Computational Geometry
Final Exam, May 8, 2002

1. Prove that in the Algebraic Decision Tree model to decide whether \(n \) given numbers are all \textit{distinct} requires at least constant times \(n \log n \) queries (not necessarily comparisons!).

2. Let \(p_1, p_2, \ldots, p_n \) be the vertices of a convex polygon listed in clockwise order. Design a \(O(n) \)-time algorithm for finding the shortest distance between two vertices.

3. Given a set \(P = \{p_1, p_2, \ldots, p_n\} \) of \(n \) points in the plane, for any \(i \), let \(F(p_i) \) denote the set of those point in the plane from which \(p_i \) is at least as far as any other point \(p_j \) (\(j \neq i \)). (The “cells” \(F(p_i), 1 \leq i \leq j \) are usually said to form the so-called \textit{farthest-point Voronoi diagram} of \(P \).) Prove that each cell \(F(p_i) \) is convex.

4. Recall that the \textit{size} of a BSP tree (Binary Space Partition tree) for a set of segments is equal to the total number of segment fragments generated by the splitting lines. An \textit{autopartition} is a BSP-tree in which every splitting line contains one of the segments.

Give an example of a set of \(n \) non-intersecting line segments in the plane, for which a BSP tree of size \(n \) exists, but any autopartition has size at least \(\lceil 4n/3 \rceil \).

5. Let \(S \) be a set of \(n \) circles in the plane.

Outline an algorithm to compute all intersections between the circles in \(O((n + k) \log n) \) time, where \(k \) is the output size, i.e., the number of intersection points.

6. Consider a polygon \(P \) of \(n \) vertices in the plane, which is triangulated by some of its internal diagonals.

Design a \(O(n) \)-time algorithm for coloring the vertices of \(P \) by 3 colors so that no 2 vertices that are connected by an edge or a diagonal get the same color.

Please explain all of your answers! Good luck! - J.P.