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Verification of Rule-based Models 

 

 Temporal properties over the stochastic evolution of 
the model 

 Example: “does p53 reach 4,000 within 20 minutes, 
with probability at least 0.99?” 

 In our formalism, we write:     
   P≥0.99 (F20 (p53 ≥ 4,000)) 

 For a property Ф as above and a fixed 0<θ<1, we ask 
whether  

    P≥θ (Ф) or   P<θ (Ф) 



 
Key idea 

(Haakan Younes, 2001) 

 Suppose system behavior w.r.t. a (fixed) property Ф can 
be modeled by a Bernoulli of parameter p: 

 System satisfies Ф with (unknown) probability p 

 Questions: P≥θ (Ф)? (for a fixed 0<θ<1)  

 Draw a sample of system simulations and use: 
 Statistical hypothesis testing: Null vs. Alternative hypothesis 

 

 Statistical estimation: returns “p in (a,b)” (and compare a with θ) 

 

Statistical Model Checking 



Statistical Model Checking: M╞═ P≥θ(Φ)? 
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Zuliani, Platzer, Clarke. HSCC 2010. 



Statistical Model Checking:  what is P(Φ)? 
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Zuliani, Platzer, Clarke. HSCC 2010. 



Motivation 

 State Space Exploration infeasible for large systems 

 Symbolic MC with OBDDs scales to 10300 states 

 Scalability depends on the structure of the system 

 Probabilistic symbolic MC (eg PRISM) scales to 1010 states 

 Pros: simulation is feasible for many more systems 

 Often easier to simulate a complex system than to build the 
transition relation for it 

 Pros: easier to parallelize 

 Cons: answers may be wrong 

 But error probability can be bounded 

 Cons: simulation is incomplete (continuous state spaces) 



    

 Sequential sampling 

 Performs Hypothesis Testing (and Estimation) 

 Based on Bayes Theorem 

 Application to BioNetGen 

Bayesian Statistical Model Checking 



Bounded Linear Temporal Logic 

 Bounded Linear Temporal Logic (BLTL): A version of LTL 
with time bounds on temporal operators. 

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model 

 along states s0, s1, . . . 

 the system stays in state si for time ti 

 divergence of time: Σi ti  diverges (i.e., non-zeno) 

 σi: Execution trace starting at state i 

 A model for simulation traces (e.g. BioNetGen) 



Semantics of BLTL 

The semantics of BLTL for a trace σk: 

 σk        ap    iff atomic proposition ap true in state sk 

 σk        Φ1 v Φ2   iff  σk      Φ1 or σk      Φ2 

 σk       ¬Φ    iff  σk      Φ does not hold 

 σk        Φ1 Ut Φ2   iff  there exists natural i such that 

1)  σk+i      Φ2  

2)  Σj<i tk+j ≤ t 

3)  for each 0 ≤ j < i, σk+j     Φ1 

 “within time t, Φ2  will be true and Φ1 will hold until then” 

 
 In particular, Ft Φ = true Ut Φ,  Gt Φ = ¬Ft ¬Φ 



Three ingredients: 

1. Prior distribution 

 Models our initial (a priori) uncertainty/belief about parameters 
(what is P(H)?) 

2. Likelihood function 

 Describes the distribution of data, given a specific parameter range:  
P(data | H)  

3. Bayes Theorem 

 Posterior probability - Revises uncertainty upon experimental data 

P(H | data) = [P(data | H) · P(H)] / P(data) 

Bayesian Statistics 



Sequential Bayesian Statistical MC - I 

 Model Checking 

 Suppose       satisfies     with (unknown) probability p 

 p is given by a random variable U (defined on [0,1]) with density g 

 g represents our prior belief that        satisfies     

 Generate independent and identically distributed (iid) sample 
traces. 

 xi: the ith sample trace      satisfies     

 xi = 1 iff  

 xi = 0 iff 

 Then, xi will be a Bernoulli trial with conditional density 
(likelihood function) 

    f(xi|u) = uxi(1 − u)1-xi 

  



                                  a sample of Bernoulli random variables 

 Prior probabilities P(H0), P(H1) strictly positive, sum to 1 

 Posterior probability (Bayes Theorem [1763]) 

 

 

 for P(X) > 0 

 Ratio of Posterior Probabilities: 

Bayes Factor 

Sequential Bayesian Statistical MC - II 



Require: Property P≥θ(Φ), Threshold T ≥ 1, Prior density g 
n := 0   {number of traces drawn so far} 
s := 0   {number of traces satisfying Φ so far} 
repeat 

 σ := draw a sample trace of the system (iid) 
 n := n + 1 
 if  σ     Φ  then 
  s := s + 1 
 endif 
 B := BayesFactor(n, s, g) 

until (B > T  v B < 1/T ) 
if (B > T ) then 
 return H0 accepted 
else 
 return H0 rejected 
endif 

Sequential Bayesian Statistical MC - III 



Theorem (Termination) 

The Sequential Bayesian Statistical Hypothesis 
Testing algorithm terminates with probability one. 

Theorem (Error bounds) 

When the Bayesian algorithm using threshold T 
stops, the following holds: 

 Prob (“accept H0” | H1)  ≤ 1/T 

 Prob (“reject H0” | H0)  ≤ 1/T 

Note: bounds independent from the prior distribution. 

Correctness 



Bayesian Interval Estimation - I 

 Estimating the (unknown) probability p that “system╞═ Ф” 

 Recall: system is modeled as a Bernoulli of parameter p  

 Bayes’ Theorem (for conditional iid Bernoulli samples) 

 

 

 

 We thus have the posterior distribution 

 So we can use the mean of the posterior to estimate p 

 mean is a posterior Bayes estimator for p (it minimizes the 
integrated risk over the parameter space, under a quadratic 
loss) 



 Bayesian interval for p: integrate the posterior 

 Fix a coverage ½ < c < 1. Any interval (t0, t1) such that 

 

 

 is called a 100c percent Bayesian Interval Estimate of p 

 An optimal interval minimizes t1- t0: difficult in general 

 Our approach:  

 fix a half-interval width δ 

 Continue sampling until the posterior probability of an interval 
of width 2δ containing the posterior mean exceeds coverage c 

Bayesian Interval Estimation - II 
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Bayesian Interval Estimation - IV 
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Require: BLTL property Φ, interval-width δ, coverage c, prior beta 

parameters α,β 
 
n := 0   {number of traces drawn so far} 
x := 0   {number of traces satisfying so far} 
repeat 

 σ := draw a sample trace of the system (iid) 
 n := n + 1 
 if  σ     Φ  then 
  x := x + 1 
 endif 
 mean = (x+α)/(n+α+β) 
 (t0,t1) = (mean-δ, mean+δ) 
 I := PosteriorProbability (t0,t1,n,x,α,β) 

until (I > c) 
return (t0, t1), mean 

Bayesian Interval Estimation - V 



Theorem (Termination) 

The Sequential Bayesian Estimation algorithm terminates 
with probability one. 

 Recall the algorithm outputs the interval (t0, t1) 

 Define the null hypothesis  H0: t0 < p < t1 

Theorem (Error bound) 
When the Bayesian estimation algorithm (using coverage 
½< c < 1) stops – we have 

Prob (“accept H0” | H1) ≤  (1/c -1)π0/(1-π0) 
Prob (“reject H0” | H0)  ≤ (1/c -1)π0/(1-π0) 

π0 is the prior probability of H0 

Bayesian Interval Estimation - VI 



Verification of Biological Signaling 
Pathways in BioNetGen 



The Protein HMGB1 

• High-Mobility Group Protein 1 
(HMGB1): 

• DNA-binding protein and regulates 
gene transcription 

• released from damaged or 
stressed cells, etc. 

 

• HMGB1 activates RAGE or TLR2/4 

• RAGE: Receptor for Advanced 
Glycation End products. 

• TLR: Toll-like receptor 

• RAGE/TLR activation can activate NFkB and RAS signaling pathways 
which causes inflammation or tumorigenesis. 



HMGB1 and Pancreatic Cancer  
(Lotze et al., UPMC) 

Experiments with pancreatic cancer cells: 
 Overexpression of HMGB1/RAGE is associated with diminished 

apoptosis, and longer cancer cell survival time. 

 Knockout of HMGB1/RAGE leads to increased apoptosis, and 
decreased cancer cell survival. 

HMGB1 RAGE Apoptosis 
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BioNetGen.org 

 Rule-based modeling for biochemical systems 

 Ordinary Differential Equations and Stochastic simulation 
(Gillespie’s algorithm: Continuous-Time Markov Chain) 

 Example: AKT has a component named d which can be labeled 
as U (unphosphorylated) or p (phosphorylated) 

begin species    begin parameters 

 AKT(d~U)  1e5    k  1.2e-7 

 AKT(d~p)  0     d  1.2e-2 

end species    end parameters 
 

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems with 
BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009). 



BioNetGen.org 

 Example:  

 PIP3 can phosphorylate AKT 

 dephosphorylation of AKT 

begin reaction_rules 

PIP(c~p) +  AKT(d~U)    PIP(c~p) + AKT(d~p) k 

AKT(d~p)    AKT(d~U)      d 

end reaction_rules 

 The propensity functions for Gillespie’s algorithm are: 

   k∙[PIP(c~p)]∙[AKT(d~U)] 

   d∙[AKT(d~p)] 



Verification - I 

 Overexpression of HMGB1 will induce the expression of the 
cell cycle regulatory protein CyclinE 

P≥0.9 F600 ( CyclinE > 900 ) 

“within 600 minutes, the number of CyclinE molecules will be 
greater than 900” 

 error probability < 0.001 

HMGB1 # samples # Success Result 

102 9 0 False 

103 55 16 False 

106 22 22 True 



Verification - II 

 p53 is expressed at low levels in normal human cells 

P≥0.9 Ft ( G900 ( p53 < 3.3 x 104 ) ) 

“within t minutes, p53 will stay low for 900 minutes” 

t (min) # Samples # Success Result Time (s) 

400 53 49 True 597.59 

500 23 22 True 271.76 

600 22 22 True 263.79 

0 t 

900 minutes 

time 



Verification - III 

 Expression level of HMGB1 influences the 1st peak of p53’s 
level 

P≥0.9 F100 ( p53 ≥ a & F100 ( p53 ≤ 4 x 104 ) ) 

“within 100 minutes, p53 will pass a, and in the next 100 
minutes it will eventually be below 4x104” 

HMGB1 a ( x 104 ) # Samples # Success Result Time (s) 

103 5.5 20 3 False 29.02 

102 5.5 22 22 True 19.65 

102 6.0 45 12 False 56.27 

10 6.0 38 37 True 41.50 



Verification - IV 

 Coding oscillations in temporal logic 

 R is the fraction of NFkB molecules in the nucleus 

 We model checked the formula 

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2)))) 

 The formula codes four changes of R that must happen in 
consecutive time intervals of maximum length t 

 Note: the intervals need not be of the same length 



Verification - IV 

 Verifying oscillations of NFkB with statistical model checking 

 

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2)))) 

  

HMGB1 t (min) # Samples # Success Result Time (s) 

102 45 13 1 False 76.77 

102 60 22 22 True 111.76 

102 75 104 98 True 728.65 

105 30 4 0 False 5.76 



Statistical MC: Weaknesses 

 

 Rare events – too many samples needed 

 But there are ways to “solve” the problem 

 Simulation is incomplete (continuous evolution) 

 OK for biological systems modeled as CTMCs 



Statistical MC: Strengths 

 Widely applicable! 

 Only need simulation 

 Can address large (or infinite) system spaces 

 Better scalability 

 Can trivially exploit multi-core CPUs 



The End 

Questions? 


