Comment on Fox News

János Pach* and Géza Tóth†
Rényi Institute, Hungarian Academy of Sciences

Abstract

Does there exist a constant $c > 0$ such that any family of n continuous arcs in the plane, any pair of which intersect at most once, has two disjoint subfamilies A and B with $|A|, |B| \geq cn$ with the property that either every element of A intersects all elements of B or no element of A intersects any element of B? Based on a recent result of Fox, we show that the answer is no if we drop the condition that two arcs can cross at most once.

1 Introduction

It was shown in [4] that any family of n segments in the plane has two disjoint subfamilies A and B, each of size at least constant times n, such that either every element of A intersects all elements of B or no element of A intersects any element of B. In [1], this result was extended to families of algebraic curves with bounded degree at most D, where the corresponding constant depends on D.

More generally, let G be the intersection graph of n d-dimensional semialgebraic sets of degree at most D. Then there exist two disjoint subsets $A, B \subset V(G)$ such that $|A|, |B| \geq c(d, D)n$ and one of the following two conditions is satisfied:

1. $ab \in E(G)$ for all $a \in A, b \in B$,

*Supported by NSF grant CCR-0514079 and grants from NSA, PSC-CUNY, Hungarian Research Foundation, and BSF.
†Supported by OTKA-T-038397 and OTKA-T-046246.
2. \(ab \notin E(G) \) for all \(a \in A, b \in B \).

Here \(c(d, D) \) is a positive constant depending only on \(d \) and \(D \).

It is not completely clear whether the assumption that the sets
are semialgebraic can be weakened. For example, a similar result
may hold for intersection graphs of plane convex sets. Clearly, the
same theorem is false for intersection graphs of three-dimensional
convex bodies, because any finite graph can be represented in such
a way, and a random graph \(G \) with \(n \) vertices almost surely does not
have \(A, B \subset V(G) \) satisfying conditions 1 or 2 with \(|A|, |B| \geq c \log n \),
if \(c \) is large enough.

It would be interesting to analyze intersection graphs of continuous
arcs in the plane. (These are often called “string graphs” in the
literature [2].) We have been unable to answer the following question
even for \(k = 1 \), that is, for pseudo-segments.

Problem 1.1. Is it true that any family of \(n \) continuous arcs in
the plane, any pair of which intersect at most \(k \) times, has two
disjoint subfamilies \(A \) and \(B \) with \(|A|, |B| \geq c_k n \) such that either
every element of \(A \) intersects all elements of \(B \) or no element of \(A \)
intersects any element of \(B \)? (Here \(c_k > 0 \) is a suitable constant.)

It follows from a beautiful recent result of Jacob Fox [3] (see
Theorem 2.2 below) that the answer to the above question is negative
if we drop the condition on pairwise intersections.

Proposition 1.2. Fix \(\varepsilon \in (0, 1) \). For every \(n \), there is a family of
\(n \) continuous real functions defined on \([0, 1]\) such that their inter-
section graph \(G \) has no complete bipartite subgraph with at least
\(c(\varepsilon) \frac{n}{\log n} \) vertices in each of its vertex classes, and every vertex of \(G \)
is connected to all but at most \(n^\varepsilon \) other vertices.

Obviously, the last condition implies that \(G \) has no two disjoint
nonempty sets of vertices \(A \) and \(B \) with \(|A \cup B| > n^\varepsilon \) such that no
vertex in \(A \) is connected to any element of \(B \) by an edge.

2 Proof of Proposition 1.2

We need a simple representation lemma.
Lemma 2.1. The elements of every finite partially ordered set
\(\{p_1, p_2, \ldots, p_r\}, < \) can be represented by continuous real functions \(f_1, f_2, \ldots \)
defined on the interval \([0, 1]\) such that \(f_i(x) < f_j(x) \) for every \(x \) if and only if \(p_i < p_j \) (\(i \neq j \)).

Moreover, we can assume that the graphs of any pair of functions \(f_i \) and \(f_j \) are either disjoint or have finitely many points in common, at which they properly cross.

Proof. Let \(P = \{p_1, p_2, \ldots, p_r\} \). We describe a recursive construction with the additional property that for any extension of \((P, <)\) to a total order \(p_{k(1)} < p_{k(2)} < \cdots < p_{k(\ell)} \), there exists \(x \in [0, 1] \) such that \(f_{k(1)}(x) < f_{k(2)}(x) < \cdots < f_{k(\ell)}(x) \).

The proof is by induction on the number of elements of \(P \). For \(\ell = 1 \), there is nothing to prove. For \(\ell = 2 \), there are two possibilities. If \(p_1 < p_2 \) then the functions \(f_1 \equiv 1 \), \(f_2 \equiv 2 \) meet the requirements. If \(p_1 \) and \(p_2 \) are incomparable, then let \(f_1(x) = x \), \(f_2(x) = 1 - x \). Now \((P, <)\) can be extended to a total order in two different ways. Accordingly, \(f_1(x) < f_2(x) \) at \(x = 0 \) and \(f_2(x) < f_1(x) \) at \(x = 1 \).

Let \(\ell \geq 3 \), and suppose without loss of generality that \(p_r \) is a minimal element of \(P \). Assume recursively that we have already constructed continuous real functions \(f_1, f_2, \ldots, f_{\ell - 1} \) with the required properties representing the elements of the partially ordered set \((P \setminus \{p_r\}, <)\). Consider now an extension of \((P, <)\) to a total order \(p_{k(1)} < p_{k(2)} < \cdots < p_{k(\ell)} \). Clearly, \(p_r \) appears in this sequence, i.e., \(\ell = k(m) \) for some \(1 \leq m \leq \ell \). By our assumption, there exists \(x \in [0, 1] \) such that

\[
 f_{k(1)}(x) < \cdots < f_{k(m - 1)}(x) < f_{k(m + 1)}(x) < \cdots < f_{k(\ell)}.
\]

In fact, there exists a whole interval \(I \subset [0, 1] \) such that the above inequalities hold for all \(x \in I \). Now pick a point \(x^* \in I \) and a number \(y^* \) such that \(f_{k(m - 1)}(x^*) < y^* < f_{k(m + 1)}(x^*) \), and define

\[
 f_\ell(x^*) := y^*.
\]

Repeating this procedure for every permutation \((k(1), k(2), \ldots, k(\ell))\) for which \(p_{k(1)} < p_{k(2)} < \cdots < p_{k(\ell)} \) is an extension of \((P, <)\) to a total order, we define the function \(f_\ell \) at finitely many points. (To avoid inconsistencies, we can make sure that we pick a different point \(x^* \) for each permutation.)
It remains to verify that this partially defined function can be extended to a continuous function $f_{\ell} : [0, 1] \to \mathbb{R}$ meeting the requirements. The following two conditions must be satisfied:

1. if $p_\ell < p_j$ in $(P, <)$ for some $j \neq \ell$, then $f_\ell(x) < f_j(x)$ for all $x \in [0, 1]$;

2. if p_ℓ and p_j are incomparable in $(P, <)$ for some $j \neq \ell$, then the graphs of f_ℓ and f_j cross each other.

Notice that each point (x^*, y^*) constructed during the above procedure lies below the lower envelope (pointwise minimum) of the functions $f_j(x)$ over all j for which $p_j > p_\ell$ in $(P, <)$. Pick a point $x_0 \in [0, 1]$ distinct from all previously selected points $x^* \in [0, 1]$, and let $f_\ell(x_0) := y_0$ for some

$$y_0 < \min_{1 \leq j < \ell} f_j(x_0).$$

Extend f_ℓ to a continuous function on $[0, 1]$ whose graph lies strictly below

$$\min\{f_j(x) : \text{for all } j \text{ such that } p_j > p_\ell\}.$$

Obviously, f_ℓ satisfies condition 1. To see that condition 2 is also satisfied, fix an index j such that p_ℓ and p_j are incomparable in $(P, <)$. Consider an extension of $(P, <)$ to a total order in which $p_j < p_\ell$. It follows from our construction that there exists a point $x \in [0, 1]$ at which the values $f_\ell(x)$ are in the same total order as the elements p_i ($1 \leq i \leq \ell$). In particular, we have $f_j(x) < f_\ell(x)$. On the other hand, by definition, $f_\ell(x_0) = y_0 < f_j(x_0)$. Therefore, the graphs of f_ℓ and f_j must cross each other, completing the proof. □

Theorem 2.2. (Fox) Fix $\varepsilon \in (0, 1)$. For every n, there is a partially ordered set $(P, <)$ of size n with the following two properties. (i) There are no two disjoint subsets $A, B \subset P$ such that $|A|, |B| \geq c(\varepsilon) \frac{n}{\log n}$ and no element of A is comparable to any element of B. (ii) Every element of P is comparable to at most n^ε other elements. □

To deduce Proposition 1.2, apply Lemma 2.1 to the partially ordered set whose existence is guaranteed by Theorem 2.2. To see that the intersection graph G of the resulting functions meets the requirements, it is enough to notice that two vertices of G are connected by an edge if and only if the corresponding elements of P are incomparable.
References

