\begin{aligned} & \max_{(U_o, U) \in \Delta^{N+1}} \min_{W \in \Delta^N} U_o \left(\sum_{\pi \in \Pi} b(\pi) W(\pi) - 1 \right) \\ & + \sum_{\pi \in \Pi} U(\pi) \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0 \end{aligned}$$

$$b(\pi) := \widehat{\text{Reg}}_t(\pi) / \sqrt{Kt \log N}$$

Minmax proof of feasibility (simplified)

$$\begin{aligned} & \max_{(U_o, U) \in \Delta^{N+1}} \min_{W \in \Delta^N} U_o \left(\sum_{\pi \in \Pi} b(\pi) W(\pi) - 1 \right) \\ & + \sum_{\pi \in \Pi} U(\pi) \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{W(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \leq 0 \end{aligned}$$

$$b(\pi) := \widehat{\text{Reg}}_t(\pi) / \sqrt{Kt \log N}$$

Choose $W := U + U_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg \min_{\pi \in \Pi} b(\pi)$
to verify that value of game ≤ 0 .

Minmax proof of feasibility (simplified)

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U}_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg \min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$)
to verify that value of game ≤ 0 .

$$\begin{aligned} & \max_{(\mathbf{U}_o, \mathbf{U}) \in \Delta^{N+1}} \min_{\mathbf{W} \in \Delta^N} \mathbf{U}_o \left(\sum_{\pi \in \Pi} b(\pi) \mathbf{W}(\pi) - 1 \right) \\ & + \sum_{\pi \in \Pi} \mathbf{U}(\pi) \left(\frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\frac{1}{\mathbf{W}(\pi(x)|x)} \right] - (1 + b(\pi)) \right) \end{aligned}$$

Minmax proof of feasibility (simplified)

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U}_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg \min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$)
to verify that value of game ≤ 0 .

$$\begin{aligned} & \max_{(\mathbf{U}_o, \mathbf{U}) \in \Delta^{N+1}} \mathbf{U}_o \left(\sum_{\pi \in \Pi} b(\pi) \mathbf{U}(\pi) - 1 \right) \\ & + \frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\sum_{a \in \mathcal{A}} \frac{\mathbf{U}(a|x)}{\mathbf{W}(a|x)} \right] - \sum_{\pi \in \Pi} \mathbf{U}(\pi) (1 + b(\pi)) \end{aligned}$$

Minmax proof of feasibility (simplified)

Choose $\mathbf{W} := \mathbf{U} + \mathbf{U}_o \mathbf{1}^{\hat{\pi}}$ for $\hat{\pi} := \arg \min_{\pi \in \Pi} b(\pi)$ (so $b(\hat{\pi}) = 0$)
to verify that value of game ≤ 0 .

$$\begin{aligned} & \max_{(\mathbf{U}_o, \mathbf{U}) \in \Delta^{N+1}} (\mathbf{U}_o - 1) \sum_{\pi \in \Pi} b(\pi) \mathbf{U}(\pi) \\ & \quad + \frac{1}{K} \widehat{\mathbb{E}}_{x \in H_t} \left[\sum_{a \in \mathcal{A}} \frac{\mathbf{U}(a|x)}{\mathbf{W}(a|x)} \right] - 1 \leq 0 \end{aligned}$$

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ’11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm (where separation oracle = AMO + Perceptron + another Ellipsoid).

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ’11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution, *probabilistic method* shows that there is an $\tilde{O}(\sqrt{Kt})$ -sparse approximation with comparable LR and LV constraint bounds.

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ’11]: Can solve (variant) of feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution, *probabilistic method* shows that there is an $\tilde{O}(\sqrt{Kt})$ -sparse approximation with comparable LR and LV constraint bounds.

Efficient construction via “boosting”-type algorithm?

Coordinate descent algorithm

```
input Initial weights  $W$ .  
1: loop  
2:   If (LR) is violated, then replace  $W$  by  $cW$ .  
3:   if there is a policy  $\pi \in \Pi$  causing (LV) to be violated  
4:     then  
5:       set  $W(\pi) := W(\pi) + \alpha$ .  
6:     else  
7:       Halt and return  $W$ .  
8:   end if  
9: end loop
```

(Both $0 < c < 1$ and $\alpha > 0$ have closed form expressions.)

(Technical detail: actually optimize over subdistributions that may sum to < 1 .)

Implementation via AMO

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\mathbb{E}}_x \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\max_{\pi'} \widehat{\text{Rew}}_t(\pi') - \widehat{\text{Rew}}_t(\pi)}{Kt \cdot \mu_t} \right)$$

Implementation via AMO

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\frac{\widehat{\text{Rew}}_t(\pi)}{t \cdot \mu_t} + \widehat{\mathbb{E}}_x \left[\frac{1}{W^{\mu_t}(\pi(x)|x)} \right] \leq K \left(1 + \frac{\max_{\pi'} \widehat{\text{Rew}}_t(\pi')}{Kt \cdot \mu_t} \right)$$

Implementation via AMO

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\text{Rew}}_t(\pi) + t \cdot \widehat{\mathbb{E}}_x \left[\frac{\mu_t}{W^{\mu_t}(\pi(x)|x)} \right] \leq Kt \cdot \mu_t + \max_{\pi'} \widehat{\text{Rew}}_t(\pi')$$

Implementation via AMO

Checking violation of (LV) constraint: for all $\pi \in \Pi$,

$$\widehat{\text{Rew}}_t(\pi) + t \cdot \widehat{\mathbb{E}}_x \left[\frac{\mu_t}{W^{\mu_t}(\pi(x)|x)} \right] \leq Kt \cdot \mu_t + \max_{\pi'} \widehat{\text{Rew}}_t(\pi')$$

1. Obtain $\hat{\pi} := \text{AMO}((x_1, \hat{\mathbf{r}}_1), \dots, (x_t, \hat{\mathbf{r}}_t))$.
2. Create fictitious rewards for each $i = 1, 2, \dots, t$:

$$\tilde{r}_i(a) := \frac{\mu}{W^{\mu_t}(a|x_i)} + \hat{r}_i(a) \quad \forall a \in \mathcal{A}.$$

Obtain $\tilde{\pi} := \text{AMO}((x_1, \tilde{\mathbf{r}}_1), \dots, (x_t, \tilde{\mathbf{r}}_t))$.

3. $\widetilde{\text{Rew}}_t(\tilde{\pi}) > Kt \cdot \mu_t + \widehat{\text{Rew}}_t(\hat{\pi})$ iff (LV) is violated by $\tilde{\pi}$.

Iteration bound for coordinate descent

Using unnormalized relative entropy-based potential function

$$\Phi(W) := t\mu_t \left(\frac{\widehat{\mathbb{E}}_{x \in H_t} [\text{RE}(\text{unif} \| W^{\mu_t}(\cdot|x))]}{1 - K\mu_t} + \frac{\sum_{\pi \in \Pi} W(\pi) \widehat{\text{Reg}}_t(\pi)}{Kt \cdot \mu_t} \right),$$

can show coordinate descent returns a feasible solution after

$$\tilde{O}\left(\frac{1}{\mu_t}\right) = \tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right) \text{ steps.}$$

(Every step decreases potential by about $t \cdot \mu_t^2 = \frac{\log N}{K}$.)

Recap

Recap

Low Regret / Low Variance constraints:

implies $\tilde{O}(\sqrt{KT \log N})$ regret bound.

Recap

Low Regret / Low Variance constraints:

implies $\tilde{O}(\sqrt{KT \log N})$ regret bound.

Coordinate descent to solve LR/LV constraints:

repeatedly find a violated constraint and adjust W to satisfy it.

Recap

Low Regret / Low Variance constraints:

implies $\tilde{O}(\sqrt{KT \log N})$ regret bound.

Coordinate descent to solve LR/LV constraints:

repeatedly find a violated constraint and adjust W to satisfy it.

Coordinate descent analysis:

In round t ,

$$\text{nnz}(W_t) = O(\# \text{ calls to } \arg \max_{\pi \in \Pi} \text{oracle}) = \tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right)$$

(same as guarantee via probabilistic method).

4. Additional tricks: warm-start and epoch structure

Total complexity over all rounds

In round t , coordinate descent for computing \mathbf{W}_t requires

$$\tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right) \text{ AMO calls.}$$

Total complexity over all rounds

In round t , coordinate descent for computing \mathbf{W}_t requires

$$\tilde{O}\left(\sqrt{\frac{Kt}{\log N}}\right) \text{ AMO calls.}$$

To compute \mathbf{W}_t in all rounds $t = 1, 2, \dots, T$, need

$$\tilde{O}\left(\sqrt{\frac{K}{\log N}} T^{1.5}\right) \text{ AMO calls over } T \text{ rounds.}$$

Warm start

To compute \mathbf{W}_{t+1} using coordinate descent, initialize with \mathbf{W}_t .

Warm start

To compute \mathbf{W}_{t+1} using coordinate descent, initialize with \mathbf{W}_t .

1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).

Warm start

To compute \mathbf{W}_{t+1} using coordinate descent, initialize with \mathbf{W}_t .

1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.

Warm start

To compute \mathbf{W}_{t+1} using coordinate descent, initialize with \mathbf{W}_t .

1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.
3. Over all T rounds,

$$\text{total \# calls to AMO} \leq \tilde{O}\left(\sqrt{\frac{KT}{\log N}}\right)$$

Warm start

To compute \mathbf{W}_{t+1} using coordinate descent, initialize with \mathbf{W}_t .

1. Total epoch-to-epoch increase in potential is $\tilde{O}(\sqrt{T/K})$ over all T rounds (w.h.p.—exploiting i.i.d. assumption).
2. Each coordinate descent step decreases potential by $\Omega\left(\frac{\log N}{K}\right)$.
3. Over all T rounds,

$$\text{total \# calls to AMO} \leq \tilde{O}\left(\sqrt{\frac{KT}{\log N}}\right)$$

But still need an AMO call to even check if \mathbf{W}_t is feasible!

Epoch trick

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

Epoch trick

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

⇒ same W_t can be used for $O(t)$ more rounds!

Epoch trick

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

⇒ same W_t can be used for $O(t)$ more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Epoch trick

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

⇒ same W_t can be used for $O(t)$ more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Doubling: only update on rounds $2^1, 2^2, 2^3, 2^4, \dots$

Epoch trick

Regret analysis: W_t has low instantaneous per-round regret (roughly $K\mu_t$)—this also crucially relies on i.i.d. assumption.

⇒ same W_t can be used for $O(t)$ more rounds!

Epoch trick: split T rounds into epochs, only compute W_t at start of each epoch.

Doubling: only update on rounds $2^1, 2^2, 2^3, 2^4, \dots$

log T epochs, so $\tilde{O}(\sqrt{KT/\log N})$ AMO calls overall.