Multidimensional visualization and its applications

Alfred Inselberg, Tel Aviv and San Diego

Abstract

The desire to understand the underlying geometry of multidimensional problems motivated several visualization methodologies to augment our limited 3-dimensional perception. After a short overview, Parallel Coordinates are rigorously developed obtaining a 1-1 mapping between subsets of Euclidean N-space and subsets of 2-space. It leads to representations of lines, flats, curves, intersections, hypersurfaces, proximities and geometrical construction algorithms. Convexity can be visualized in ANY dimension as well as non-orientability (Moebius strip) and other properties of hypersurfaces. This is a VISUAL Multidimensional Coordinate System with applications to Air Traffic Control, Visual and Automatic Data Mining, Interactive Models of Complex Systems.

For further information contact János Pach at pach@cims.nyu.edu, or visit our website http://www.math.nyu.edu/~pach/public_html/combinatorics_seminar.html