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Verification of Rule-based Models

Temporal properties over the stochastic evolution of
the model

Example: “does p53 reach 4,000 within 20 minutes,
with probability at least 0.99?”

In our formalism, we write:
P9 (F?° (p53 2 4,000))

For a property @ as above and a fixed 0O<U<1, we ask
whether

P.o (®) or Ps(®)



Statistical Model Checking

Key idea

(Haakan Younes, 2001)

= Suppose system behavior w.r.t. a (fixed) property @ can
be modeled by a Bernoulli of parameter p:

= System satisfies @ with (unknown) probability p
= Questions: P4 (®)? (for a fixed 0<9<1)

" Draw a sample of system simulations and use:
= Statistical hypothesis testing: Null vs. Alternative hypothesis

Ho: M= Pso(¢)  Hi: M [ Pey(9)

= Statistical estimation: returns “p in (a,b)” (and compare a with )




Our Approach

Statistical Model Checking:
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Our Approach

Statistical Model Checking:| what is P(®)?
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Motivation

State Space Exploration infeasible for large systems

= Symbolic MC with OBDDs scales to 103 states
= Scalability depends on the structure of the system
= Probabilistic symbolic MC (eg PRISM) scales to 100 states

Pros: simulation is feasible for many more systems

= Often easier to simulate a complex system than to build the
transition relation for it

Pros: easier to parallelize

Cons: answers may be wrong

= But error probability can be bounded

Cons: simulation is incomplete (continuous state spaces)



Bayesian Statistical Model Checking

= Sequential sampling
* Performs Hypothesis Testing (and Estimation)

" Based on Bayes Theorem

= Application to BioNetGen



Bounded Linear Temporal Logic

Bounded Linear Temporal Logic (BLTL): A version of LTL
with time bounds on temporal operators.

Let o= (s, t,), (s, t;), ... be an execution of the model
" along statess, s, ...
= the system stays in state s, for time t;

= divergence of time: Z, t; diverges (i.e., non-zeno)
o': Execution trace starting at state i

A model for simulation traces (e.g. BioNetGen)



Semantics of BLTL

The semantics of BLTL for a trace o*:

= o = ap iff atomic proposition ap true in state s,
" o = O,vO, iff oK = ®,oroF O,
= o F-0 iff o = @ does not hold
» ok = @, Ut ®, iff there exists natural j such that
1) o F Q,

2) It St
3) foreachO<j<i, cF @,

“within time t, @, will be true and @, will hold until then”

» |n particular, Ft @ = true ‘Ut @, GO =-F-0Q



Bayesian Statistics

Three ingredients:

1. Prior distribution

= Models our initial (a priori) uncertainty/belief about parameters
(what is P(H)?)

2. Likelihood function

= Describes the distribution of data, given a specific parameter range:
P(data | H)

3. Bayes Theorem

= Posterior probability - Revises uncertainty upon experimental data

P(H | data) = [P(data | H) - P(H)] / P(data)




Sequential Bayesian Statistical MC - |

= Model Checking Hp : M

= Pyo(¢) Hi: M

= Suppose M satisfies @ with (unknown) probability p
= pisgiven by a random variable U (defined on [0,1]) with density g

= grepresents our prior belief that M satisfies (b

= P.g(9)

= Generate independent and identically distributed (iid) sample

traces.

= x:the it sample trace O satisfies ¢

= x=1iff O &= @

= x=0iff 07 & @

= Then, x; will be a Bernoulli trial with conditional density

(likelihood function)

f(xil U) = UX’(]_ - u)l'xi



Sequential Bayesian Statistical MC - |

» X =(x1,...,2y,) asample of Bernoulli random variables
" Prior probabilities P(H,), P(H,) strictly positive, sumto 1
= Posterior probability (Bayes Theorem [1763])

P(X|Hy)P(Hy)
P(X)

P(Hp|X) =

for P(X) >0

=  Ratio of Posterior Probabilities:

P(Ho|X) P(X|Ho) P(Ho)

P(H,|X)  P(X|H)) P(H))

Bayes Factor




Sequential Bayesian Statistical MC - lll

Require: Property P,,(®), Threshold T > 1, Prior density g

n:=0 {number of traces drawn so far}
s:=0 {number of traces satisfying @ so far}
repeat

o := draw a sample trace of the system (iid)

n:=n+1

if o ® then

s:=s+1
endif

B := BayesFactor(n, s, g)
until (B>T v B<1/T)
if (B> T)then
return H, accepted
else
return H, rejected
endif



Correctness

Theorem (Termination)

The Sequential Bayesian Statistical Hypothesis
Testing algorithm terminates with probability one.

Theorem (Error bounds)
When the Bayesian algorithm using threshold T
stops, the following holds:

Prob (“accept H,” | H;) <1/T
Prob (“reject H,” | H)) <1/T

Note: bounds independent from the prior distribution.




Bayesian Interval Estimation - |

Estimating the (unknown) probability p that “system

Recall: system is modeled as a Bernoulli of parameter p
Bayes’ Theorem (for conditional iid Bernoulli samples)

[y [w)- - fzn | u)g(u)
Jo f@i | ) f(an | v)g(v) dv

We thus have the posterior distribution

f(u\:z:l,...,a:n)

So we can use the mean of the posterior to estimate p

" mean is a posterior Bayes estimator for p (it minimizes the
integrated risk over the parameter space, under a quadratic
loss)

— ¢H



Bayesian Interval Estimation - |l

Bayesian interval for p: integrate the posterior

Fix a coverage %2 < ¢ < 1. Any interval (t,, t,) such that
t1

flulzy,...,2,) du=c
to

is called a 100c percent Bayesian Interval Estimate of p
An optimal interval minimizes t,- t,: difficult in general

Our approach:
= fix a half-interval width 6

= Continue sampling until the posterior probability of an interval
of width 26 containing the posterior mean exceeds coverage c



Bayesian Interval Estimation - IV

width 26
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Bayesian Interval Estimation - V

Require: BLTL property @, interval-width 6, coverage c, prior beta
parameters a,8

n:=0 {number of traces drawn so far}
=0 {number of traces satisfying so far}

repeat

o := draw a sample trace of the system (iid)

n:=n+1

if o=@ then

X=x+1
endif

mean = (x+a)/(n+o+p)

(t,t;) = (mean-6, mean+d)

I := PosteriorProbability (t,t,,n,x,a,B)
until (I > ¢)
return (t, t;), mean



Bayesian Interval Estimation - Vi

Theorem (Termination)

The Sequential Bayesian Estimation algorithm terminates
with probability one.

= Recall the algorithm outputs the interval (t,, t,)
= Define the null hypothesis Hy t,<p<t,

Theorem (Error bound)

When the Bayesian estimation algorithm (using coverage
< ¢ < 1) stops — we have

Prob (“accept H,” | H,) £ (1/c-1)ny/(1-,)
Prob (“reject H,” | Hy) <(1/c-1)ny/(1-m,)

I, is the prior probability of H,




Verification of Biological Signaling
Pathways in BioNetGen



The Protein HMGB1
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High-Mobility Group Protein 1
(HMGB1):
e DNA-binding protein and regulates
gene transcription

e released from damaged or
stressed cells, etc.

HMGB1 activates RAGE or TLR2/4

e RAGE: Receptor for Advanced
Glycation End products.

e TLR: Toll-like receptor

RAGE/TLR activation can activate NFkB and RAS signaling pathways

which causes inflammation or tumorigenesis.



HMGB1 and Pancreatic Cancer
(Lotze et al., UPMC)

[ HMGB1 ]—)[ RAGE ]—l Apoptosis

Experiments with pancreatic cancer cells:
=  QOverexpression of HMGB1/RAGE is associated with diminished
apoptosis, and longer cancer cell survival time.

=  Knockout of HMGB1/RAGE leads to increased apoptosis, and
decreased cancer cell survival.
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BioNetGen.org

= Rule-based modeling for biochemical systems

= Ordinary Differential Equations and Stochastic simulation
(Gillespie’s algorithm: Continuous-Time Markov Chain)

= Example: AKT has a component named d which can be labeled
as U (unphosphorylated) or p (phosphorylated)

begin species begin parameters
AKT (d~U) le5 k 1.2e-7
AKT (d~p) 0 d 1l.2e-2
end species end parameters

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems with
BioNetGen. In Methods in Molecular Biology: Systems Biology, (2009).



BioNetGen.org

= Example:

= PIP3 can phosphorylate AKT
= dephosphorylation of AKT

begin reaction_rules
PIP(c~p) + AKT(d~U) — PIP(c~p) + AKT(d~p) k
AKT (d~p) — AKT (d~U) d

end reaction_rules

= The propensity functions for Gillespie’s algorithm are:

k-[PIP(c~p)]-[AKT(d~U)]
d-[AKT(d~p)]



Verification - |

= Qverexpression of HMGB1 will induce the expression of the
cell cycle regulatory protein CyclinE

P, F?%° ( CyclinE > 900 )

“within 600 minutes, the number of CyclinE molecules will be
greater than 900"

= error probability < 0.001

102 9 0 False
103 55 16 False

106 22 22 True




Verification - |l

= p53is expressed at low levels in normal human cells

P, Ft( G (p53<3.3x10%))

“within t minutes, p53 will stay low for 900 minutes”

0 t time
. } } } >
<€ >
900 minutes
400 53 49 True 597.59
500 23 22 True 271.76

600 22 22 True 263.79




Verification - Il

= Expression level of HMGB1 influences the 15t peak of p53’s
level

Pooo F1°(p532a & F99( p53 <4 x10%))

“within 100 minutes, p53 will pass a, and in the next 100
minutes it will eventually be below 4x10%”

103 55 20 3 False 29.02
102 5 22 22 True 19.65
102 6.0 45 12 False 56.27

10 6.0 38 37 True 41.50




Verification - IV

= Coding oscillations in temporal logic
= R s the fraction of NFkB molecules in the nucleus

= \We model checked the formula

P, F'(R>0.65& Ft (R<0.2 & Ft (R > 0.2 & Ft (R <0.2))))

= The formula codes four changes of R that must happen in
consecutive time intervals of maximum length t

= Note: the intervals need not be of the same length




Verification - IV

= Verifying oscillations of NFkB with statistical model checking

P, F{(R20.65& Ft (R<0.2 & Ft (R 0.2 & Ft (R <0.2))))

102 45 13 1 False 76.77
102 60 22 22 True 111.76
102 75 104 98 True 728.65

10° 30 4 0 False 5.76




Statistical MC: Weaknesses

" Rare events —too many samples needed

= But there are ways to “solve” the problem

" Simulation is incomplete (continuous evolution)

= OK for biological systems modeled as CTMCs



Statistical MC: Strengths

" Widely applicable!

" Only need simulation
" Can address large (or infinite) system spaces
" Better scalability

" Can trivially exploit multi-core CPUs



The End

Questions?



