

Statistical Model Checking for Biological Systems

Paolo Zuliani

Department of Computer Science
Carnegie Mellon University

Joint work with
Edmund Clarke, James Faeder, Haijun Gong, Qinsi Wang

Verification of Rule-based Models

- Temporal properties over the stochastic evolution of the model

- Example: “does $p53$ reach 4,000 within 20 minutes, with probability at least 0.99?”

- In our formalism, we write:

$$P_{\geq 0.99} (\mathbf{F}^{20} (p53 \geq 4,000))$$

- For a property Φ as above and a fixed $0 < \vartheta < 1$, we ask whether

$$P_{\geq \vartheta} (\Phi) \quad \text{or} \quad P_{< \vartheta} (\Phi)$$

Statistical Model Checking

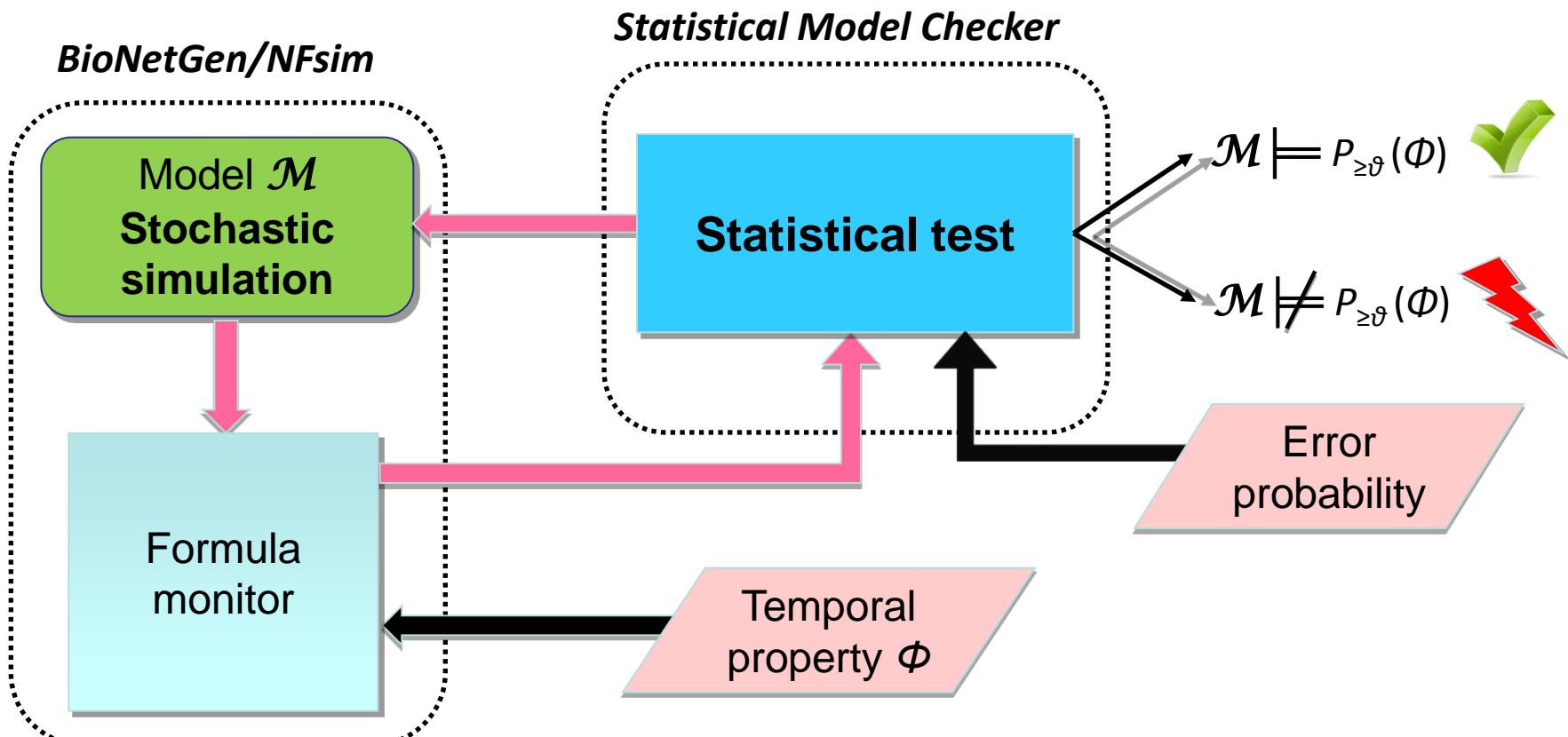
Key idea

(Haakan Younes, 2001)

- Suppose system behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli of parameter p :
 - System satisfies Φ with (unknown) probability p
- Questions: $P_{\geq \vartheta}(\Phi)$? (for a fixed $0 < \vartheta < 1$)
- Draw a sample of system simulations and use:
 - Statistical hypothesis testing: Null vs. Alternative hypothesis
$$H_0 : \mathcal{M} \models P_{\geq \theta}(\phi) \quad H_1 : \mathcal{M} \models P_{< \theta}(\phi)$$
 - Statistical estimation: returns “ p in (a, b) ” (and compare a with ϑ)

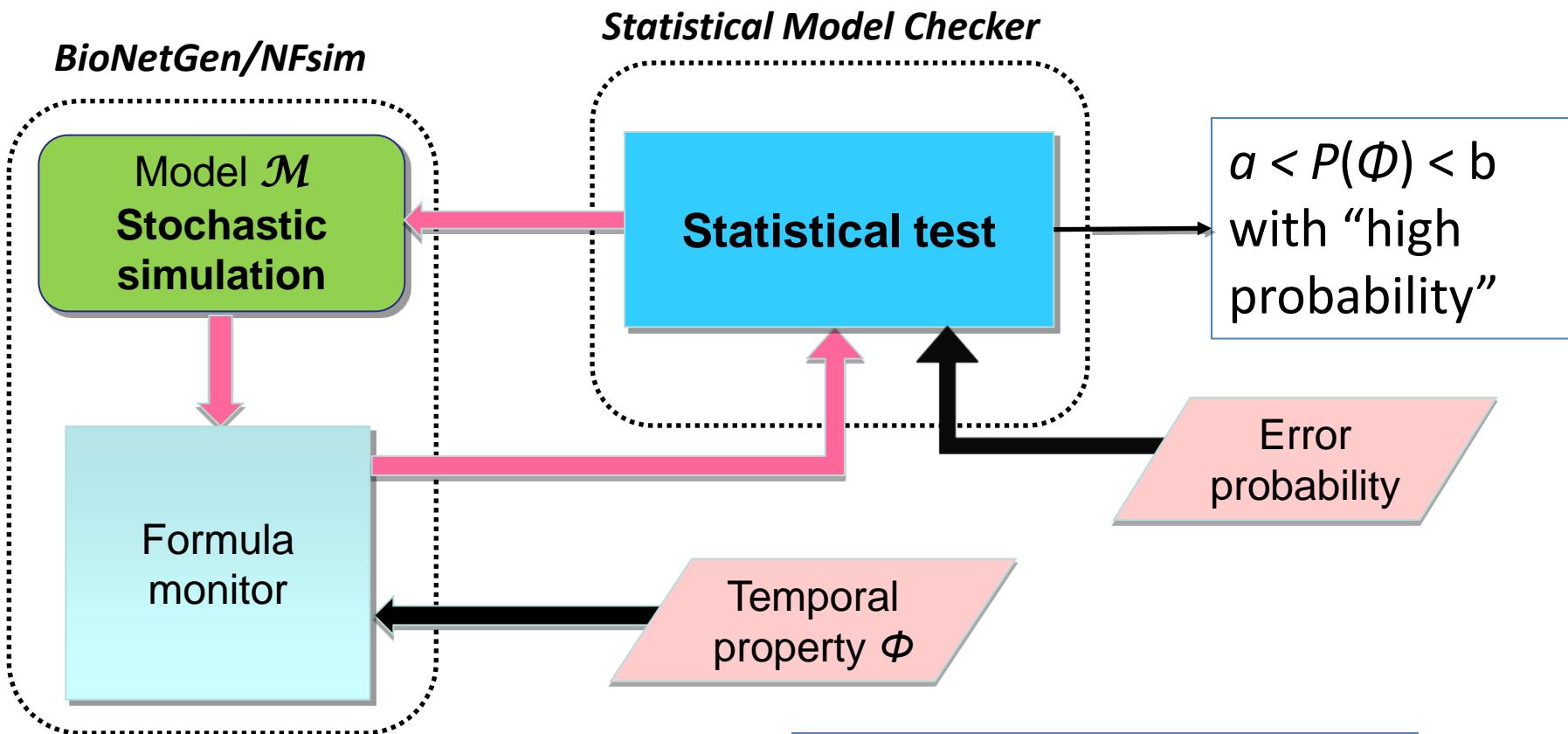
Our Approach

Statistical Model Checking: $\mathcal{M} \models P_{\geq \vartheta}(\Phi) ?$



Our Approach

Statistical Model Checking: what is $P(\Phi)$?



Motivation

- State Space Exploration infeasible for large systems
 - Symbolic MC with OBDDs scales to 10^{300} states
 - Scalability depends on the structure of the system
 - Probabilistic symbolic MC (eg PRISM) scales to 10^{10} states
- Pros: simulation is feasible for many more systems
 - Often easier to simulate a complex system than to build the transition relation for it
- Pros: easier to parallelize
- Cons: answers may be wrong
 - But error probability can be bounded
- Cons: simulation is incomplete (continuous state spaces)

Bayesian Statistical Model Checking

- Sequential sampling
- Performs Hypothesis Testing (and Estimation)
- Based on [Bayes Theorem](#)
- Application to BioNetGen

Bounded Linear Temporal Logic

- Bounded Linear Temporal Logic (BLTL): A version of LTL with **time bounds** on temporal operators.
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be an execution of the model
 - along states s_0, s_1, \dots
 - the system stays in state s_i *for time* t_i
 - **divergence of time**: $\sum_i t_i$ diverges (i.e., non-zeno)
- σ^i : Execution trace starting at state i
- A model for simulation traces (e.g. BioNetGen)

Semantics of BLTL

The semantics of BLTL for a trace σ^k :

- $\sigma^k \models ap$ iff atomic proposition ap true in state s_k
- $\sigma^k \models \Phi_1 \vee \Phi_2$ iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$
- $\sigma^k \models \neg\Phi$ iff $\sigma^k \models \Phi$ does not hold
- $\sigma^k \models \Phi_1 U^t \Phi_2$ iff there exists natural i such that
 - 1) $\sigma^{k+i} \models \Phi_2$
 - 2) $\sum_{j < i} t_{k+j} \leq t$
 - 3) for each $0 \leq j < i$, $\sigma^{k+j} \models \Phi_1$

“within time t , Φ_2 will be true and Φ_1 will hold until then”

- In particular, $F^t \Phi = \text{true } U^t \Phi$, $G^t \Phi = \neg F^t \neg \Phi$

Bayesian Statistics

Three ingredients:

1. Prior distribution

- Models our initial (a priori) uncertainty/belief about parameters (what is $P(H)$?)

2. Likelihood function

- Describes the distribution of data, given a specific parameter range: $P(data | H)$

3. Bayes Theorem

- Posterior probability - Revises uncertainty upon experimental data

$$P(H | data) = [P(data | H) \cdot P(H)] / P(data)$$

Sequential Bayesian Statistical MC - I

- Model Checking $H_0 : \mathcal{M} \models P_{\geq\theta}(\phi)$ $H_1 : \mathcal{M} \models P_{<\theta}(\phi)$
- Suppose \mathcal{M} satisfies ϕ with (unknown) probability p
 - p is given by a random variable U (defined on $[0,1]$) with density g
 - g represents our prior belief that \mathcal{M} satisfies ϕ
- Generate independent and identically distributed (iid) sample traces.
- x_i : the i^{th} sample trace σ satisfies ϕ
 - $x_i = 1$ iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function)

$$f(x_i | u) = u^{x_i} (1 - u)^{1-x_i}$$

Sequential Bayesian Statistical MC - II

- $X = (x_1, \dots, x_n)$ a sample of Bernoulli random variables
- Prior probabilities $P(H_0), P(H_1)$ strictly positive, sum to 1
- Posterior probability (Bayes Theorem [1763])

$$P(H_0|X) = \frac{P(X|H_0)P(H_0)}{P(X)}$$

for $P(X) > 0$

- Ratio of Posterior Probabilities:

$$\frac{P(H_0|X)}{P(H_1|X)} = \frac{P(X|H_0)}{P(X|H_1)} \cdot \frac{P(H_0)}{P(H_1)}$$

Bayes Factor

Sequential Bayesian Statistical MC - III

Require: *Property $P_{\geq\vartheta}(\Phi)$, Threshold $T \geq 1$, Prior density g*

$n := 0$ {number of traces drawn so far}

$s := 0$ {number of traces satisfying Φ so far}

repeat

$\sigma :=$ draw a sample trace of the system (iid)

$n := n + 1$

if $\sigma \models \Phi$ **then**

$s := s + 1$

endif

$\mathcal{B} := \text{BayesFactor}(n, s, g)$

until $(\mathcal{B} > T \vee \mathcal{B} < 1/T)$

if $(\mathcal{B} > T)$ **then**

return H_0 accepted

else

return H_0 rejected

endif

Correctness

Theorem (Termination)

The Sequential Bayesian Statistical Hypothesis Testing algorithm **terminates with probability one**.

Theorem (Error bounds)

When the Bayesian algorithm using threshold T stops, the following holds:

$$\text{Prob} (\text{"accept } H_0 \text{"} \mid H_1) \leq 1/T$$

$$\text{Prob} (\text{"reject } H_0 \text{"} \mid H_0) \leq 1/T$$

Note: bounds independent from the prior distribution.

Bayesian Interval Estimation - I

- Estimating the unknown probability p that “system $\models \phi$ ”
- Recall: system is modeled as a Bernoulli of parameter p
- Bayes' Theorem (for conditional iid Bernoulli samples)

$$f(u \mid x_1, \dots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u) g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v) g(v) \, dv}$$

- We thus have the **posterior distribution**
- So we can use the **mean of the posterior** to estimate p
 - mean is a posterior Bayes estimator for p (it minimizes the integrated risk over the parameter space, under a quadratic loss)

Bayesian Interval Estimation - II

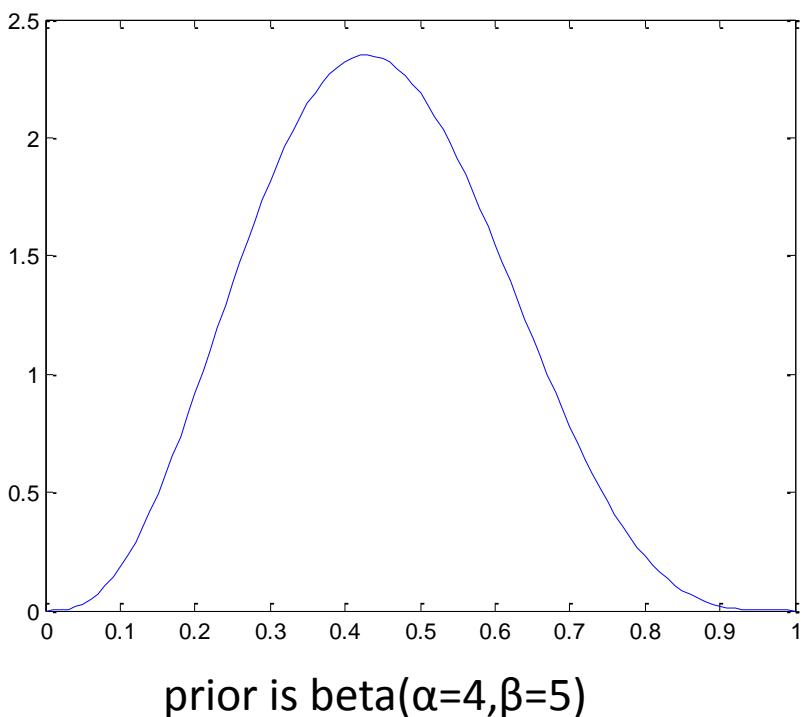
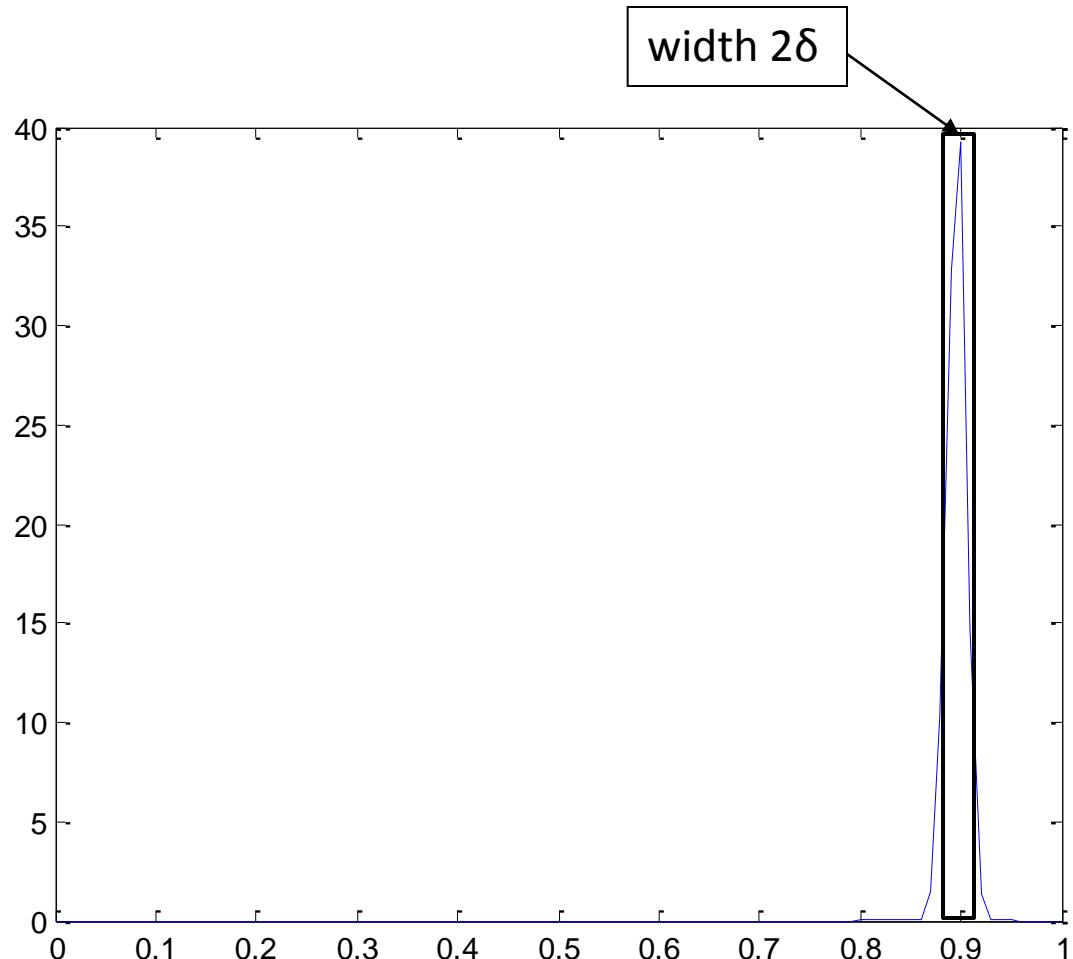
- Bayesian interval for p : integrate the posterior
- Fix a **coverage** $\frac{1}{2} < c < 1$. Any interval (t_0, t_1) such that

$$\int_{t_0}^{t_1} f(u \mid x_1, \dots, x_n) \, du = c$$

is called a **100c percent Bayesian Interval Estimate** of p

- *An optimal interval* minimizes $t_1 - t_0$: difficult in general
- Our approach:
 - fix a **half-interval width** δ
 - Continue sampling until the **posterior probability** of an interval **of width 2δ** containing the posterior mean **exceeds coverage c**

Bayesian Interval Estimation - IV



posterior density after 1000 samples and
900 “successes” is beta($\alpha=904, \beta=105$)
posterior mean = 0.8959

Bayesian Interval Estimation - V

Require: BLTL *property* Φ , *interval-width* δ , *coverage* c , *prior beta parameters* α, β

$n := 0$ {number of traces drawn so far}

$x := 0$ {number of traces satisfying so far}

repeat

$\sigma :=$ draw a sample trace of the system (iid)

$n := n + 1$

if $\sigma \models \Phi$ **then**

$x := x + 1$

endif

 mean = $(x + \alpha) / (n + \alpha + \beta)$

$(t_0, t_1) = (\text{mean} - \delta, \text{mean} + \delta)$

$I := \text{PosteriorProbability}(t_0, t_1, n, x, \alpha, \beta)$

until ($I > c$)

return (t_0, t_1) , mean

Bayesian Interval Estimation - VI

Theorem (Termination)

The Sequential Bayesian Estimation algorithm **terminates with probability one**.

- Recall the algorithm outputs the interval (t_0, t_1)
- Define the null hypothesis $H_0: t_0 < p < t_1$

Theorem (Error bound)

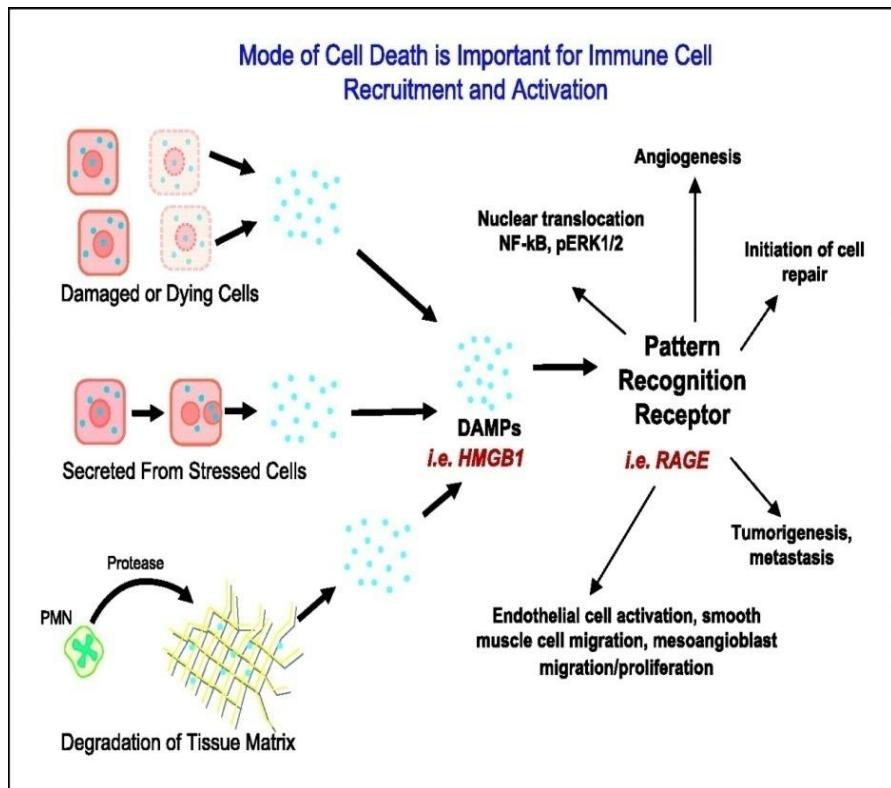
When the Bayesian estimation algorithm (using coverage $\frac{1}{2} < c < 1$) stops – we have

$$\begin{aligned}\text{Prob ("accept } H_0 \text{" } | \text{ } H_1) &\leq (1/c - 1)\pi_0 / (1 - \pi_0) \\ \text{Prob ("reject } H_0 \text{" } | \text{ } H_0) &\leq (1/c - 1)\pi_0 / (1 - \pi_0)\end{aligned}$$

π_0 is the prior probability of H_0

Verification of Biological Signaling Pathways in BioNetGen

The Protein HMGB1



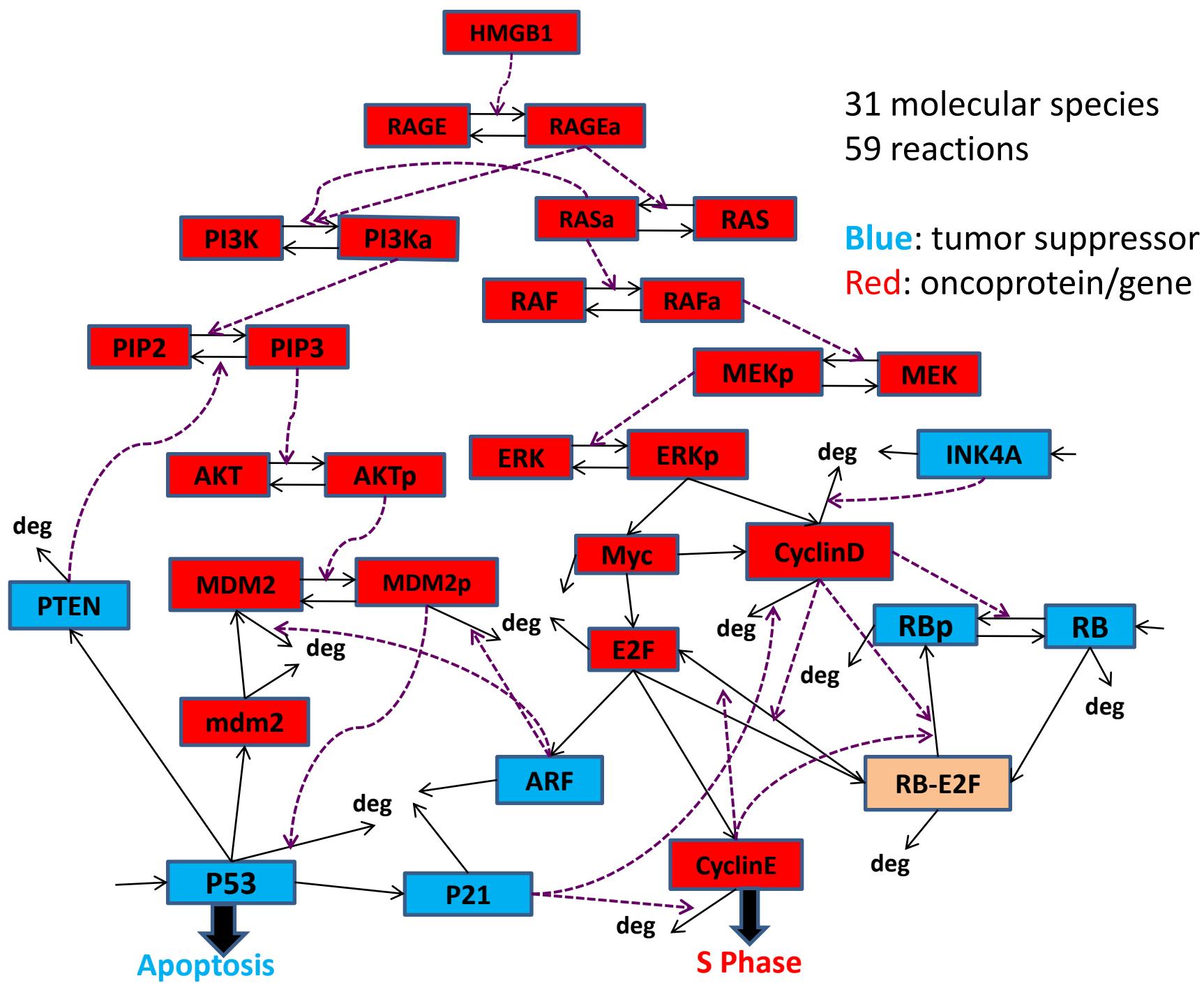
- High-Mobility Group Protein 1 (**HMGB1**):
 - DNA-binding protein and regulates gene transcription
 - released from damaged or stressed cells, etc.
- HMGB1 activates RAGE or TLR2/4
 - **RAGE**: Receptor for Advanced Glycation End products.
 - **TLR**: Toll-like receptor
- RAGE/TLR activation can activate **NF κ B** and **RAS** signaling pathways which causes inflammation or tumorigenesis.

HMGB1 and Pancreatic Cancer

(Lotze *et al.*, UPMC)

Experiments with pancreatic cancer cells:

- Overexpression of HMGB1/RAGE is associated with diminished apoptosis, and longer cancer cell survival time.
- Knockout of HMGB1/RAGE leads to increased apoptosis, and decreased cancer cell survival.



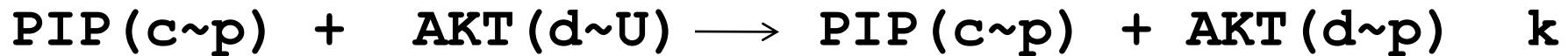
BioNetGen.org

- Rule-based modeling for biochemical systems
- Ordinary Differential Equations and Stochastic simulation (Gillespie's algorithm: [Continuous-Time Markov Chain](#))
- *Example:* AKT has a component named **d** which can be labeled as **U** (unphosphorylated) or **p** (phosphorylated)

<i>begin species</i>		<i>begin parameters</i>	
AKT (d~U)	1e5	k	1.2e-7
AKT (d~p)	0	d	1.2e-2
<i>end species</i>		<i>end parameters</i>	

- Example:
 - PIP3 can phosphorylate AKT
 - dephosphorylation of AKT

begin reaction_rules



end reaction_rules

- The propensity functions for Gillespie's algorithm are:

$$k \cdot [\text{PIP}(\text{c} \sim \text{p})] \cdot [\text{AKT}(\text{d} \sim \text{U})]$$

$$d \cdot [\text{AKT}(\text{d} \sim \text{p})]$$

Verification - I

- Overexpression of HMGB1 will induce the expression of the cell cycle regulatory protein CyclinE

$$P_{\geq 0.9} F^{600} (\text{CyclinE} > 900)$$

“within 600 minutes, the number of CyclinE molecules will be greater than 900”

- error probability < 0.001

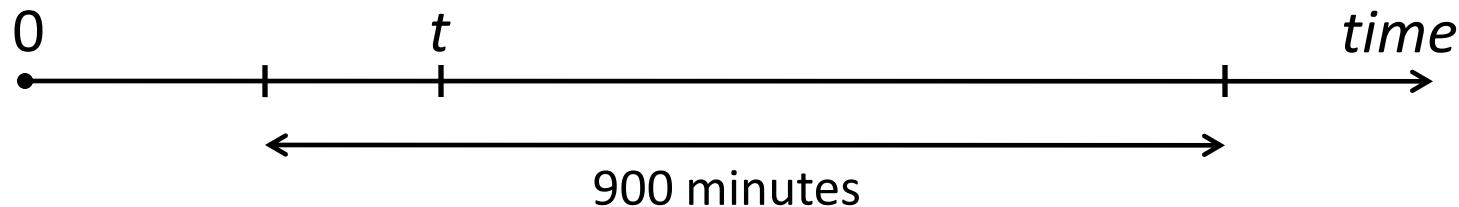
HMGB1	# samples	# Success	Result
10^2	9	0	False
10^3	55	16	False
10^6	22	22	True

Verification - II

- p53 is expressed at **low** levels in **normal human cells**

$$P_{\geq 0.9} F^t (G^{900} (p53 < 3.3 \times 10^4))$$

“within t minutes, p53 will stay low for 900 minutes”



t (min)	# Samples	# Success	Result	Time (s)
400	53	49	True	597.59
500	23	22	True	271.76
600	22	22	True	263.79

Verification - III

- Expression level of HMGB1 influences the 1st peak of p53's level

$$P_{\geq 0.9} F^{100} (p53 \geq a \text{ & } F^{100} (p53 \leq 4 \times 10^4))$$

“within 100 minutes, p53 will pass a, and in the next 100 minutes it will eventually be below 4×10^4 ”

HMGB1	a ($\times 10^4$)	# Samples	# Success	Result	Time (s)
10^3	5.5	20	3	False	29.02
10^2	5.5	22	22	True	19.65
10^2	6.0	45	12	False	56.27
10	6.0	38	37	True	41.50

Verification - IV

- Coding oscillations in temporal logic
- R is the **fraction** of NFkB molecules in the **nucleus**
- We model checked the formula

$$P_{\geq 0.9} F^t (R \geq 0.65 \ \& \ F^t (R < 0.2 \ \& \ F^t (R \geq 0.2 \ \& \ F^t (R < 0.2))))$$

- The formula codes **four changes** of R that must happen in **consecutive time intervals** of maximum length t
- **Note:** the intervals need not be of the same length

Verification - IV

- Verifying oscillations of NFkB with statistical model checking

$$P_{\geq 0.9} F^t (R \geq 0.65 \& F^t (R < 0.2 \& F^t (R \geq 0.2 \& F^t (R < 0.2))))$$

HMGB1	t (min)	# Samples	# Success	Result	Time (s)
10 ²	45	13	1	False	76.77
10 ²	60	22	22	True	111.76
10 ²	75	104	98	True	728.65
10 ⁵	30	4	0	False	5.76

Statistical MC: Weaknesses

- Rare events – too many samples needed
 - But there are ways to “solve” the problem
- Simulation is incomplete (continuous evolution)
 - OK for biological systems modeled as CTMCs

Statistical MC: Strengths

- Widely applicable!
 - Only need simulation
- Can address large (or infinite) system spaces
- Better scalability
- Can trivially exploit multi-core CPUs

The End

Questions?