Optimal Algorithm for the Contextual Bandit
problem

Alekh Agarwal? Daniel Hsu! Satyen Kale!
John Langford? Lihong Lif Rob Schapiref

TMicrosoft Research, fColumbia University,
!Google Research, *Princeton University

1. Introduction

Learning to interact: example #1

Loop:

2. Physician prescribes treatment.

3. Patient’s health responds (e.g., improves, worsens).

1. Patient arrives with symptoms, medical history, genome. ..

Goal: prescribe treatments that yield good health outcomes.

Learning to interact: example #2

Loop:
1. User visits website with profile, browsing history . ..
2. Website operator chooses content/ads to display.

3. User reacts to content/ads (e.g., click, “like").

Goal: choose content/ads that yield desired user behavior.

Contextual bandit setting (i.i.d. version)

Fort=1,2,...,T:
0. Nature draws (x;, ;) from dist. D over X' x [0, 1]
1. Observe context x;.
2. Choose action a; € A.
3

. Collect reward r¢(a;).

Task: Design an algorithm for choosing a;'s that yield high reward.

Contextual bandit setting (i.i.d. version)

Fort=1,2,...,T:
0. Nature draws (x;, ;) from dist. D over X' x [0, 1]
1. Observe context x;.
2. Choose action a; € A.

3. Collect reward r¢(a;).

Task: Design an algorithm for choosing a;'s that yield high reward.

Contextual setting: use features x; to choose good actions a.

Contextual bandit setting (i.i.d. version)

Fort=1,2,...,T:
0. Nature draws (x;, ;) from dist. D over X' x [0, 1]
1. Observe context x;.
2. Choose action a; € A.
3. Collect reward r¢(a;).

Task: Design an algorithm for choosing a;'s that yield high reward.

Contextual setting: use features x; to choose good actions a.
Bandit setting: r.(a) for a # a; is not observed.
= Exploration vs. exploitation dilemma

(cf. non-bandit setting: whole reward vector r; € [0, 1] observed.)

Learning objective in the contextual bandit setting

No single action is good in all situations: must exploit context.

Learning objective in the contextual bandit setting

No single action is good in all situations: must exploit context.

Policy class [: set of functions (“policies”) m: X — A
(e.g., advice of experts, linear classifiers, neural networks).

Learning objective in the contextual bandit setting

No single action is good in all situations: must exploit context.

Policy class [: set of functions (“policies”) m: X — A
(e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class [1:

T

max Z re(m(xe)) —

rt(at)
i3 t—1

M~

total reward of best policy total reward of learner

...a strong benchmark when I contains a policy with high reward.

Learning objective in the contextual bandit setting

No single action is good in all situations: must exploit context.

Policy class [: set of functions (“policies”) m: X — A
(e.g., advice of experts, linear classifiers, neural networks).

Regret (i.e., relative performance) to a policy class [1:

T

max Z re(m(xe)) —

rt(at)
i3 t—1

M~

total reward of best policy total reward of learner

...a strong benchmark when I contains a policy with high reward.

Regret is sublinear (in T) = (Avg.) per-round regret — 0.

Challenge #1: computation

Feedback that learner observes: reward of chosen action ry(a;)
— only directly relevant to 7 € M s.t. 7(x¢) = a¢.

Challenge #1: computation

Feedback that learner observes: reward of chosen action ry(at)
— only directly relevant to 7 € M s.t. 7(x¢) = a¢.

Separate explicit bookkeeping for each policy = € N becomes
computationally intractable when [is large (or infinite!).

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of I to design
efficient algorithms or heuristics!

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of I to design
efficient algorithms or heuristics!

Given fully labeled data (x1, p1),..., (x:, p;) € X x [0,1]4, the
AMO returns

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of I to design
efficient algorithms or heuristics!

Given fully labeled data (x1, p1),..., (x:, p;) € X x [0,1]4, the
AMO returns

AMO is an abstraction for efficient search through 1.

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of I to design
efficient algorithms or heuristics!

Given fully labeled data (x1, p1),..., (x:, p;) € X x [0,1]4, the
AMO returns

AMO is an abstraction for efficient search through 1.

In practice: implement using standard heuristics—e.g., convex
relaxations, backpropagation—for cost-sensitive multi-class learning.

Arg max oracle (AMO): supervised learning

In many cases, we know how to exploit structure of I to design
efficient algorithms or heuristics!

Given fully labeled data (x1, p1),..., (x:, p;) € X x [0,1]4, the
AMO returns

AMO is an abstraction for efficient search through 1.

In practice: implement using standard heuristics—e.g., convex
relaxations, backpropagation—for cost-sensitive multi-class learning.

But requires complete reward vectors p;; not directly usable for
contextual bandits.

Challenge #2: exploration

Possible approach: AMO + simple random exploration

1: In first Ty rounds, choose a; € A u.a.r. to get unbiased
estimates P; of r; for all t € [T].

2: Get 7 := AMO({(xt, Pt) }te[7o])-

3: Use a; := 7(x¢) in round t > Ty.

Challenge #2: exploration

Possible approach: AMO + simple random exploration

1: In first Ty rounds, choose a; € A u.a.r. to get unbiased
estimates P; of r; for all t € [T].

2: Get 7 := AMO({(xt, Pt) }te[7o])-

3: Use a; := 7(x¢) in round t > Ty.

But Bl (0] ~ max Bl (0] - 2 =)

(Dependencies on |A| and || hidden.)

Challenge #2: exploration

Possible approach: AMO + simple random exploration

1: In first Ty rounds, choose a; € A u.a.r. to get unbiased
estimates P; of r; for all t € [T].

2: Get 7 := AMO({(xt, Pt) }te[7o])-

3: Use a; := 7(x¢) in round t > Ty.

But E(.n[r(7(x))] =~ maxE plr(r(x))] — Q <\/17T)>

.. S0 regret with this approach (W|th best Tp) could be as large as

Q(To 4 VlTT(T_ To))

(Dependencies on |A| and || hidden.)

Challenge #2: exploration

Possible approach: AMO + simple random exploration

1: In first Ty rounds, choose a; € A u.a.r. to get unbiased
estimates P; of r; for all t € [T].

2: Get 7 := AMO({(xt, Pt) }te[7o])-

3: Use a; := 7(x¢) in round t > Ty.

But E(.n[r(7(x))] =~ maxE plr(r(x))] — Q <¢%>

.. S0 regret with this approach (W|th best Tp) could be as large as

1
Q(To + —(T-T ~ T2/ TY2,
(0 + m(o)) >

(Dependencies on |A| and || hidden.)

Algorithms for contextual bandits
Let K := |A| and N := |[].

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound O(\/KT log N).
O(VTK) calls to AMO overall.

10

Algorithms for contextual bandits
Let K := |A| and N := |[].

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound O(\/KT log N).
O(VTK) calls to AMO overall.

Previous work:
[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound O(1/KT log N).

Requires explicit enumeration of I in every round.

10

Algorithms for contextual bandits
Let K := |A| and N := |[].

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound O(\/KT log N).
O(VTK) calls to AMO overall.

Previous work:
[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound O(1/KT log N).

Requires explicit enumeration of I in every round.

[LZ'07] e-greedy variant (uniform exgloration).
Suboptimal regret bound O(T2/3(K log N)'/3).
One call to AMO overall.

10

Algorithms for contextual bandits
Let K := |A| and N := |[].

Our result [AHKLLS'14]: a new, fast and simple algorithm.

Optimal regret bound O(\/KT log N).
O(VTK) calls to AMO overall.

Previous work:
[ACBFS'02] Exp4 algorithm (exponential weights).

Optimal regret bound O(1/KT log N).

Requires explicit enumeration of I in every round.

[LZ'07] e-greedy variant (uniform exgloration).
Suboptimal regret bound O(T2/3(K log N)'/3).
One call to AMO overall.

[DHKKLRZ'11] “efficient” algorithm (careful exploration).

Optimal regret bound O(\/KT log N).
O(T°K*) calls to AMO overall.

10

Rest of the talk

Components of the new algorithm: Importance-weighted
LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS

1. “Classical” tricks: randomization, inverse probability weighting.

2. Efficient algorithm for balancing exploration/exploitation.

3. Additional tricks: warm-start and epoch structure.

Note: we assume (x¢, r¢) i.i.d. from D
(whereas Exp4 also works in adversarial setting).

11

Outline

1. Introduction
2. Classical tricks
3. Construction of good policy distributions

4. Additional tricks: warm-start and epoch structure

12

2. Classical tricks

13

What would've happened if | had done X?

Fort=1,2,...,T:
0. Nature draws (x, r¢) from dist. D over X" X [0, 1]“4.
1. Observe context x;.
2. Choose action a; € A.
3. Collect reward r¢(a¢).

14

What would've happened if | had done X?

Fort=1,2,...,T:
0. Nature draws (x, r¢) from dist. D over X" X [0, 1]“4.
1. Observe context x;.
2. Choose action a; € A.
3. Collect reward r¢(a¢).

Q: How do | learn about r¢(a) for actions a | don't actually take?

14

What would've happened if | had done X?

Fort=1,2,...,T:
0. Nature draws (x, r¢) from dist. D over X" X [0, 1]“4.
1. Observe context x;.
2. Choose action a; € A.

3. Collect reward r¢(a¢).

Q: How do | learn about r¢(a) for actions a | don't actually take?

A: Randomize. Draw a; ~ p, for some pre-specified prob. dist. p;,.

14

Inverse probability weighting
Importance-weighted estimate of reward from round t:

re(ae) - 1{a = a;}

Vae A, f(a) = or(ar)

15

Inverse probability weighting
Importance-weighted estimate of reward from round t:

re(at) - 1{a=ar} pt(at) ifa=a

p:(at)

Vae A, f(a) =
0 otherwise

15

Inverse probability weighting
Importance-weighted estimate of reward from round t:

re(at) - 1{a=ar} pt(at) ifa=a

Vae A, f(a) = or(ar)

0 otherwise

Unbiasedness:

Eainp, [e(a)] = Z pt(a

aeA Pt()

15

Inverse probability weighting

Importance-weighted estimate of reward from round t:

re(at) - 1{a=ar} pt(at) ifa=a;

Vae A, f(a) = or(ar)

0 otherwise

Unbiasedness:

re(a')-1{a =4}

Eanp, [t(3)] = Z pe(@) - pe(a')

a'eA

= r¢(a).

Range and variance: upper-bounded by 1/p;(a).

15

Inverse probability weighting
Importance-weighted estimate of reward from round t:

) ifazat

Vac A. f(a) = re(a) - 1{a = a:} =

pi(at) 0 otherwise

Unbiasedness:

Eap, [fr(a)] = Zpt () - 1{a =} = r(a).

aeA Pt()

Range and variance: upper-bounded by 1/p;(a).
Expected reward of policy: Rew(w) = E(, ,)[r(7(x)]

Unbiased estimator of total reward: R/ert(ﬂ) =0 P (x)).

15

Inverse probability weighting
Importance-weighted estimate of reward from round t:

) ifazat

Vac A. f(a) = re(a) - 1{a = a:} =

pi(at) 0 otherwise

Unbiasedness:

Eap, [fr(a)] = Zpt () - 1{a =} = r(a).

aeA Pt()

Range and variance: upper-bounded by 1/p;(a).

Expected reward of policy: Rew(w) = E(, ,)[r(7(x)]

Unbiased estimator of total reward: R/ert(ﬂ) =0 P (x)).
How should we choose the p,?

15

Hedging over policies

Get action distributions via policy distributions.

(W, x) > p
~—— ~—
(policy distribution, context) action distribution

16

Hedging over policies

Get action distributions via policy distributions.

(W, x) > p
~—— ~—
(policy distribution, context) action distribution

Policy distribution: W = (W(r) : 7 €)
probability dist. over policies 7 in the policy class I

16

Hedging over policies

Get action distributions via policy distributions.

(W, x) > p
~—— ~—
(policy distribution, context) action distribution

1:
2:
3:

4
5:
6:
7
8
9

Pick initial distribution W over policies I1.
forround t =1,2,... do

Nature draws (x;, r;) from dist. D over X' x [0, 1]4.

Observe context x;.

Compute distribution p, over A (using W; and x;).

Pick action a; ~ p,.
Collect reward r¢(a;).
Compute new distribution W ;.1 over policies I1.

: end for

16

Projections of policy distributions

Given policy distribution W and context x,

Vac A W(alx) =Y W(n) 1{r(x) =

mel

(so W — W(:|x) is a linear map).

a}

17

Projections of policy distributions

Given policy distribution W and context x,

Vac A, W(alx) =Y W(n) 1{r(x) = a}

wel
(so W — W(:|x) is a linear map).

We actually use

pe = W (- [x) = (1= Ko We(- xe) + e

so every action has probability at least u; (to be determined).

17

Basic algorithm structure

4
5:
6:
7
8
9

1: Pick initial distribution W over policies I1.
2: forround t =1,2,... do
3:

Nature draws (x, r¢) from dist. D over X x [0, 1]4.
Observe context x;.

Compute action distribution p, :== WY (- |x¢).

Pick action a; ~ p,.

Collect reward r¢(ay).

Compute new distribution W ;.1 over policies IN.

. end for

Q: How do we choose W for good exploration/exploitation?

18

Basic algorithm structure

1:
2:
3:

4
5:
6:
7
8
9

Pick initial distribution Wy over policies I1.
forround t =1,2,... do
Nature draws (x, r¢) from dist. D over X x [0, 1]4.
Observe context x;.
Compute action distribution p, :== WY (- |x¢).
Pick action a; ~ p,.
Collect reward r¢(ay).
Compute new distribution W ;.1 over policies IN.

. end for

Q: How do we choose W for good exploration/exploitation?

Caveat: W, must be efficiently computable + representable!

18

3.

Construction of good policy distributions

19

Our approach

» Define convex feasibility problem (over distributions W on 1)
such that solutions yield optimal regret bounds.

20

Our approach

» Define convex feasibility problem (over distributions W on 1)
such that solutions yield optimal regret bounds.

» Design algorithm that finds a sparse solution W'.

20

Our approach

» Define convex feasibility problem (over distributions W on 1)
such that solutions yield optimal regret bounds.

» Design algorithm that finds a sparse solution W'.

Algorithm only accesses I via calls to AMO
— nnz(W) = # calls to AMO

20

An optimal but inefficient algorithm

Policy Elimination
Let My =T1.

21

An optimal but inefficient algorithm

Policy Elimination
Let My =TI. Foreacht=1,2,...:

1. Choose distribution W; over I, such that

Vren;: IXE[V\/t(7r1(X)|x)]

<K

21

An optimal but inefficient algorithm

Policy Elimination
Let My =TI. Foreacht=1,2,...:

1. Choose distribution W; over I, such that

V7T€|_|t: <K

&E[W] =

2. Let Rew(w) = %@vt(w), i.e. the average of all the
estimators for Rew() so far. Let

' el

21

Analysis Sketch: Distribution Selection Step

Choose distribution W; over I1; such that

<K

e &) <

22

Analysis Sketch: Distribution Selection Step

Choose distribution W; over I1; such that

<K

e &) <

» Ensures that Vr € I, :
Vfr[ft(w(xt))] < 0O(1).

22

Analysis Sketch: Distribution Selection Step

Choose distribution W; over I1; such that

<K

e &) <

» Ensures that Vr € I, :
Vfr[ft(w(xt))] < 0O(1).

» Hence, averaging over t iterations, we have V& € [;:

Var[Rew,(r)] < O (1).

22

Analysis Sketch: Distribution Selection Step

Choose distribution W; over I1; such that

® o) <

Ve I_It .
» Ensures that Vr € I, :
Vfr[ft(w(xt))] < 0O(1).

» Hence, averaging over t iterations, we have V& € [;:

Var[Rew,(r)] < O (1).

» Martingale concentration bounds imply that w.h.p. V& € I;:

[Rew(r) — Rew()| < O (A) .

Vit

22

Analysis Sketch: Policy Elimination Step

Mey1 = {w € My : Rew(m) > max Rew,(7') — ©

' €l

(

1
Vit

)}

23

Analysis Sketch: Policy Elimination Step

Mey1 = {w € My : Rew(m) > max Rew,(7') — ©

» W.h.p. V& € I;:

[Rew:(r) — Rew(m)| < O (A) .

23

Analysis Sketch: Policy Elimination Step

Mey1 = {w € My : Rew,(m) > max Rew, (') — © (\}E)}

» W.h.p. V& € I;:

[Rews(m) — Rew(r)| < O (

)

%\H

> W.h.p. Vrr € Myqq:

| Rew(n*) — Rew()| < o(

&

23

Analysis Sketch: Policy Elimination Step

Mey1 = {w € My : Rew,(m) > max Rew, (') — © (\}E)}

» W.h.p. V& € I;:

%\H

[Rews(m) — Rew(r)| < O (

)

> W.h.p. Vrr € Myqq:

| Rew(n*) — Rew()| < o(

)

=

» Thus, expected regret in time t + 1 is O(-L-).

%\

Analysis Sketch: Policy Elimination Step

Mey1 = {w € My : Rew,(m) > max Rew, (') — © (\}E)}

v

W.h.p. V& € I;:

%\H

[Rews(m) — Rew(r)| < O (

)

v

W.h.p. V7 € My11:

| Rew(n*) — Rew()| < o(

)

=

v

Thus, expected regret in time t + 1 is O(=

-)-
Thus, total regret is 3/, O(%) = O0(VT).

S\

v

Existence of Distribution

Key step: Choose W s.t. V& € l;, we have [, [m}

<K.

24

Existence of Distribution

Key step: Choose W s.t. V& € l;, we have [, [m}

Why should such a distribution exist?

<K.

24

Existence of Distribution

Key step: Choose W s.t. V& € l;, we have [, [m}

Why should such a distribution exist?

Answer: Minimax magic.

<K.

24

Existence of Distribution

Key step: Choose W s.t. V& € MM, we have Ey [m} < K.

Why should such a distribution exist?

Answer: Minimax magic.

min maxE = minmax E

woomox {W(WEXNX)} U x,m~U {W(WEX)X)]

24

Existence of Distribution

Key step: Choose W s.t. V& € MM, we have Ey [m} < K.

Why should such a distribution exist?

Answer: Minimax magic.

min maxE = minmax E

woomox {W(szﬂx)} W U xma~U {W(WEX)X)]

24

Existence of Distribution

Key step: Choose W s.t. V& € MM, we have Ey [m} < K.

Why should such a distribution exist?

Answer: Minimax magic.

min maxE = minmax E

woomox {W(szﬂx)} W U xma~U {W(WEX)X)]

IN

. 2. o]

24

Existence of Distribution

Key step: Choose W s.t. V& € MM, we have Ey [m} < K.

Why should such a distribution exist?

Answer: Minimax magic.

min maxE

i [

max min X,Eu [VV(WEX)X)]

. 2. o]

U(alx)
maxE | D TR
a€[K]

24

Problems with the algorithm

Distribution Selection Step
Choose W s.t. V& € I, we have E, [W(

m(x)|x)

1

| <.

25

Problems with the algorithm

Distribution Selection Step

Choose W s.t. Vrr € M, we have E [W} < K.

» Computing P is a convex optimization problem and takes
poly(N) time.

25

Problems with the algorithm

Distribution Selection Step

Choose W s.t. Vrr € M, we have E [W} < K.

» Computing P is a convex optimization problem and takes
poly(N) time.

» Computing P requires knowledge of actual data distribution.

25

Problems with the algorithm

Distribution Selection Step

Choose W s.t. Vrr € M, we have E [W} < K.

» Computing P is a convex optimization problem and takes
poly(N) time.
» Computing P requires knowledge of actual data distribution.

Policy Elimination Step

Mepr = {77 € My : Rewy(m) > max Rew(n') — © (

7' €My

)

S

25

Problems with the algorithm

Distribution Selection Step

Choose W s.t. Vrr € M, we have E [W} < K.

» Computing P is a convex optimization problem and takes
poly(N) time.
» Computing P requires knowledge of actual data distribution.

Policy Elimination Step

Mepr = {77 € My : Rewy(m) > max Rew(n') — © (

7' €My

)

S

» Policy Elimination Step takes Q(N) time.

25

Properties of a good policy distribution

Low Regret and Low Variance constraints on W:

mell

m(x

v/ Ktlog N

> W(r)-Reg,(m) < VKtlogN,

(LR)

= 1 §e\gt(7r)
Exen, [VV’“()’X):| < K(l +) Vrenl (LV)

—

ﬁe\gt(ﬂ') = max,rcn Rew,(m) ReWt), : IogN

Kt

Ht.f X17...

» X

xt)

26

Properties of a good policy distribution
Low Regret and Low Variance constraints on W:

> W(r)-Reg,(m) < VKtlogN, (LR)

mell

= 1 §e\gt(7r)
Exen, [VV’“()’X):| < K(l +) Vrenl (LV)

m(x v/ Ktlog N

—

ﬁé\gt(w) = max,en Rew (') — Rewt), : '°§tN He = (X1, ...y x¢)

Intuition: Allow higher variance for policies 7 with larger regret, as
they should have low weight anyway.

26

Properties of a good policy distribution
Low Regret and Low Variance constraints on W:

> W(r)-Reg,(r) < Kt-p, (LR)
mell
E [! }<K 1+§e\gf(”) vren (L)
X t = 7T
S W (x)1x) Kt e
ﬁé\gt(w) ‘= maXy/en @vt(- Rewt), : '°§tN He = (X1, ...y x¢)

Intuition: Allow higher variance for policies 7 with larger regret, as
they should have low weight anyway.

26

Properties of a good policy distribution
Low Regret and Low Variance constraints on W:

> w(r)

mell

Regt) < Kt',u’h

Kt - pue

(LR)

< K<1 + Regf(ﬂ) vren (L)

ﬁé\gt(w) = max,en Rew (') —

lo N
Rewt), : g He = (%1, ..., X%

Kt

(LV) = Reg(n) < o(ﬁe\gt(w)m-uf)

(LR.LV)

=) Wi(r)

mell

‘Reg(r) < O(Kt - i)

26

Properties of a good policy distribution
Low Regret and Low Variance constraints on W:

> W(r)-Reg,(r) < Kt-p, (LR)
mell
E [! }<K 1+§e\gf(”) vren (L)
X t = 7T
S W (x)1x) Kt e
ﬁé\gt(w) ‘= maXy/en @vt(- Rewt), : '°§tN He = (X1, ...y x¢)

Theorem: If we pick W, satisfying (LR,LV) in every round t,
then regret over all T rounds is O<\/KTIog N).

26

Properties of a good policy distribution
Low Regret and Low Variance constraints on W:

> W(r) Reg(r) < Kt p, (LR)
el
Boem|—— L | <k 1+§e\gf(”) vren (L)
LW (r ()] = Kepe)
ﬁé\gt(w) ‘= maXx,/en @vt(- Rewt), : '°§tN He = (X1, ...y x¢)

Theorem: If we pick W, satisfying (LR,LV) in every round t,
then regret over all T rounds is O<\/KTIog N).

Critical question: Is it even feasible to satisfy (LR,LV)?

26

Minmax proof of feasibility (simplified)

3" W(r)-Reg,(r) < /Ktlogh,

mell

1 §e\gt(ﬂ') -
XEHt[W(W(XNX)] = K(l—‘_w/KtIogN) el

E

27

Minmax proof of feasibility (simplified)

well
1~ 1
e Xth[W(w(xﬂx)] —(1+b(r)) <0 Vren

b(m) = ﬁe\gt(w)/\/Kt log N

27

Minmax proof of feasibility (simplified)

min

weAN (U,, U eANH

(S e

+ 2V (om0 0)

mell

<

0

b(m

) := Reg,()/\/Ktlog N

27

Minmax proof of feasibility (simplified)

max

mell

(Uo,U)eAN+1 WnéiRN Uo <Z b(m)W(r) — 1)

wel
1

S (18 e {W(W(X)XJ —a+ b(w))>

<

0

b(m) = ﬁe\gt(w)/\/Kt log N

27

Minmax proof of feasibility (simplified)

5 0o S oW 1)

wel

+> U(x) (ert{W}—(l—i—b(w))) <0

mell

b(m) = ﬁe\gt(w)/\/Kt log N

Choose W := U + U,17 for # := argmin ..y b()
to verify that value of game < 0.

27

Minmax proof of feasibility (simplified)

Choose W := U + U,17 for % := arg min_p b(7) (so b(#) = 0)
to verify that value of game < 0.

B 3 0o 1)

well

+ 3 U (Ben | gty |~ 0+ 800

mel

28

Minmax proof of feasibility (simplified)

Choose W := U + U,17 for % := arg min_p b(7) (so b(#) = 0)
to verify that value of game < 0.

(2 0-1)
:[/EXEH[' [Z

A

] > U(m)(1+ b(r))

mell

Minmax proof of feasibility (simplified)

Choose W := U + U,17 for % := arg min_p b(7) (so b(#) = 0)
to verify that value of game < 0.

max (U, —1) > b(m)U(r)

N+1
(Uo,U)eA en

1. U(alx)
+ oExet, [Z W(aM] ~1<0

acA

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

29

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ'11]: Can solve (variant) of
feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

29

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ'11]: Can solve (variant) of
feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution,
probabilistic method shows that there is an O(v/ Kt)-sparse
approximation with comparable LR and LV constraint bounds.

29

Feasibility and sparsity

Feasibility of LR/LV constraints is implied by minimax argument.

“Monster” solution [DHKKLRZ'11]: Can solve (variant) of
feasibility problem using Ellipsoid algorithm
(where separation oracle = AMO + Perceptron + another Ellipsoid).

Existence of sparse(r) solution: given any (dense) solution,
probabilistic method shows that there is an O(v/ Kt)-sparse
approximation with comparable LR and LV constraint bounds.

Efficient construction via “boosting”-type algorithm?

29

Coordinate descent algorithm

input Initial weights W.

1: loop

2: If (LR) is violated, then replace W by cW/.

3: if there is a policy 7w € I causing (LV) to be violated
then

4 set W(r) := W(r) + a.

5. else

6: Halt and return W.

7. end if

8: end loop

(Both 0 < ¢ < 1 and a > 0 have closed form expressions.)

(Technical detail: actually optimize over subdistributions that may sum to < 1.)

Implementation via AMO

Checking violation of (LV) constraint: for all 7 € I,

- 1 max, Rew¢ (1) — Rewy ()
Ex|l————| <K|1
[Wm(w(x)\x)} (i Kt~ e

Implementation via AMO

Checking violation of (LV) constraint: for all 7 € I,

Rew ()

1

t‘/l/t

"

m(x)[x)

J<xis

max, @vt(w’)

Kt,ut

)

31

Implementation via AMO

Checking violation of (LV) constraint: for all 7 € I,

143

Rewe(m) + t - B [wu(w(xnx)

] < Kt-pe+ man'@Vt(W/)

31

Implementation via AMO

Checking violation of (LV) constraint: for all 7 € I,

143

Rewe(m) + t - B [wu(w(xnx)

] < Kt pe + man'@Vt(W/)

1. Obtain & := AMO((x1, 1), ..., (x¢, Ft)).
2. Create fictitious rewards for each i = 1,2,...,t:

1

F,(a) = W + r,-(a) Vae A

Obtain 7 := AMO((x1, F1), ..., (xt, Ft)).
3. Rew (7)) > Kt - jur + Rew(#) iff (LV) is violated by 7.

31

lteration bound for coordinate descent

Using unnormalized relative entropy-based potential function

Ever, [RE(unif [| W2 (-[x))] | 3 ren W(m)Reg, ()

(W) =t
(W) Nt(1— K + Kt - 1q

can show coordinate descent returns a feasible solution after

~ (1 ~ Kt
O(Mt) = O(ﬁ / IogN> steps.

(Every step decreases potential by about t - 2 = "’gTN)

)

32

Recap

33

Recap

Low Regret / Low Variance constraints:

implies O(\/KT log N) regret bound.

33

Recap

Low Regret / Low Variance constraints:

implies O(\/KT log N) regret bound.

Coordinate descent to solve LR/LV constraints:
repeatedly find a violated constraint and adjust W to satisfy it.

33

Recap

Low Regret / Low Variance constraints:

implies O(\/KT log N) regret bound.

Coordinate descent to solve LR/LV constraints:
repeatedly find a violated constraint and adjust W to satisfy it.

Coordinate descent analysis:
In round t,

[@))

Kt
nnz(W;) = O(# calls to argenlllax oracle) = (og N)

(same as guarantee via probabilistic method).

33

4. Additional tricks: warm-start and epoch structure

34

Total complexity over all rounds

In round ¢, coordinate descent for computing W ; requires

~ Kt
M Ils.
O(IogN) AMO calls

35

Total complexity over all rounds

In round ¢, coordinate descent for computing W ; requires

~ Kt
M Ils.
O(IogN) AMO calls

To compute W, in all rounds t =1,2,..., T, need

~ K
O(T1'5) AMO calls over T rounds.
\/ log N

35

Warm start

To compute W1 using coordinate descent, initialize with W/.

36

Warm start

To compute W1 using coordinate descent, initialize with W/.

1. Total epoch-to-epoch increase in potential is O(y/T/K) over
all T rounds (w.h.p.—exploiting i.i.d. assumption).

36

Warm start

To compute W1 using coordinate descent, initialize with W/.

1. Total epoch-to-epoch increase in potential is O(y/T/K) over
all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Q('°gN)

36

Warm start

To compute W1 using coordinate descent, initialize with W/.

1. Total epoch-to-epoch increase in potential is O(y/T/K) over
all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Q('°gN)

3. Over all T rounds,

total # calls to AMO < o} KT
log N

36

Warm start

To compute W1 using coordinate descent, initialize with W/.

1. Total epoch-to-epoch increase in potential is O(y/T/K) over
all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Q('°gN)

3. Over all T rounds,

~ KT
<
total # calls to AMO < O(IogN>

But still need an AMO call to even check if W is feasible!

36

Epoch trick

Regret analysis: W has low instantaneous per-round regret
(roughly Kpu:)—this also crucially relies on i.i.d. assumption.

37

Epoch trick

Regret analysis: W has low instantaneous per-round regret
(roughly Kpu:)—this also crucially relies on i.i.d. assumption.

— same W; can be used for O(t) more rounds!

37

Epoch trick

Regret analysis: W has low instantaneous per-round regret
(roughly Kpu:)—this also crucially relies on i.i.d. assumption.

— same W; can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W, at
start of each epoch.

37

Epoch trick

Regret analysis: W has low instantaneous per-round regret
(roughly Kpu:)—this also crucially relies on i.i.d. assumption.

— same W; can be used for O(t) more rounds!
Epoch trick: split T rounds into epochs, only compute W, at
start of each epoch.

Doubling: only update on rounds 21, 22, 23, 24 ..

37

Epoch trick

Regret analysis: W has low instantaneous per-round regret
(roughly Kpu:)—this also crucially relies on i.i.d. assumption.

— same W; can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute W, at
start of each epoch.

Doubling: only update on rounds 21, 22, 23, 24 ..

log T epochs, so O(y/KT/log N) AMO calls overall.

37

	Introduction
	Classical tricks
	Construction of good policy distributions
	Additional tricks: warm-start and epoch structure

