Non local causality
analysis in rule-based
models

Jean Krivine
CNRS & Univ. Paris Diderot

CMACS workshop NYC 2012

"Programs as models”
project

@ Import tools from theoretical computer
science in order to describe and analyze
biological systems

@ Develop new technique to cope with the
complexity of the cell

Theoretical computer
sclence

Intrinsic Information Carriers in Combinatorial Dynamical Systems
Russ Harmer,!? Vincent Danos, Jéréme Feret,* Jean Krivine,? and Walter Fontana®

@ Abstract interpretation

ternal coarse-graining of molecular systems

Jérome Feret *, Vincent Danos T, Jean Krivine * , Russ Harmer ¥, and Walter Fontana *
*Harvard Medical School, Boston, USA, T University of Edinburgh, Edinburgh, United Kingdom, and *CNRS & Paris Diderot, Paris, France

Submitted to Proceedings of the National Academy of Sciences of the United States of America

@ Concurrency theory

Rule-based modelling of cellular signalling

@ Context free languages

1,3,4 3,4

Vincent Danos , Jérome Feret?, Walter Fontana®, Russell Harmer®*, and

Jean Krivine®

mlgl simulation of cellular signaling networks

Vincent Danos!#*, Jérome Feret3, Walter Fontana!2, and Jean Krivine®

KaSim 3.0

Theoretical computer
sclence

Intrinsic Information Carriers in Combinatorial Dynamical Systems
Russ Harmer,!? Vincent Danos, Jéréme Feret,* Jean Krivine,? and Walter Fontana®

@ Abstract interpretation

ternal coarse-graining of molecular systems

Jérome Feret *, Vincent Danos T, Jean Krivine * , Russ Harmer ¥, and Walter Fontana *
*Harvard Medical School, Boston, USA, T University of Edinburgh, Edinburgh, United Kingdom, and *CNRS & Paris Diderot, Paris, France

Submitted to Proceedings of the National Academy of Sciences of the United States of America

@ Concurrency theory

Rule-based modelling of cellular signalling

@ Context free languages

1,3,4 3,4

Vincent Danos , Jérome Feret?, Walter Fontana®, Russell Harmer®*, and

Jean Krivine®

mlgl simulation of cellular signaling networks

Vincent Danos!#*, Jérome Feret3, Walter Fontana!2, and Jean Krivine®

KaSim 3.0

The easy life of a
computer scientist

Qs = AU

fork:
if child then {a:=a+l ; print(a)}
else {a:=a+l ; print(a)}

The easy life of a
computer scientist

a.zs = aUses
if child then {a:=a+l ; print(a)}

else {a:=a+l ; print(a)}

The easy life of a
computer scientist

parsing

Syntax —-% Semantics

| \, Evaluating

Executable
binaries

Code

a.zs = aUses
fork: e
if child then {a:=a+l ; print(a)}
else {a:=a+l ; print(a)}

The easy life of a
computer scientist

parsing

Syntax —-% Semantics

| \, Evaluating

Executable
binaries

Code

a.zs = aUses
fork: e
if child then {a:=a+l ; print(a)}
else {a:=a+l ; print(a)}

Debugging

: set a:=0

: spawn T1

¢+ set a:=a+l
T1 sv'set a:=a8

Tl: print (a)

Tl: terminate

: print (a)

Interleaving semantics

Debugging

: set a:=0

: spawn T1

¢+ set a:=a+l
T1 sv'set a:=a8

Tl: print (a)

Tl: terminate

: print (a)

Interleaving semantics Non-Inferleaving semantics

Debugging

: set a:=0

sas et a:=(

: spawn T1 l
: set a:=a+l 4
: spawn Tl1
Tl: set a:=a+l ‘l! ‘\\\\ﬁi
=iy Selitg s =aTil i - setias=atl
Tl: print (a) / l

Tl: terminate : print (a)Vy Tl: print (a)

: print (a)
Tl: terminate

s il

Interleaving semantics Non-Inferleaving semantics

The difficult life of a
modeler

parsing

Syntax -3 Semantics

\ \, Evaluating

Executable
binaries

The difficult life of a
modeler

R(l), E(k) — R(I'1), B(k'1)

R(I), E(k1) — R(1), E(k)

R(I'** ’)’ R(l',, 71) — B(”,. 7'1), R([',, 7'1)
R(r'1), R(r'1) — R(r), R(r) 1 fa x

R(rl., Y68 ~ u) — R(r!_, Y68 ~ p)

R(Y68 ~ p) — R(Y68 ~ u)

) %, Evaluating

R(r!, Y48 ~u) — R(r!, Y48 ~ p)

R(Y48 ~ p) — R(Y48 ~ u)

She(Y'7 ~ p), Grb(a) — She(Y'7 ~ pll), Grb(a!l) E x e C uta b l e

She(Y7 ~ pl1), Gro(all) — She(Y'T ~ p), Grb(a)

R EEmC—— [} o
R(Y68 ~ p),Grb(a) — R(Y68 ~ p!1), Grb(all)
R(Y68 ~ pl1), Grb(all) — R(Y68 ~ p), Grb(a) ' n a r l e S

Sos(d), Grb(b) — Sos(d!1), Grb(b'1)
Sos(d!1), Grb(bl1) — Sos(d), Grb(b)

R(Y 48 ~ p), She(b) — R(Y48 ~ pll), She(b!1)
R(Y 48 ~ p!1), She(bll) — R(Y48 ~ p), She(b)

R(r1_ Y48 ~ p!1), She(b11, YT ~ u) — R(rl_, Y48 ~ pl1), She(b11, Y7 ~ p)

She(YT ~p) — She(YT7 ~ u)

The difficult life of a
modeler

RAL,r), R, 1) — R(L, 71), R(IL, 1) P arsin g

R(r'1), R(r'1) — R(r), R(r) " .l-a x

R(rl., Y68 ~ u) — R(r!_, Y68 ~ p)

R(1), E(k) — R(I!1), E(k!1)

Semantics

1y p_1000|

(Yp_100]
[Yp. 10]
(Yp_1)
[Yp_0.1]

R(Y68 ~ p) — R(Y68 ~ u)

R(r!, Y48 ~u) — R(r!, Y48 ~ p)

R(Y48 ~ p) — R(Y48 ~ u)

She(YT ~ p),Grb(a) — She(Y'7 ~ p!l), Grb(all)
She(YT ~ p'l), Grb(all) — She(Y'7 ~ p), Grb(a)

R(Y68 ~ p),Grb(a) — R(Y68 ~ p!1), Grb(all)
R(Y68 ~ pl1), Grb(all) — R(Y68 ~ p), Grb(a)

Sos(d), Grb(b) — Sos(d!1), Grb(b!1)
Sos(d!1), Grb(bl1) — Sos(d), Grb(b)

R(Y 48 ~ p), She(b) — R(Y48 ~ pll), She(b!1)
R(Y 48 ~ p!1), She(b!1) — R(Y48 ~ p), She(b)

R(r1_ Y48 ~ p!1), She(b11, YT ~ u) — R(rl_, Y48 ~ pl1), She(b11, Y7 ~ p)

She(YT ~p) — She(YT7 ~ u)

... and causality

integrins

n Channels
[Ca™}

~~.‘ C'R.' B‘Raf "' ‘14‘3‘3

Helarodimer PD%8059
Tpl2/Cotl U0126

lon Channels

Heceptors - '
o
' Cytoskelotal

LY

Protains
Translation , 0s rolans
v = uNK1Iz \ o /\ = /‘

MKP3) —— = k12) —> (PSORSK
PEAIS — . ~~@scd)
Cell Adhesion .._.:'_.' . : X
- ’.‘w;\'}\"" . | N _'.".‘, ’ .
cdc25 (PPARY) o ...‘

o N [Sl .
MKP-1/2) ——1 (Erk1r2) —> (MSK1/2 Y +— @ —ILD

/—/%

® @@ D eran @ @ @ @ e

@5 fisicny o) @YD @B @D Gayt) @odi) on 073

%/—/

Transcription

The question

L1 -> Rl al

Ln -> Rn an | \

Go

observation

ntal 9Pt Deduce a pathway!

Remaining of the falk

@ Classical causality
analysis |

@ Notion of “knock-
out” property

@ Causal compression

DNA(T:G)..MECP2

DNA.chr-chr.CBP

Classical causality
analysis

Tracking modifications

Dependencies

Dependencies

Causality

Dependencies

Causality Precedence

Dependencies

Causality

Concurrency

Simple causality analysis

/
!
!
s
~ R2 R2 R3
g R4

R4

Simple causality analysis

Rl Rl
/ \
f
f ,,
- N
R2 R2 R3
R3 R4

R4

Simple causality analysis

R1 R1
/ \
f
f ,,

- N
R2 f2TR3

\/
R3 R4

R4

But this IS not
satisfactory...

2

252

But this is not
satisfactory...

But this is not
satisfactory...

[intro:K(s)]_1098

[intro:S(k1~u k2~u)]_676 [K(s!0),S(k2!0)->K(s),S(k2)]_1390
[K(s).S(k2)->K(s!0),S(k210)]_1425
[K(3!0),S(k2!0)->K(s),S(k2)]_1475 [intro:S(k L~u k2~u)]_923

[K(s),S(k1)->K(s!0),S(k1!0)]_1478

[K(s!0),S(k1!0)->K(s),S(k1)]_1526 [intro:S(k1~u k2~u)]_784 [intro:K(s)]_1039

[K(s),S(k1)->K(s!0),S(k1!0)]_1620 [K(s),S(k2)->K(s!0),S(k2!0)]_1190

If life was a PT net

cancer

cancer

If life was a PT net

cancer

cancer

If life was a PT net

cancer

R cancer

ﬂm_am_gpam__”ﬁp>

cancer

If life was a PT net

cancer
f R cancer
cancer
S

If life was a PT net

cancer
f R cancer
cancer
S T

If life was a PT net

cancer

R cancer
—>—>
cancer
) T U

If life was a PT net

cancer

R cancer

mm—mm-gbam_n”_ﬂ>

cancer

If life was a PT net

cancer

R cancer

—>—>

cancer
‘ cancer

S T U R

Final states dont match but the difference is not observed

Restricting fo what can
be observed...

The “knock-out”
property

Is this a causal trace ?

“Yes, because each event is
a local cause of the next

/]

one

Is this a causal trace ?

“No, because I can knock-
out Rl and still observe R4!”

Knock-out and
stabilization

Knock-out and
stabilization

Causal Compression

Rule application

A rule denote an action:

S—»T

An application of such rule is determined by an
embedding:

S5=p S
—> T

Its effect is given by the pushout: i
S

ook
o]

For instance

Simple compression

A trace (obtained by simulation)

ST
S 5 TSE ST IS

2 3 4 obs

Assume the above partition of arrows is
given by an oracle

Simple compression

A trace (obtained by simulation)

ST
S 5 TSE ST IS

2 3 4 obs

Assume the above partition of arrows is
given by an oracle

Simple compression

Tobs

F a a
A trace (obtained by simulation) **"L*v Fl
a a, a, a, obs a’ ey ‘ ’
U T T 7 e
S, - 5,/ TS ETS eSS

Assume the above partition of arrows is
given by an oracle

Simple compression

A trace (obtained by simulation) **im}—-——-}__—-.}T %
a, a, a, a, obs jﬁ
S 5, TS ST 51 S s °¢

Assume the above partition of arrows is
given by an oracle

Simple compression

obs’'| f, a, a Tobs
A trace (obtained by simulation) ————— e Yy ey

oyt i o o S
CETTTE R

S, S S 3. Sl

2 3 A

Assume the above partition of arrows is
given by an oracle

Simple compression

obs | if a, a, Tobs
A trace (obtained by simulation) e ———

a a, a, obs] " ’,cb\
1

TITTY B

S, S S 3. Sl

2 3 A

Assume the above partition of arrows is
given by an oracle

Simple compression

s, RESIdUal

Compressed traceide == w = o= eww=i J

Assume the above partition of arrows is
given by an oracle

Generalized commutation

Looking at f gives us some
information about compression:

® Concurrency (f is the sequence of all applied rules
concurrent to the observable)

® Loop elimination (f is a subset of concurrent rules)
® Helices elimination (a general -action- map)

Say a trace is hyper causal if it
cannot be compressed further

The oracle

R1 R2 R3 R4
f > —p—p —p

Rk

The oracle

R1 R2 R3 R4
—>—>—>

S1

ju1

Y

iU 2

Ss3

JU3

S4

{U4

The oracle

S5 Sé

a2 el 3' R1

—>—>—> —>

R2

R3

R4

S1

ju1

Y

iU 2

Ss3

(VE!

S4

{U4

The oracle

S5 Sé

a2 el 3' R1

—>—>—> —>

R2

R3

R4

Work flow

@ Run n simulations

Work flow

@ Run n simulations G P ——P ==l . ¢

@ Simple causality
analysis

76% 10% 14%

Work flow

o Run n simulations GRS

@ Simple causality
analysis

@ Knock-out events to
. 5 2
reduce to minimal
configurations

76% 10% 14%

Work flow

@ Run n simulations Go =22 . 5

@ Simple causality
analysis

@ Knock-out events to
. 5 2
reduce to minimal
configurations

76% 10% 14%

Work flow

@ Run n simulations Go B - iR S

@ Simple causality
analysis

& Knock-out events to Rs
e R> ;
reduce to minimal |

configurations

76% 10% 14%

Work flow

@ Run n simulations Go B - iR S

@ Simple causality
analysis

& Knock-out events to Rs
e R> ;
reduce to minimal |

configurations

76% 10% 14%

Work flow

@ Run n simulations G-~ 2 &

@ Simple causality
analysis

@ Knock-out events to
. 5 2
reduce to minimal
configurations

767 107% 147%

Overview

L.[EGF(r~ext)]_10 | | [EGFR(Y992~u,Y1148~u,Y1068~u,L~ext,CR)] 11 |
v

3FR(Y992~,Y1148~u,Y1068~u,L~ext,CR)] 9 | L[EGF(r~ext)]_8 |

\ 4
[EGF_EGFR]_18

[[EGF EGFRl 22 |
[EGFR_EGFR] 23 |
| [Grb2(SH3SH2) 1 |

[EGFR@1068]_24

[EGFR_Grb2]_29
[SoS(b,a,SS~u)]_2

[Grb2_S0S]_32

[ERK(Y187~p?,T185~p?)]

[Ras(S1S2~gtp?)]
! [Ras(S1S2~gdp)]_4 I

m [S0S(SS~p?)]
[short arm SoS_Ras]_34

[Ras GTP]_35

| [SoS Rasopl 37 | | [Raf(x~u)l5 |

[Ras_Raf]_52

I [Ras_Raf_op]_74 P | [MEK(s,S222~u,S218~u)]_6 l

[Raf_MEK@218]_87

[MEK@218]_89

el

| [Raf_MEK@218_op]_91 |
[Raf_MEK@222]_153 |
| [MEK@222]_160 |,

L. [Raf_ MEK@222 op] 179 |

3

L. [ERK(s,Y187~u,T185~0)l 7 |

| [MEK_ERK@185]_243 |:
| [ERK@185] 251 |

MKP_ERK@185

Y
I [MEK_ERK@185_op]_262 I

[[MEK_ERK@187] 344 |

A A
| [ERK@187]_349 |

| [MEK_ERK@187_op] 356

|

\ 4

| [SoS_ERK]_380 t:

- ERK@185_op |

Temporary conclusions

@ While exporting standard causality analysis, one
discovers theory needs extension!

@ Tools already useful for debugging purpose

@ It remains to see whether one can use them for
prediction (emergent behavior)

Knock-out in CS

1:=0

l:=nan

\/

Knock out an event and check
whether obs:nan is preserved!

SOUNDS LIKE THE
CLASS HELPED.

http://xked.com/

http://xkcd.com
http://xkcd.com

