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"Programs as models”
project

@ Import tools from theoretical computer
science in order to describe and analyze
biological systems

@ Develop new technique to cope with the
complexity of the cell
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The easy life of a
computer scientist

Qs = AU

fork:
if child then {a:=a+l ; print(a)}
else {a:=a+l ; print(a)}
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Debugging

: set a:=0

: spawn T1

¢+ set a:=a+l
T1 sv'set a:=a8

Tl: print (a)

Tl: terminate

: print (a)

Interleaving semantics
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The difficult life of a
modeler

R(l), E(k) — R(I'1), B(k'1)

R(I), E(k1) — R(1), E(k)

R(I'** ’)’ R(l',, 71) — B(”,. 7'1), R([',, 7'1)
R(r'1), R(r'1) — R(r), R(r) 1 fa x

R(rl., Y68 ~ u) — R(r!_, Y68 ~ p)

R(Y68 ~ p) — R(Y68 ~ u)

) %, Evaluating

R(r!, Y48 ~u) — R(r!, Y48 ~ p)

R(Y48 ~ p) — R(Y48 ~ u)

She(Y'7 ~ p), Grb(a) — She(Y'7 ~ pll), Grb(a!l) E x e C uta b l e

She(Y7 ~ pl1), Gro(all) — She(Y'T ~ p), Grb(a)

R EEmC—— [} o
R(Y68 ~ p),Grb(a) — R(Y68 ~ p!1), Grb(all)
R(Y68 ~ pl1), Grb(all) — R(Y68 ~ p), Grb(a) ' n a r l e S

Sos(d), Grb(b) — Sos(d!1), Grb(b'1)
Sos(d!1), Grb(bl1) — Sos(d), Grb(b)

R(Y 48 ~ p), She(b) — R(Y48 ~ pll), She(b!1)
R(Y 48 ~ p!1), She(bll) — R(Y48 ~ p), She(b)

R(r1_ Y48 ~ p!1), She(b11, YT ~ u) — R(rl_, Y48 ~ pl1), She(b11, Y7 ~ p)

She(YT ~p) — She(YT7 ~ u)



The difficult life of a
modeler

RAL,r), R, 1) — R(L, 71), R(IL, 1) P arsin g

R(r'1), R(r'1) — R(r), R(r) " .l-a x

R(rl., Y68 ~ u) — R(r!_, Y68 ~ p)

R(1), E(k) — R(I!1), E(k!1)

Semantics

1y p_1000|

(Yp_100]
[Yp. 10]
(Yp_1)
[Yp_0.1]

R(Y68 ~ p) — R(Y68 ~ u)

R(r!, Y48 ~u) — R(r!, Y48 ~ p)

R(Y48 ~ p) — R(Y48 ~ u)

She(YT ~ p),Grb(a) — She(Y'7 ~ p!l), Grb(all)
She(YT ~ p'l), Grb(all) — She(Y'7 ~ p), Grb(a)

R(Y68 ~ p),Grb(a) — R(Y68 ~ p!1), Grb(all)
R(Y68 ~ pl1), Grb(all) — R(Y68 ~ p), Grb(a)

Sos(d), Grb(b) — Sos(d!1), Grb(b!1)
Sos(d!1), Grb(bl1) — Sos(d), Grb(b)

R(Y 48 ~ p), She(b) — R(Y48 ~ pll), She(b!1)
R(Y 48 ~ p!1), She(b!1) — R(Y48 ~ p), She(b)

R(r1_ Y48 ~ p!1), She(b11, YT ~ u) — R(rl_, Y48 ~ pl1), She(b11, Y7 ~ p)

She(YT ~p) — She(YT7 ~ u)



... and causality
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The question

L1 -> Rl al

Ln -> Rn an | \

Go

observation

ntal 9Pt Deduce a pathway!



Remaining of the falk

@ Classical causality
analysis |

@ Notion of “knock-
out” property

@ Causal compression

DNA(T:G)..MECP2

DNA.chr-chr.CBP




Classical causality
analysis



Tracking modifications
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Causality




Dependencies

Causality Precedence
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Concurrency



Simple causality analysis
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But this IS not
satisfactory...

2

252
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But this is not
satisfactory...

[intro:K(s)]_1098

[intro:S(k1~u k2~u)]_676 [K(s!0),S(k2!0)->K(s),S(k2)]_1390
[K(s).S(k2)->K(s!0),S(k210)]_1425
[K(3!0),S(k2!0)->K(s),S(k2)]_1475 [intro:S(k L~u k2~u)]_923

[K(s),S(k1)->K(s!0),S(k1!0)]_1478

[K(s!0),S(k1!0)->K(s),S(k1)]_1526 [intro:S(k1~u k2~u)]_784 [intro:K(s)]_1039
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If life was a PT net

cancer

cancer
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cancer
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If life was a PT net

cancer
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If life was a PT net
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If life was a PT net
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If life was a PT net

cancer

R cancer

—>—>

cancer
‘ cancer
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Final states dont match but the difference is not observed



Restricting fo what can
be observed...




The “knock-out”
property



Is this a causal trace ?

“Yes, because each event is
a local cause of the next

/]

one



Is this a causal trace ?

“No, because I can knock-
out Rl and still observe R4!”



Knock-out and
stabilization




Knock-out and
stabilization




Causal Compression



Rule application

A rule denote an action:

S—»T

An application of such rule is determined by an
embedding:

S5=p S
—> T

Its effect is given by the pushout: i
S

ook
o]




For instance




Simple compression

A trace (obtained by simulation)

ST
S 5 TSE ST IS

2 3 4 obs

Assume the above partition of arrows is
given by an oracle
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Simple compression

Tobs

F a a
A trace (obtained by simulation) **"L*v Fl
a a, a, a, obs a’ ey ‘ ’
U T T 7 e
S, - 5,/ TS ETS eSS

Assume the above partition of arrows is
given by an oracle



Simple compression

A trace (obtained by simulation) **im}—-——-}__—-.}T %
a, a, a, a, obs jﬁ
S 5, TS ST 51 S s °¢

Assume the above partition of arrows is
given by an oracle



Simple compression

obs’'| f, a, a Tobs
A trace (obtained by simulation) ————— e Yy ey

oyt i o o S
CETTTE R

S, S S 3. Sl

2 3 A

Assume the above partition of arrows is
given by an oracle



Simple compression

obs | if a, a, Tobs
A trace (obtained by simulation) e ———

a a, a, obs ] " ’,cb\
1

TITTY B

S, S S 3. Sl

2 3 A

Assume the above partition of arrows is
given by an oracle



Simple compression

s, RESIdUal

Compressed traceide == w = o= eww=i J

Assume the above partition of arrows is
given by an oracle



Generalized commutation

Looking at f gives us some
information about compression:

® Concurrency (f is the sequence of all applied rules
concurrent to the observable)

® Loop elimination (f is a subset of concurrent rules)
® Helices elimination (a general -action- map)

Say a trace is hyper causal if it
cannot be compressed further



The oracle

R1 R2 R3 R4
f > —p—p —p

Rk




The oracle

R1 R2 R3 R4
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Work flow

@ Run n simulations
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Work flow

@ Run n simulations G-~ 2 &

@ Simple causality
analysis

@ Knock-out events to
. 5 2
reduce to minimal
configurations

767 107% 147%






Overview
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Temporary conclusions

@ While exporting standard causality analysis, one
discovers theory needs extension!

@ Tools already useful for debugging purpose

@ It remains to see whether one can use them for
prediction (emergent behavior)



Knock-out in CS

1:=0

l:=nan

\/

Knock out an event and check
whether obs:nan is preserved!



SOUNDS LIKE THE
CLASS HELPED.

http://xked.com/
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