Seminar on Combinatorial Computing October 24, Wednesday, 6:30 p.m. Room 6417, Graduate Center 365 Fifth Avenue, New York

Circumscribed polygons of small area

Dan Ismailescu
Hofstra University

Abstract

Given any strictly convex disk K and any positive integer $n \geq 3$, we prove that there exists a convex n-gon C_{n}, circumscribed about K and a convex $2 n$-gon $I_{2 n}$, inscribed in K such that $\frac{\operatorname{Area}\left(I_{2 n}\right)}{A r e a\left(C_{n}\right)} \geq \cos \frac{\pi}{n}$, with equality when K is an ellipse. This generalizes a result of Chakerian who proved the above inequality for $n=3$ and $n=4$. As a consequence, for every positive integer $5 \leq n \leq 11$ we improve the best known bounds for sup $\inf \frac{\operatorname{Area}(C)}{\operatorname{Area}(K)}$ where the supremum is taken over all convex disks K and the infimum is taken over all convex n-gons C circumscribed about K.

For further information contact János Pach at pach@cims.nyu.edu, or visit our website http://www.math.nyu.edu/~pach/public_html/combinatorics_seminar.html

