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1. Introduction

2



Learning to interact: example #1

Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Physician prescribes treatment.
3. Patient’s health responds (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.
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Learning to interact: example #2

Loop:
1. User visits website with profile, browsing history . . .
2. Website operator chooses content/ads to display.
3. User reacts to content/ads (e.g., click, “like”).

Goal: choose content/ads that yield desired user behavior.
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Contextual bandit setting (i.i.d. version)

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt .
2. Choose action at ∈ A.
3. Collect reward rt(at).

Task: Design an algorithm for choosing at ’s that yield high reward.

Contextual setting: use features xt to choose good actions at .
Bandit setting: rt(a) for a 6= at is not observed.
=⇒ Exploration vs. exploitation dilemma

(cf. non-bandit setting: whole reward vector r t ∈ [0, 1]A observed.)
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Learning objective in the contextual bandit setting

No single action is good in all situations: must exploit context.

Policy class Π: set of functions (“policies”) π : X → A
(e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
total reward of best policy

−
T∑
t=1

rt(at)︸ ︷︷ ︸
total reward of learner

. . . a strong benchmark when Π contains a policy with high reward.

Regret is sublinear (in T ) =⇒ (Avg.) per-round regret → 0.
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Challenge #1: computation

Feedback that learner observes: reward of chosen action rt(at)
−→ only directly relevant to π ∈ Π s.t. π(xt) = at .

Separate explicit bookkeeping for each policy π ∈ Π becomes
computationally intractable when Π is large (or infinite!).
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Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of Π to design
efficient algorithms or heuristics!

Given fully labeled data (x1,ρ1), . . . , (xt ,ρt) ∈ X × [0, 1]A, the
AMO returns

argmax
π∈Π

t∑
i=1

ρi (π(xi )).

AMO is an abstraction for efficient search through Π.

In practice: implement using standard heuristics—e.g., convex
relaxations, backpropagation—for cost-sensitive multi-class learning.

But requires complete reward vectors ρi ; not directly usable for
contextual bandits.
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Challenge #2: exploration

Possible approach: AMO + simple random exploration

1: In first T0 rounds, choose at ∈ A u.a.r. to get unbiased
estimates r̂ t of r t for all t ∈ [T0].

2: Get π̃ := AMO({(xt , r̂ t)}t∈[T0]).
3: Use at := π̃(xt) in round t > T0.

But E(x ,r)[r(π̃(x))] ≈ max
π∈Π

E(x ,r)[r(π(x))]− Ω

(
1√
T0

)
. . . so regret with this approach (with best T0) could be as large as

Ω

(
T0 +

1√
T0

(T − T0)

)
∼ T 2/3 � T 1/2.

(Dependencies on |A| and |Π| hidden.)
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Algorithms for contextual bandits
Let K := |A| and N := |Π|.

Our result [AHKLLS’14]: a new, fast and simple algorithm.
Optimal regret bound Õ(

√
KT logN).

Õ(
√
TK ) calls to AMO overall.

Previous work:

[ACBFS’02] Exp4 algorithm (exponential weights).
Optimal regret bound O(

√
KT logN).

Requires explicit enumeration of Π in every round.

[LZ’07] ε-greedy variant (uniform exploration).
Suboptimal regret bound Õ(T 2/3(K logN)1/3).
One call to AMO overall.

[DHKKLRZ’11] “efficient” algorithm (careful exploration).
Optimal regret bound Õ(

√
KT logN).

O(T 6K 4) calls to AMO overall.
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Rest of the talk

Components of the new algorithm: Importance-weighted
LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS
1. “Classical” tricks: randomization, inverse probability weighting.
2. Efficient algorithm for balancing exploration/exploitation.
3. Additional tricks: warm-start and epoch structure.

Note: we assume (xt , r t) i.i.d. from D
(whereas Exp4 also works in adversarial setting).
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Outline

1. Introduction

2. Classical tricks

3. Construction of good policy distributions

4. Additional tricks: warm-start and epoch structure

12



2. Classical tricks
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What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt .
2. Choose action at ∈ A.
3. Collect reward rt(at).

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .
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Inverse probability weighting
Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)

=


rt(at)
pt(at)

if a = at

0 otherwise

Unbiasedness:

Eat∼pt
[r̂t(a)] =

∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a).

Range and variance: upper-bounded by 1/pt(a).

Expected reward of policy: Rew(π) = E(x ,r)[r(π(x)]

Unbiased estimator of total reward: R̂ewt(π) :=
∑t

i=1 r̂i (π(xi )).

How should we choose the pt?
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Hedging over policies

Get action distributions via policy distributions.

(W , x)︸ ︷︷ ︸
(policy distribution, context)

7→ p︸︷︷︸
action distribution
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Hedging over policies

Get action distributions via policy distributions.

(W , x)︸ ︷︷ ︸
(policy distribution, context)

7→ p︸︷︷︸
action distribution

1: Pick initial distribution W 1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute distribution pt over A (using W t and xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new distribution W t+1 over policies Π.
9: end for
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Projections of policy distributions

Given policy distribution W and context x ,

∀a ∈ A � W (a|x) :=
∑
π∈Π

W (π) · 1{π(x) = a}

(so W 7→W (·|x) is a linear map).

We actually use

pt := W µt
t ( · |xt) := (1− Kµt)W t( · |xt) + µt

so every action has probability at least µt (to be determined).
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Basic algorithm structure

1: Pick initial distribution W 1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute action distribution pt := W µt

t ( · |xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new distribution W t+1 over policies Π.
9: end for

Q: How do we choose W t for good exploration/exploitation?

Caveat: W t must be efficiently computable + representable!
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3. Construction of good policy distributions
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Our approach

I Define convex feasibility problem (over distributions W on Π)
such that solutions yield optimal regret bounds.

I Design algorithm that finds a sparse solution W .

Algorithm only accesses Π via calls to AMO
=⇒ nnz(W ) = # calls to AMO
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An optimal but inefficient algorithm

Policy_Elimination
Let Π1 = Π.

For each t = 1, 2, . . .:

1. Choose distribution Wt over Πt such that

∀π ∈ Πt : E
x

[
1

Wt(π(x)|x)

]
≤ K

2. Let Rewt(π) = 1
t R̂ewt(π), i.e. the average of all the

estimators for Rew(π) so far. Let

Πt+1 =

{
π ∈ Πt : Rewt(π) ≥ max

π′∈Πt

Rewt(π
′)−Θ

(
1√
t

)}
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Analysis Sketch: Distribution Selection Step

Choose distribution Wt over Πt such that

∀π ∈ Πt : E
x

[
1

Wt(π(x)|x)

]
≤ K

I Ensures that ∀π ∈ Πt :

Var
x

[r̂t(π(xt))] ≤ O(1).

I Hence, averaging over t iterations, we have ∀π ∈ Πt :

Var
x

[Rewt(π)] ≤ O
( 1
t

)
.

I Martingale concentration bounds imply that w.h.p. ∀π ∈ Πt :

|Rewt(π)− Rew(π)| ≤ O
(

1√
t

)
.
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Analysis Sketch: Policy Elimination Step

Πt+1 =

{
π ∈ Πt : Rewt(π) ≥ max

π′∈Πt

Rewt(π
′)−Θ

(
1√
t

)}

I W.h.p. ∀π ∈ Πt :

|Rewt(π)− Rew(π)| ≤ O
(

1√
t

)
.

I W.h.p. ∀π ∈ Πt+1:

|Rew(π?)− Rew(π)| ≤ O
(

1√
t

)
.

I Thus, expected regret in time t + 1 is O( 1√
t
).

I Thus, total regret is
∑T

t=1 O( 1√
t
) = O(

√
T ).
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Existence of Distribution

Key step: Choose W s.t. ∀π ∈ Πt , we have Ex

[
1

W (π(x)|x)

]
≤ K .

Why should such a distribution exist?

Answer: Minimax magic.

min
W

max
π

E
x

[
1

W (π(x)|x)

]
= min

W
max
U

E
x,π∼U

[
1

W (π(x)|x)

]

= max
U

min
W

E
x,π∼U

[
1

W (π(x)|x)

]
≤ max

U
E

x,π∼U

[
1

U(π(x)|x)

]

= max
U

E
x

∑
a∈[K ]

U(a|x)

U(a|x)

 ≤ K .
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Problems with the algorithm

Distribution Selection Step
Choose W s.t. ∀π ∈ Πt , we have Ex

[
1

W (π(x)|x)

]
≤ K .

I Computing P is a convex optimization problem and takes
poly(N) time.

I Computing P requires knowledge of actual data distribution.

Policy Elimination Step

Πt+1 =

{
π ∈ Πt : Rewt(π) ≥ max

π′∈Πt

Rewt(π
′)−Θ

(
1√
t

)}

I Policy Elimination Step takes Ω(N) time.
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Properties of a good policy distribution
Low Regret and Low Variance constraints on W :

∑
π∈Π

W (π) · R̂egt(π) ≤
√
Kt logN, (LR)

Êx∈Ht

[
1

W µt (π(x)|x)

]
≤ K

(
1 +

R̂egt(π)√
Kt logN

)
∀π ∈ Π (LV)

R̂egt(π) := maxπ′∈Π R̂ewt(π
′)− R̂ewt(π), µt :=

√
log N
Kt

, Ht := (x1, . . . , xt)

Critical question: Is it even feasible to satisfy (LR,LV)?
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R̂egt(π) := maxπ′∈Π R̂ewt(π
′)− R̂ewt(π), µt :=

√
log N
Kt

, Ht := (x1, . . . , xt)

(LV) =⇒ Reg(π) ≤ O
(
R̂egt(π) + Kt · µt

)
∀π ∈ Π;

(LR,LV) =⇒
∑
π∈Π

Wt(π) · Reg(π) ≤ O(Kt · µt).

Critical question: Is it even feasible to satisfy (LR,LV)?
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Theorem: If we pick W t satisfying (LR,LV) in every round t,
then regret over all T rounds is O

(√
KT logN

)
.

Critical question: Is it even feasible to satisfy (LR,LV)?
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Minmax proof of feasibility (simplified)

∑
π∈Π

W (π) · R̂egt(π) ≤
√
Kt logN,

Êx∈Ht

[
1

W (π(x)|x)

]
≤ K

(
1 +

R̂egt(π)√
Kt logN

)
∀π ∈ Π

b(π) := R̂egt(π)/
√

Kt logN

Choose W := U + Uo1π̂ for π̂ := argminπ∈Π b(π)
to verify that value of game ≤ 0.
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max
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1
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Minmax proof of feasibility (simplified)

Choose W := U + Uo1π̂ for π̂ := argminπ∈Π b(π) (so b(π̂) = 0)
to verify that value of game ≤ 0.

max
(Uo ,U)∈∆N+1

min
W∈∆N

Uo

(∑
π∈Π

b(π)W (π)− 1

)

+
∑
π∈Π

U(π)

(
1
K
Êx∈Ht

[
1

W (π(x)|x)

]
− (1 + b(π))

)
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Minmax proof of feasibility (simplified)

Choose W := U + Uo1π̂ for π̂ := argminπ∈Π b(π) (so b(π̂) = 0)
to verify that value of game ≤ 0.

max
(Uo ,U)∈∆N+1

Uo

(∑
π∈Π

b(π)U(π)− 1

)

+
1
K
Êx∈Ht

[∑
a∈A

U(a|x)

W (a|x)

]
−
∑
π∈Π

U(π)(1 + b(π))
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Minmax proof of feasibility (simplified)

Choose W := U + Uo1π̂ for π̂ := argminπ∈Π b(π) (so b(π̂) = 0)
to verify that value of game ≤ 0.

max
(Uo ,U)∈∆N+1

(Uo − 1)
∑
π∈Π

b(π)U(π)

+
1
K
Êx∈Ht

[∑
a∈A

U(a|x)

W (a|x)

]
− 1 ≤ 0
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Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ’11]: Can solve (variant) of
feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution,
probabilistic method shows that there is an Õ(

√
Kt)-sparse

approximation with comparable LR and LV constraint bounds.

Efficient construction via “boosting”-type algorithm?

29
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Efficient construction via “boosting”-type algorithm?
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Coordinate descent algorithm

input Initial weights W .
1: loop
2: If (LR) is violated, then replace W by cW .
3: if there is a policy π ∈ Π causing (LV) to be violated

then
4: set W (π) := W (π) + α.
5: else
6: Halt and return W .
7: end if
8: end loop

(Both 0 < c < 1 and α > 0 have closed form expressions.)

(Technical detail: actually optimize over subdistributions that may sum to < 1.)
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Implementation via AMO

Checking violation of (LV) constraint: for all π ∈ Π,

Êx

[
1

W µt (π(x)|x)

]
≤ K

(
1 +

maxπ′ R̂ewt(π
′)− R̂ewt(π)

Kt · µt

)

1. Obtain π̂ := AMO((x1, r̂1), . . . , (xt , r̂ t)).

2. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) :=
µ

W µt (a|xi )
+ r̂i (a) ∀a ∈ A.

Obtain π̃ := AMO((x1, r̃1), . . . , (xt , r̃ t)).

3. R̃ewt(π̃) > Kt · µt + R̂ewt(π̂) iff (LV) is violated by π̃.
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[
µt

W µt (π(x)|x)

]
≤ Kt · µt + maxπ′R̂ewt(π

′)

1. Obtain π̂ := AMO((x1, r̂1), . . . , (xt , r̂ t)).

2. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) :=
µ

W µt (a|xi )
+ r̂i (a) ∀a ∈ A.

Obtain π̃ := AMO((x1, r̃1), . . . , (xt , r̃ t)).

3. R̃ewt(π̃) > Kt · µt + R̂ewt(π̂) iff (LV) is violated by π̃.

31



Implementation via AMO

Checking violation of (LV) constraint: for all π ∈ Π,

R̂ewt(π) + t · Êx
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Iteration bound for coordinate descent

Using unnormalized relative entropy-based potential function

Φ(W ) := tµt

(
Êx∈Ht [RE(unif ‖W µt (·|x))]

1− Kµt
+

∑
π∈Π W (π)R̂egt(π)

Kt · µt

)
,

can show coordinate descent returns a feasible solution after

Õ

(
1
µt

)
= Õ

(√
Kt

logN

)
steps.

(Every step decreases potential by about t · µ2
t = logN

K .)
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Recap

Low Regret / Low Variance constraints:
implies Õ(

√
KT logN) regret bound.

Coordinate descent to solve LR/LV constraints:
repeatedly find a violated constraint and adjust W to satisfy it.

Coordinate descent analysis:
In round t,

nnz(Wt) = O(# calls to argmax
π∈Π

oracle) = Õ

(√
Kt

logN

)

(same as guarantee via probabilistic method).
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4. Additional tricks: warm-start and epoch structure
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Total complexity over all rounds

In round t, coordinate descent for computing W t requires

Õ

(√
Kt

logN

)
AMO calls.

To compute W t in all rounds t = 1, 2, . . . ,T , need

Õ

(√
K

logN
T 1.5

)
AMO calls over T rounds.
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Warm start

To compute W t+1 using coordinate descent, initialize with W t .

1. Total epoch-to-epoch increase in potential is Õ(
√
T/K ) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

(√
KT

logN

)

But still need an AMO call to even check if W t is feasible!
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(√
KT

logN

)

But still need an AMO call to even check if W t is feasible!

36



Epoch trick

Regret analysis: W t has low instantaneous per-round regret
(roughly Kµt)—this also crucially relies on i.i.d. assumption.

=⇒ same Wt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W t at
start of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT epochs, so Õ(
√

KT/ logN) AMO calls overall.
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