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Abstract. Modelling is becoming a necessity in studying biological sig-
nalling pathways, because the combinatorial complexity of such systems
rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this
same combinatorial explosion makes the traditional modelling paradigm
based on systems of di�erential equations impractical. In contrast, agent-
based or concurrent languages, such as � [1–3] or the closely related
BioNetGen language [4–10], describe biological interactions in terms of
rules, thereby avoiding the combinatorial explosion besetting di�erential
equations. Rules are expressed in an intuitive graphical form that trans-
parently represents biological knowledge. In this way, rules become a nat-
ural unit of model building, modification, and discussion. We illustrate
this with a sizeable example obtained from refactoring two models of EGF
receptor signalling that are based on di�erential equations [11, 12]. An
exciting aspect of the agent-based approach is that it naturally lends it-
self to the identification and analysis of the causal structures that deeply
shape the dynamical, and perhaps even evolutionary, characteristics of
complex distributed biological systems. In particular, one can adapt the
notions of causality and conflict, familiar from concurrency theory, to
�, our representation language of choice. Using the EGF receptor model
as an example, we show how causality enables the formalization of the
colloquial concept of pathway and, perhaps more surprisingly, how con-
flict can be used to dissect the signalling dynamics to obtain a qualitative
handle on the range of system behaviours. By taming the combinatorial
explosion, and exposing the causal structures and key kinetic junctures
in a model, agent- and rule-based representations hold promise for mak-
ing modelling more powerful, more perspicuous, and of appeal to a wider
audience.

1 Background

A large majority of models aimed at investigating the behavior of biological path-
ways are cast in terms of systems of di�erential equations [11–16]. The choice
seems natural. The theory of dynamical systems o�ers an extensive repertoire of
mathematical techniques for reasoning about such networks. It provides, at least
in the limit of long times, a well-understood ontology of behaviors, like steady
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Abstract. Given the combinatorial nature of cellular signalling path-
ways, where biological agents can bind and modify each other in a large
number of ways, concurrent or agent-based languages seem particularly
suitable for their representation and simulation [1–4]. Graphical mod-
elling languages such as � [5–8], or the closely related BNG language [9–
14], seem to a�ord particular ease of expression. It is unclear however
how such models can be implemented.6 Even a simple model of the EGF
receptor signalling network can generate more than ⇤⇥�⇥ non-isomorphic
species [5], and therefore no approach to simulation based on enumerating
species (beforehand, or even on-the-fly) can handle such models without
sampling down the number of potential generated species.
We present in this paper a radically di�erent method which does not at-
tempt to count species. The proposed algorothm uses a representation of
the system together with a super-approximation of its ‘event horizon’ (all
events that may happen next), and a specific correction scheme to obtain
exact timings. Being completely local and not based on any kind of enu-
meration, this algorithm has a per event time cost which is independent
of (i) the size of the set of generable species (which can even be infinite),
and (ii) independent of the size of the system (ie, the number of agent
instances). We show how to refine this algorithm, using concepts derived
from the classical notion of causality, so that in addition to the above one
also has that the even cost is depending (iii) only logarithmically on the
size of the model (ie, the number of rules). Such complexity properties
reflect in our implementation which, on a current computer, generates
about ⇤⇥⌅ events per minute in the case of the simple EGF receptor model
mentioned above, using a system with ⇤⇥⇤ agents.

1 Introduction

An important thread of work in systems biology concerns the modelling of the
intra-cellular signalling networks triggered by extra-cellular stimuli (such as hor-
mones and growth factors). Such networks determine growth, di�erentiation, and
⇧ This research was partly supported by the NIH/NIGMS grant R43GM81319-01.
6 Eg, from Ref. [15, p. 4]: “programs implementing these methods include StochSim,

BioNetGen, and Moleculizer. However, at the present time only a part of the entire
EGFR network can be analyzed using these programs”.
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Many proteins are composed of structural and chemical features—“sites” for short—defined by definite inter-
action capabilities, such as non-covalent binding or covalent modification of other proteins. This modularity
allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some
but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity
that characterizes most biological networks, such as mammalian signaling systems, and effectively prevents
their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial
complexity is key to the system’s behavior, eliminating it will prevent, not facilitate, understanding. A more
adequate representation of a combinatorial system is afforded by a graph-based framework of rewrite rules
where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions,
rules deal with patterns, i.e. sets of molecular species, rather than molecular species themselves. Although
the stochastic dynamics induced by a set of rules on a mixture of molecules can be simulated, we aim at
capturing the system’s average or deterministic behavior. However, expansion of the rules into differential
equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules
describe patterns of interaction, fully-defined molecular species are unlikely to constitute appropriate units
of dynamics. Rather, we must seek aggregated variables reflective of the causal structure laid down by the
mechanisms expressed by the rules. We call these variables “fragments” and the process of identifying them
“fragmentation”. Ideally, fragments are aspects of the system’s microscopic population that the set of rules
can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this.
Most importantly, fragments are self-consistent descriptors of system dynamics in that their time evolution is
governed by a closed system of kinetic equations. Taken together, fragments are endogenous distinctions that
matter for the dynamics of a system, and this warrants viewing them as the carriers of information. Although
fragments can be thought of as multi-sets of molecular species (an extensional view), their self-consistency
suggests treating them as autonomous aspects cut off from their microscopic anchors (an intensional view).
Fragmentation is a seeded process and plays out depending on the seed provided, which leaves open the
possibility that different inputs cause distinct fragmentations, in effect altering the set of information carriers
that govern the behavior of a system, even though nothing has changed in its microscopic constitution. We
provide a mathematical specification of fragments, but not an algorithmic implementation. We have done
so elsewhere in rather technical terms with specific biases that, although effective, were lacking an embed-
ding into a more general conceptual framework. Our main objective in this contribution is to provide that
framework.

Central to the rise of modern chemistry was the
definition of a formal language for expressing the
modular architecture of organic molecules and
their general rules of reaction with regard to con-
stituent atoms and functional groups. At a higher
level, a similar modularity characterizes many of
the proteins that constitute the molecular net-
works giving rise to cellular behavior. These pro-
teins can be viewed as being composed of “sites”
that abstractly represent definite capabilities of
interaction, such as binding or modifying other
proteins. Sites, or combinations of sites, that
interact independently of one another combine
into vast numbers of interaction possibilities at
the system level. One consequence is that these
possibilities can no longer be tracked by standard
chemical kinetics, because the latter requires an
explicit list of the former. However, such systems
can be compactly described in a rule-based for-

mat that keeps these vast possibilities implicit by
only mentioning those aspects of molecules that
mechanisms are known (or hypothesized) to care
about. We show here that such a system of rules
permits a corresponding deterministic dynamical
system that is cast in terms of coarse-grained
variables entirely determined by static analysis
of the rules. These new variables, called “frag-
ments”, are the effective information carriers of
the system in that they are the observables “from
within”—those features that the system of rules
can collectively distinguish on average.
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Modelers of molecular signaling networks must cope with the
combinatorial explosion of protein states generated by post-
translational modifications and complex formation. Rule-based
models provide a powerful alternative to approaches that require
explicit enumeration of all possiblemolecular species of a system.
Such models consist of formal rules stipulating the (partial) con-
texts wherein specific protein-protein interactions occur. These
contexts specify molecular patterns that are usually less detailed
than molecular species. Yet, the execution of rule-based dynam-
ics requires stochastic simulation, which can be very costly. It
thus appears desirable to convert a rule-based model into a re-
duced system of differential equations by exploiting the granular-
ity at which rules specify interactions. We present a formal (and
automated) method for constructing a coarse-grained and self-
consistent dynamical system aimed at molecular patterns that are
distinguishable by the dynamics of the original system as posited
by the rules. The method is formally sound and never requires the
execution of the rule-based model. The coarse-grained variables
do not depend on the values of the rate constants appearing in the
rules, and typically form a system of greatly reduced dimension
that can be amenable to numerical integration and further model
reduction techniques.
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Molecular biology is spectacularly successful in disassembling
cellular systems and anchoring cell-biological behaviors of

staggering complexity in chemistry. This raises the challenge of re-
constituting molecular systems formally, in pursuit of principles that
would make their behavior more intelligible and their control more
deliberate. This pursuit is as much driven by the practical need to
cure disease as it reflects a desire for a theoretical perspective needed
to understand the complexity of cellular phenotypes.

Two broad problems stand out on the theoretical frontier. First,
we must be able to represent and analyze molecular interaction sys-
tems of combinatorial complexity. While ubiquitous, such systems
are perhaps most notorious in the context of cellular signaling. The
post-translational modification of proteins and their non-covalent as-
sociation into transient complexes generate an astronomic number of
possible molecular species that can relay signals [1]. The question
then becomes how to reason about system dynamics if we cannot
possibly consider a differential equation for each chemical species
that can appear in a system.

Second, understanding systems requires resisting the temptation
of adopting the view of an outside observer. Such a view is indeed
appropriate for the chemical analysis of a network. When dissecting
its structure, however, the experimenter interacts with that network
to create measurable distinctions. Yet, the network, as a dynamical
system, may not be capable of these same distinctions. For example,
an experimental technique might differentiate between SOS recruited
to the membrane via GRB2 bound to SHC bound to the EGF recep-
tor and SOS recruited via GRB2 bound to the EGF receptor directly.
However, from the perspective of the EGF signaling system such a
difference might not be observable for lack of an endogenous inter-
action through which such a distinction could become consequential.
The endogenous units of the dynamics may differ from the exogenous
units of the analysis.

In an attempt at mitigating the first problem, analytical model re-
duction techniques eliminate variables on the basis of algebraic con-
straints such as conservation equations and quasi-steady state condi-
tions obtained mainly by exploiting separations of time and/or con-

centration scales (for example [2, 3]). Numerical model reduction
consists in integrating the kinetic rate equations of the full network,
and subsequently building a reduced model based on species that
were observed to be significantly populated [4]. Yet, all these tech-
niques hinge on an explicit representation of the full network, which
severely curtails their applicability to larger systems.

The past few years have seen the emergence of several ap-
proaches [5, 6, 7, 8] that represent signaling systems in terms of rules
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Fig. 1. Rules and reactions in Kappa. A: A rule captures a high-level mech-

anistic statement (empirical or hypothetical) about a protein-protein interaction

in terms of a rewrite directive plus rate constant(s). The left hand side (lhs) of

the rule is a pattern of partially specified agents, and represents the contextual

information necessary for identifying reaction instances that proceed according

to the rule. The right hand side (rhs) expresses the actions that may occur when

the conditions specified on the lhs are met in a reaction mixture of Kappa agents.

A maximal connected subgraph on the lhs of a rule is called a rule component.

B: The rule in A matches a combination of agents in two distinct ways giving

rise to two possible reactions with different outcomes. Note that because of their

local nature, Kappa-rules with more than one lhs component may apply in both

a unimolecular and bimolecular situation. This is why such rules are given two

rate constants, a first-order (k1) and a second-order (k2) constant. In a textual

representation, agents are names followed by an interface of sites delimited by

parentheses. Bonds are labelled by superscripts and internal states at a site

by subscripts. In the graphical rendition, internal states are indicated as labeled

barbs. See SI and text for more details.
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Abstract. Modelling is becoming a necessity in studying biological sig-
nalling pathways, because the combinatorial complexity of such systems
rapidly overwhelms intuitive and qualitative forms of reasoning. Yet, this
same combinatorial explosion makes the traditional modelling paradigm
based on systems of di�erential equations impractical. In contrast, agent-
based or concurrent languages, such as � [1–3] or the closely related
BioNetGen language [4–10], describe biological interactions in terms of
rules, thereby avoiding the combinatorial explosion besetting di�erential
equations. Rules are expressed in an intuitive graphical form that trans-
parently represents biological knowledge. In this way, rules become a nat-
ural unit of model building, modification, and discussion. We illustrate
this with a sizeable example obtained from refactoring two models of EGF
receptor signalling that are based on di�erential equations [11, 12]. An
exciting aspect of the agent-based approach is that it naturally lends it-
self to the identification and analysis of the causal structures that deeply
shape the dynamical, and perhaps even evolutionary, characteristics of
complex distributed biological systems. In particular, one can adapt the
notions of causality and conflict, familiar from concurrency theory, to
�, our representation language of choice. Using the EGF receptor model
as an example, we show how causality enables the formalization of the
colloquial concept of pathway and, perhaps more surprisingly, how con-
flict can be used to dissect the signalling dynamics to obtain a qualitative
handle on the range of system behaviours. By taming the combinatorial
explosion, and exposing the causal structures and key kinetic junctures
in a model, agent- and rule-based representations hold promise for mak-
ing modelling more powerful, more perspicuous, and of appeal to a wider
audience.

1 Background

A large majority of models aimed at investigating the behavior of biological path-
ways are cast in terms of systems of di�erential equations [11–16]. The choice
seems natural. The theory of dynamical systems o�ers an extensive repertoire of
mathematical techniques for reasoning about such networks. It provides, at least
in the limit of long times, a well-understood ontology of behaviors, like steady
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Abstract. Given the combinatorial nature of cellular signalling path-
ways, where biological agents can bind and modify each other in a large
number of ways, concurrent or agent-based languages seem particularly
suitable for their representation and simulation [1–4]. Graphical mod-
elling languages such as � [5–8], or the closely related BNG language [9–
14], seem to a�ord particular ease of expression. It is unclear however
how such models can be implemented.6 Even a simple model of the EGF
receptor signalling network can generate more than ⇤⇥�⇥ non-isomorphic
species [5], and therefore no approach to simulation based on enumerating
species (beforehand, or even on-the-fly) can handle such models without
sampling down the number of potential generated species.
We present in this paper a radically di�erent method which does not at-
tempt to count species. The proposed algorothm uses a representation of
the system together with a super-approximation of its ‘event horizon’ (all
events that may happen next), and a specific correction scheme to obtain
exact timings. Being completely local and not based on any kind of enu-
meration, this algorithm has a per event time cost which is independent
of (i) the size of the set of generable species (which can even be infinite),
and (ii) independent of the size of the system (ie, the number of agent
instances). We show how to refine this algorithm, using concepts derived
from the classical notion of causality, so that in addition to the above one
also has that the even cost is depending (iii) only logarithmically on the
size of the model (ie, the number of rules). Such complexity properties
reflect in our implementation which, on a current computer, generates
about ⇤⇥⌅ events per minute in the case of the simple EGF receptor model
mentioned above, using a system with ⇤⇥⇤ agents.

1 Introduction

An important thread of work in systems biology concerns the modelling of the
intra-cellular signalling networks triggered by extra-cellular stimuli (such as hor-
mones and growth factors). Such networks determine growth, di�erentiation, and
⇧ This research was partly supported by the NIH/NIGMS grant R43GM81319-01.
6 Eg, from Ref. [15, p. 4]: “programs implementing these methods include StochSim,

BioNetGen, and Moleculizer. However, at the present time only a part of the entire
EGFR network can be analyzed using these programs”.
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Many proteins are composed of structural and chemical features—“sites” for short—defined by definite inter-
action capabilities, such as non-covalent binding or covalent modification of other proteins. This modularity
allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some
but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity
that characterizes most biological networks, such as mammalian signaling systems, and effectively prevents
their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial
complexity is key to the system’s behavior, eliminating it will prevent, not facilitate, understanding. A more
adequate representation of a combinatorial system is afforded by a graph-based framework of rewrite rules
where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions,
rules deal with patterns, i.e. sets of molecular species, rather than molecular species themselves. Although
the stochastic dynamics induced by a set of rules on a mixture of molecules can be simulated, we aim at
capturing the system’s average or deterministic behavior. However, expansion of the rules into differential
equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules
describe patterns of interaction, fully-defined molecular species are unlikely to constitute appropriate units
of dynamics. Rather, we must seek aggregated variables reflective of the causal structure laid down by the
mechanisms expressed by the rules. We call these variables “fragments” and the process of identifying them
“fragmentation”. Ideally, fragments are aspects of the system’s microscopic population that the set of rules
can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this.
Most importantly, fragments are self-consistent descriptors of system dynamics in that their time evolution is
governed by a closed system of kinetic equations. Taken together, fragments are endogenous distinctions that
matter for the dynamics of a system, and this warrants viewing them as the carriers of information. Although
fragments can be thought of as multi-sets of molecular species (an extensional view), their self-consistency
suggests treating them as autonomous aspects cut off from their microscopic anchors (an intensional view).
Fragmentation is a seeded process and plays out depending on the seed provided, which leaves open the
possibility that different inputs cause distinct fragmentations, in effect altering the set of information carriers
that govern the behavior of a system, even though nothing has changed in its microscopic constitution. We
provide a mathematical specification of fragments, but not an algorithmic implementation. We have done
so elsewhere in rather technical terms with specific biases that, although effective, were lacking an embed-
ding into a more general conceptual framework. Our main objective in this contribution is to provide that
framework.

Central to the rise of modern chemistry was the
definition of a formal language for expressing the
modular architecture of organic molecules and
their general rules of reaction with regard to con-
stituent atoms and functional groups. At a higher
level, a similar modularity characterizes many of
the proteins that constitute the molecular net-
works giving rise to cellular behavior. These pro-
teins can be viewed as being composed of “sites”
that abstractly represent definite capabilities of
interaction, such as binding or modifying other
proteins. Sites, or combinations of sites, that
interact independently of one another combine
into vast numbers of interaction possibilities at
the system level. One consequence is that these
possibilities can no longer be tracked by standard
chemical kinetics, because the latter requires an
explicit list of the former. However, such systems
can be compactly described in a rule-based for-

mat that keeps these vast possibilities implicit by
only mentioning those aspects of molecules that
mechanisms are known (or hypothesized) to care
about. We show here that such a system of rules
permits a corresponding deterministic dynamical
system that is cast in terms of coarse-grained
variables entirely determined by static analysis
of the rules. These new variables, called “frag-
ments”, are the effective information carriers of
the system in that they are the observables “from
within”—those features that the system of rules
can collectively distinguish on average.
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Modelers of molecular signaling networks must cope with the
combinatorial explosion of protein states generated by post-
translational modifications and complex formation. Rule-based
models provide a powerful alternative to approaches that require
explicit enumeration of all possiblemolecular species of a system.
Such models consist of formal rules stipulating the (partial) con-
texts wherein specific protein-protein interactions occur. These
contexts specify molecular patterns that are usually less detailed
than molecular species. Yet, the execution of rule-based dynam-
ics requires stochastic simulation, which can be very costly. It
thus appears desirable to convert a rule-based model into a re-
duced system of differential equations by exploiting the granular-
ity at which rules specify interactions. We present a formal (and
automated) method for constructing a coarse-grained and self-
consistent dynamical system aimed at molecular patterns that are
distinguishable by the dynamics of the original system as posited
by the rules. The method is formally sound and never requires the
execution of the rule-based model. The coarse-grained variables
do not depend on the values of the rate constants appearing in the
rules, and typically form a system of greatly reduced dimension
that can be amenable to numerical integration and further model
reduction techniques.
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Molecular biology is spectacularly successful in disassembling
cellular systems and anchoring cell-biological behaviors of

staggering complexity in chemistry. This raises the challenge of re-
constituting molecular systems formally, in pursuit of principles that
would make their behavior more intelligible and their control more
deliberate. This pursuit is as much driven by the practical need to
cure disease as it reflects a desire for a theoretical perspective needed
to understand the complexity of cellular phenotypes.

Two broad problems stand out on the theoretical frontier. First,
we must be able to represent and analyze molecular interaction sys-
tems of combinatorial complexity. While ubiquitous, such systems
are perhaps most notorious in the context of cellular signaling. The
post-translational modification of proteins and their non-covalent as-
sociation into transient complexes generate an astronomic number of
possible molecular species that can relay signals [1]. The question
then becomes how to reason about system dynamics if we cannot
possibly consider a differential equation for each chemical species
that can appear in a system.

Second, understanding systems requires resisting the temptation
of adopting the view of an outside observer. Such a view is indeed
appropriate for the chemical analysis of a network. When dissecting
its structure, however, the experimenter interacts with that network
to create measurable distinctions. Yet, the network, as a dynamical
system, may not be capable of these same distinctions. For example,
an experimental technique might differentiate between SOS recruited
to the membrane via GRB2 bound to SHC bound to the EGF recep-
tor and SOS recruited via GRB2 bound to the EGF receptor directly.
However, from the perspective of the EGF signaling system such a
difference might not be observable for lack of an endogenous inter-
action through which such a distinction could become consequential.
The endogenous units of the dynamics may differ from the exogenous
units of the analysis.

In an attempt at mitigating the first problem, analytical model re-
duction techniques eliminate variables on the basis of algebraic con-
straints such as conservation equations and quasi-steady state condi-
tions obtained mainly by exploiting separations of time and/or con-

centration scales (for example [2, 3]). Numerical model reduction
consists in integrating the kinetic rate equations of the full network,
and subsequently building a reduced model based on species that
were observed to be significantly populated [4]. Yet, all these tech-
niques hinge on an explicit representation of the full network, which
severely curtails their applicability to larger systems.

The past few years have seen the emergence of several ap-
proaches [5, 6, 7, 8] that represent signaling systems in terms of rules
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Fig. 1. Rules and reactions in Kappa. A: A rule captures a high-level mech-

anistic statement (empirical or hypothetical) about a protein-protein interaction

in terms of a rewrite directive plus rate constant(s). The left hand side (lhs) of

the rule is a pattern of partially specified agents, and represents the contextual

information necessary for identifying reaction instances that proceed according

to the rule. The right hand side (rhs) expresses the actions that may occur when

the conditions specified on the lhs are met in a reaction mixture of Kappa agents.

A maximal connected subgraph on the lhs of a rule is called a rule component.

B: The rule in A matches a combination of agents in two distinct ways giving

rise to two possible reactions with different outcomes. Note that because of their

local nature, Kappa-rules with more than one lhs component may apply in both

a unimolecular and bimolecular situation. This is why such rules are given two

rate constants, a first-order (k1) and a second-order (k2) constant. In a textual

representation, agents are names followed by an interface of sites delimited by

parentheses. Bonds are labelled by superscripts and internal states at a site

by subscripts. In the graphical rendition, internal states are indicated as labeled

barbs. See SI and text for more details.
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The question
a1

... ...

an

L1 -> R1

Ln -> Rn

initial graph observation

Egfr

Y1032

Cbl

e

phos

The question...

G0 Gi Gk

Which transitions 
are causing the 

appearance of the 
observation?

13

Deduce a pathway!



2.3 Stories

Before turning to the quantitative aspect, however, we can check the causal
soundness of the rule set we have put together. We ask what minimal trajectories
starting from a mC deamination event will lead to its proper repair. As in any
rewriting system, one has a natural notion of commuting/concurrent events,
which one can use to simplify trajectories leading to event of a given type -
here a C remethylation- by eliminating spurious concurrent events. In practice
this causal simplification leads to an overwhelming number of thumbnails. But
one can simplify them further by asking that they contain no subconfiguration
leading to the same observable. This notion of incompressible subtrace, where
all steps matter, and which we call story, gives strong insights in the causal
mechanisms of a rule set, and is a powerful tool to debug complex rule sets.

An example is given Fig. 8. The right part depicts an mC deamination
with the subsequent chromatin opening by CBP, while the left part shows a
Dnmt3A:TDG:APE1.PolB trimer recognising and processing the ensuing mis-
match according to the rules given previously. We will see later two other variant
stories (§3.4). All observed stories are su⇥xes of these three archetypical ones in
this case.

mC base deamination

Dnmt3a-TDG TDG.lig-tdg.APE1

DNA(T:G)..MECP2

DNA.chr-chr.CBP

Chromatin opening

DNA.base-N140.TDG

DNA(T:G).rd-rd.TDG

Repair T 

Repair x

DNA(C:G)-dna.Dnmt3a via TDG

C base remethylation

DNA

baseRD chr

init

mC

closedmC

MECP2

GmC

CBP
chr

tdg

APE1

PolB

tdg

CAT

TDG

lig

dnmt3aRD

u/ac

N140

Dnmt3a

tdg

dna

Fig. 8. A story leading to a C remethylation: nodes represent events, that is to say rule
applications; causal precedence between events is indicated with arrows, eg the chromatin
opening is a necessary step for TDG to bind at N140.

3 The quantitative model

Our rule set is a good start, however, as we just mentioned, there are pending
questions that need numerical information to begin to be answered. We first need

9

Remaining of the talk

Classical causality 
analysis

Notion of  “knock-
out” property

Causal compression



Classical causality 
analysis
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Egf
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d
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But this is not 
satisfactory...

S xy

K
s

Observed 10 times after an average of 9.0064t.u (from ks.ka)

[intro:K(s)]_0

[K(s),S(k2)->K(s!0),S(k2!0)]_4

[intro:K(s)]_1

[K(s),S(k1)->K(s!0),S(k1!0)]_3

[intro:S(k1~u,k2~u)]_2

[S(k1~u!_)->S(k1~p!_)]_6[S(k2~u!_)->S(k2~p!_)]_5

[obs]_7



But this is not 
satisfactory...

Observed once at 15.3834t.u (from ks.ka)

[intro:S(k1~u,k2~u)]_676

[K(s),S(k2)->K(s!0),S(k2!0)]_1425

[intro:S(k1~u,k2~u)]_777

[K(s),S(k2)->K(s!0),S(k2!0)]_1375

[intro:S(k1~u,k2~u)]_784

[K(s),S(k2)->K(s!0),S(k2!0)]_1190[K(s),S(k1)->K(s!0),S(k1!0)]_1620

[intro:S(k1~u,k2~u)]_923

[K(s),S(k1)->K(s!0),S(k1!0)]_1478

[intro:K(s)]_1039

[intro:K(s)]_1098

[S(k2~u!_)->S(k2~p!_)]_1192

[K(s!0),S(k2!0)->K(s),S(k2)]_1390

[obs]_1654

[K(s!0),S(k2!0)->K(s),S(k2)]_1475

[K(s!0),S(k1!0)->K(s),S(k1)]_1526

[S(k1~u!_)->S(k1~p!_)]_1644

S xy

K
s
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If life was a PT net

cancerR

S
T

U

cancerR

S
T

U

R cancer

S T U R cancer

Final states don’t match but the difference is not observed
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Causal Compression



Rule application

A rule denote an action:

S Ta

An application of such rule is determined by an 
embedding:

S S’e

Its effect is given by the pushout:
S T

S’

a

e

Ta’

e’

24
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Generalized commutation

S1
S2 S3

S4 Sobs

a
1

a
2

a’
2

f1
a

3
a

4 obsobs’

f
Looking at f gives us some 
information about compression:

• Concurrency (f is the sequence of all applied rules 
concurrent to the observable)
• Loop elimination (f is a subset of concurrent rules)
• Helices elimination (a general -action- map)

Say a trace is hyper causal if it 
cannot be compressed further

30
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Overview

[Grb2(SH3,SH2)]_1
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[EGF(r~ext)]_8[EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_9 [EGF(r~ext)]_10 [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)]_11

[EGF_EGFR]_18 [EGF_EGFR]_22

[Grb2_SoS]_32

[EGFR_EGFR]_23

[EGFR@1068]_24

[EGFR_Grb2]_29

[short arm SoS_Ras]_34

[Ras GTP]_35

[SoS_Ras_op]_37

[Ras_Raf]_52

[Raf]_54

[Ras_Raf_op]_74

[Raf_MEK@218]_87

[MEK@218]_89

[Raf_MEK@218_op]_91

[Raf_MEK@222]_153

[MEK@222]_160

[Raf_MEK@222_op]_179

[MEK_ERK@185]_243

[ERK@185]_251

[MEK_ERK@185_op]_262

[MEK_ERK@187]_344

[ERK@187]_349

[MEK_ERK@187_op]_356

[SoS_ERK]_380

[SoS@SS]_391

MKP_ERK@185

ERK@185_op

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  100  200  300  400  500  600

N
u
m

b
e
r

Time

[ERK(Y187~p?,T185~p?)]
[Ras(S1S2~gtp?)]

[SoS(SS~p?)]

Causality and dynamics

Wednesday, January 27, 2010



Temporary conclusions

While exporting standard causality analysis, one 
discovers theory needs extension!

Tools already useful for debugging purpose

It remains to see whether one can use them for 
prediction (emergent behavior)



Knock-out in CS

i++ i++ i*i sqrt i

i:=0
...

T1 T2 T3 T4

i:=nan

Knock out an event and check 
whether obs:nan is preserved!



Thanks

http://xkcd.com/
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