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Abstract

We provide the first hardness result for the Covering RadiablEm on lattices{RP). Namely, we
show that for any large enough< oo there exists a constanf > 1 such thatCRP in the ¢, norm is
I1,-hard to approximate to within any constant less tharin particular, for the case = oo, we obtain
the constant., = 1.5. This gets close to the fact@rbeyond which the problem is not believed to be
I1-hard [4].

1 Introduction

A lattice is the set of all integer combinations of some linearly iretatent vectors ifiR™. Given a lattice

L C R™ and soméd < p < oo, the covering radius of in the ¢, norm is the smallest numbeér such that

¢, balls of radiusd centered around all lattice points shcover the entire space. Equivalently, the covering
radius is the smallest such thaffor any point in R" there exists lattice point within distance at mogt

In the Covering Radius Problem in tidg norm (CRP?), given a lattice and some valdgwe are supposed
to decide if the covering radius in thg norm is at mostl. It follows from the definition thaCRP? is in

the complexity clas$l, of the second level of the polynomial-time hierarchy. Hoarewot much is known
about its hardness.

In the last decade computational problems on lattices haga bxtensively studied, and there are many
known hardness results in this area. Some of the main andah#dttice problems are the Shortest Vector
Problem EVP), the Closest Vector Problen@{/P) and the Shortest Independent Vectors Problg8if).

All these problems are known to B¢P-complete for any’, norm! Moreover, they are all hard to ap-
proximate to within some super-constant factors. For exempVP is hard to approximate to within
nt/leglogn [3] and SVP was recently shown hard to approximate to witafe™"*° [8]. Both results
hold for any/,, norm. Arguably,CRP is the only natural lattice problem that has no known harsimesult.
One indication that the problem is hard is given by the faat the analogous problem ftinear codess
II,-hard in its exact and approximation variants [10, 4]. Thebfgm on lattices is not even known to be
NP-hard.

The study of the covering radius on lattices from a componati point of view was initiated by Gu-
ruswami et al. in [4]. Among other things, it was shown théra for any norni < p < oo, approximating
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To be precise, foBVP with p < oo this is only known under randomized reductions.



CRP? to within ~(n) can be done in random exponential tigfé™) for any constant/(n) > 1, itis in AM

for v(n) = 2, in coAM for v(n) = n/v/logn, and inNP N coNP for v(n) = n. In addition, they gave a
random polynomial-time algorithm solving this problem lwitomey(n) = 20(leglogn/logn) and a deter-
ministic polynomial-time algorithm for somg(n) = 20(n(loglogn)*/logn) 2 |n another somewhat related
result, Kannan [6] showed that for any fixed dimension, thablegm of computing the covering radius of
a lattice with respect to a given input norm, defined by a comaytope specified as a system of linear
inequalities, can be solved in polynomial time.

In this paper we provide the first hardness proofC&P on lattices, solving an open question of [4].
Namely, we show thafRP? is I15-hard to approximate to within some constant factor for angd enough
normp < oco. For smallp, such as the interesting case/efthe problem remains open. We remark that this
is not the first time that a lattice problem is shown hard ooljérge norms. For exampl8YP was shown
to beNP-hard in the/, norm already inl981 by van Emde Boas [15], while the hardness question in any
other norm remained open till the work of Ajtai [1]. As anatlexample, the hardness of approximating
SVP to within arbitrarily large constants was first establisbgdinur for the/., norm [2], then by Khot [7]
for large enough norms, and only then was extended to all s¢8in

Theorem 1.1 For any large enoughp < oo, there exists a constar}, > 1 such thatCRP? is II-hard to
approximate within any factor less thap.

Surprisingly, the proof of Theorem 1.1 is based on a redndtiom all,-variant of graph coloring. This

is an approximation version @&roupColoring, whose standard decision version was shown tblpdard

by Krat and Nejedly [9]. Reducing from this decision versimplies that it id1»-hard to approximat€RP

in the/,, norm to within any factor less than, = 1.5. For our reduction to work for any large enougtas
opposed to only = o), it turns out that we need to consider the approximatiosigerof GroupColoring.
After defining this approximation problem we prove Ifis-hardness by essentially following the reduc-
tion used in [9]. For this proof to work, we have to reduce framertain bounded occurrence version of
v3-3-SAT which was shown to b8,-hard in [5].

Open Questions

Our work raises some interesting open guestions.

e The main open question is whethéRP? is I1,-hard for small values gf > 1. Of special interest is
CRP? in the Euclidear{s norm, which is conjectured in [11] to H&,-hard.

¢ |t was shown in [4] thaCRP on linear codes i8lP-hard to approximate to within any constant factor.
It would be very interesting to show a similar result €dRP on lattices.

e Itis interesting to find the largest value 9ffor which approximatingCRP*° to within ~ is IIs-hard.
As mentioned before, this is at ledss and likely to be below2.
Outline

The rest of the paper is organized as follows. In Sec2iome introduce some basic definitions and notions
and give background about lattices and group colorings. eleti@ 3, we prove Theorem 1.1. Finally, in
Sectiond we prove thdI,-hardness of the approximation variant to theupColoring problem.

2In fact, some of these results were shown onlyfgrbut as indicated there they can be extended to/amorm.
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2 Preliminaries

2.1 General

LetR, Q andZ be the sets of the reals, the rationals and the integerseatdggly. If S C R™ is an arbitrary
region of space, and € R" is a vector,S+x = {y+xz:y € S} denotes a copy df shifted byz. By Z, we
denote the ring of integers modujpwhich is the cyclic Abelian group of order The/,, norm of a vector

xz € R"is ||z||, = ¢/ |x;|P, and itslo, nOrm is||z |l = max; |z;|. The associated distance between two
vectorsz,y € R™is dist,(z,y) = ||z — y||,. The’, distance of a point from a set of pointsS is denoted
by dist,(z, §) = inf,cg dist,(z, y).

2.2 Lattices

A lattice is a discrete additive subgroup &f. Equivalently, it is the set of all integer combinations
E(bl,...,bm) = {Z:L’Zbl cx; € Zforalll <4< m}
i=1

of m linearly independent vectots, ..., b, in R™ (n > m). This set of vectors is called zasisof the
lattice. A basis can be represented by a matrix having this bastors as columns. If the ramk equals the
dimensionn, then the lattice is calleflill rank. All lattices in this paper are full rank.

Definition 2.1 Thecovering radiusn the/,, norm of a full-rank latticeC C R" is defined as

= di .
pp(L) = maxdisty(z, £)

Hence,p,(L£) < d means that for any € R" there exists a lattice pointe £ such thatlist,(z,y) < d.
Conversely,p,(£) > d means that there exists somec R™ such that any lattice poinj € £ satisfies
dist,(x,y) > d. Forany reall < p < oo and any approximation facter > 1 we define the following
computational problem.

Definition 2.2 (Covering Radius Problem) An instance ofsapCRP? is a pair (B,d) whereB is a full-
rank lattice basis and/ € Q is a rational number. InNYES instancesp,(£(B)) < d and inNO instances

pp(L(B)) > 7 -d.

2.3 Group Coloring

Colorings of graph vertices is one of the most popular areasraph Theory. One classical problem is
the 3-coloring problem, where given a graph, we are asked to dtslorertices by{0, 1,2} (equivalently
Zs3) in such a way that no two adjacent vertices have the same caAtis well known,3-coloring is an
NP-complete problem. In this paper we consider a variant & pinoblem known a&roupColoring. Let

G = (V, E) be a directed graph and lét be some Abelian group. For an edge-labelling £ — A and

a vertex coloring: : V. — A, we say that an edge:,v) € E is satisfiedif c¢(u) — c(v) # ¢(u,v). For

a fixed edge-labelling : E — Z3, we can ask whether there exists a coloringV — Zj3 that satisfies
each oriented edg@:,v) € E. Such a coloring is called lagal coloring If for any ¢ there exists a legal
coloring, we say thaf? is Zs-colorable. Similarly, for an Abelian groug, a directed graplér = (V, E) is



said to beA-colorableif for every edge-labellingo : £ — A there is a vertex coloring : V' — A such
thatc(u) — c¢(v) # ¢(u,v) for each oriented edge:, v) € E. Itis easy to see that-colorability is in fact
a property of the underlying undirected graph, and does ep¢nd on the specific orientation of the edges.

Definition 2.3 (Group Coloring) For an Abelian group4, the GroupColoring 4, problem is that of deciding
whether a given (directed) graphl = (V, E) is A-colorable.

The GroupColoring problem was shown to Hé»-complete in [9] for any fixed Abelian group of order
at least3. It is easily can be seen that a gra@hs Zs-colorable if and only if it is a forest. Therefore, for
A = Z5 the problem lies irP. The one-sided error approximation version@bupColoring is defined as
follows.

Definition 2.4 (GroupColoring 4[c, 1]) Given a graphG = (V, E), define

na(G) = min  max, {(u,v) € E: c(u) — c(v) # ¢(u,v)}].
In words,n4(G) is the maximat such that for anyy : E — A there exists a coloring : V' — A such that
atleastr of the edges are satisfied. YES instances( is A-colorable, and ifNO instances)4 (G) < «a|E]|.

In Sectiond we show thaGroupColoringy, [a, 1] is IIx-hard for somé) < o < 1.

3 Hardness ofGapCRP?

In this section we prove Theorem 1.1 by a reduction fl@mupColoring 4 [c, 1]. In our reduction, we only
considerA = Z,, the cyclic group of ordeg > 3. In fact, our best hardness result is obtainedgfet 3,
so the reader can think gfas being. LetG = (V, E') be an instance droupColoringy, problem withn
edges and: vertices. Our goal is to construct a latti€g; such that ifG' is Z,-colorable then the covering
radius ofL¢ is small and otherwise it is large. Fix some orientatioid:0Every vertex coloring : V' — Z,
induces an edge-labelling : E — Z, defined byp(u, v) = c¢(u) — ¢(v) for each oriented edge:, v) € E.
The output of this reduction is the lattic®; C Z" defined as the set of all integer vectors that, when
reduced modulg@, correspond to an edge-labelling induced by some vertexiogl of G. Notice thatLs
is a lattice, since it is an additive subgroupZsf.

An equivalent definition ofZs is the following: Let us define a matrig' € {—1,0,1}"** with n
rows, one for each edge i, andk columns, one for each vertex In. Assume that the vertex set Gfis

V ={v1,...,vx} and that its edge set I8 = {eq, ..., e, }. The entries of the matrix are defined by
1, if e; = (vj,w) for some vertexw,
Cij =4 —1, ife; = (w,v;) for some vertexw,

0, otherwise

ThenLq can also be defined as
Lo = {x € Z" : there existy, € Z* such that: = C'y (modg)}.

The main property of this reduction is the following: df is Z,-colorable, then for any integer vector
x € Z" there exists a lattice vectgr € L, such that for eachh < i < n, x; # y; (modg). Moreover, if
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nz,(G) < an, there exists an integer vecterc Z" such that for any € Lg, z; = y; (modg) for at least
« fraction of the coordinates < ¢ < n.
The next lemma is the main argument in the correctness okthegction.

Lemma 3.1 For any graphG = (V, E), integerq > 3 and1 < p < oo, if G is a YES instance of
GroupColoringy, [a, 1] thenp, (L) < ¢n - %, and if G is aNO instance ofGroupColoringy, [c, 1] then

pp(L) > {/(T—an- 4.

In particular, for the casg = co we getpo (La) < % if G'is aYES instance ang.. (L) > £ otherwise.
Note that the latter inequality is, in fact, an equality gigc Z" C L.

Proof. If G is aYES instance, i.e.(¢ is Z,-colorable, then for any: € Z" there exists a lattice point
y € Lg, such thate; # y; (mod ¢) for any coordinatd < ¢ < n. For any pointz € R™ consider a point

ze€Z"+(4,...,%) such thatz; — z| < & for eachl < i < n. Observe that there exisjsc L such that

2 — i # 4 (modg) for eachl < i < n. By adding toy an appropriate vector from- Z", it is possible to
gety’ € Lg, such that each coordinatsatisfiesz; — y;| < 4 — 1. Thus, for thisy’ € L, each coordinate

7 satisfies
49_q_a-1

1
[2i = yi| = @i = zi + 2z = yil < i =zl + 1z —yil < 5 + 5 5

So the distance betweamand the latticel satisfies

-1
dist,(z, Lg) < Yn - g 5

and this gives us the required bound for the covering radiuk;oin theZ, norm.

On the other hand, if7 is aNO instance, then there exists an integer vegtar Z™ for which any lattice
vectory € L satisfiesr; = y; (modg) in at least(1 — a)n of the coordinategd < i < n. This means that
the vectorz = x + (4, ..., 1) satisfiesy; —y; € £ + ¢ - Zin at least(1 — a)n of the coordinates for any
lattice pointy € L. Hence,

dist,(z, Lg) > g -/ (1 —a)n,

and the lemma follows. [ ]

We are ready to prove the main result of this section assuthgig,-hardness o&roupColoringy, [a, 1]
for some0 < o < 1 given in the next section.

Theorem 3.2 There exists an absolute constahnt> 1, such that for any’ < p < oo there exists;, > 1
such that for any > 0, GapCRP? __is IIs-complete.

cp—¢

Proof: Foranyy > 1andl < p < oo the problemGapCRPY is in 11, (see [12, Page 137]).

We now prove hardness by a reduction from the prob&woupColoring, [c, 1], wherea is a constant
for which GroupColoringy, [c, 1] is Ilo-hard. For a graplir = (V, E), construct the lattic€.. Lemma 3.1
shows that il is aYES instance ofcroupColoringy, [, 1] thenp,(Lg) < ¢/n and if G is aNO instance of
GroupColoringz, [, 1] thenp, (L) > {/(1 — a)n - 3. We obtain thaGapCRP? is II,-hard to approximate
to within any factor less than

3-¢/(1—a)
O R
which is greater thai for anyp > p’ = —log; 5 (1 — «). Notice, that for the/, norm we get the constant
Coo = 1.5. [ |



4 Hardness of Approximation of GroupColoring

The main result of this section is the following.
Theorem 4.1 The problenGroupColoringy, [c, 1] is IIo-hard for some constarit < o < 1.

Theorem 4.1 can be extended to any Abelian group of orderatddas in [9]), but for simplicity, we
concentrate on the cask = Zs, which is of greatest interest for us. The proof is essdntthe same as
the one in [9] except that we reduce frofd-E3-SAT-B instead ofv3-E3-SAT as in their case. These are
some of the basic approximation problems in the second paotiai-time hierarchy (see [13, 14] for a recent
survey on the topic of completeness and hardness of appativimin the polynomial-time hierarchy).

Definition 4.2 (v3-3-SAT|[1 — ¢, 1]) Aninstance 0¥3-3-SAT[1 — ¢, 1] is a3-CNF Boolean formulal (X,Y)
over two sets of variables. We refer to variablesXiras universal variables and to those¥nas existential
variables. InYES instances, for every assignmentXathere exists an assignmentiosuch that the clauses
of ¥ are all satisfied. INNO instances, there exists an assignmenktsuch that for every assignment}o
at mostl — ¢ fraction of the clauses are satisfied.

For an integeB > 0 the problemv3-3-SAT-B[1 — ¢, 1] is defined similarly except that each variable
occurs at mosB times inW. In the instances of the probleWd-E3-SAT-B[1 — ¢, 1] the number of literals
in each clause is exactB/(as opposed to being at magt

Theorem 4.3 ([5]) The problen¥3-E3-SAT-B[1 — ¢, 1] is IIo-hard for some constan® ands > 0.

4.1 The Reduction

The construction in [9] uses some graph gadgets satisfyrigus properties. The next two lemmas summa-
rize those gadgets and their properties for the special4as¢Zs. Each lemma contains two parts: the first
one is used for the completeness proof and the second isarsig fsoundness proof. For self-containment,
we present the gadgets in Figuré Eor further details the reader is referred to [9].

The reduction outputs a gragh, that contains one universal gadget for each universahbigriand one
existential gadget for each existential variable. The gtlgre edge-disjoint, but they all have one special
vertexw in common. Each gadget contains two disjoint sets of vesti@efor the positive literals of the
variable andF’ for its negative literals.

For a vertex coloring: : V' — A and apartial coloring ¢ : U — A for someU C V in a graph
G = (V, E), we say that agreeswith ¢, if for everyu € U, ¢(u) = ¢ (u).

Lemma 4.4 (Universal Gadget)For any k,¢ > 0 there exists an efficiently constructible directed graph
G = (V U {w}, E) with two disjoint subsets of verticé§ F C V, satisfying|T| = k, |F| = ¢,
[V|=0(k+1¢), |E| = O(k + ¢) such that,

1. Foranyy : E — Z3 at least on@f the following holds:

(@) There exists a partial coloring : T'U {w} — Zs with ¢ (w) = 0, such that for every partial
coloringc” : F — Z3 that satisfies” (v) # ¢(v,w) for all v € F,* there exists a legal coloring
c: V U{w} — Zs that agrees with/ and with¢”.

3We remark that the original gadgets in [9] are slightly difet.
“This causes the edde, w) to be satisfied, and makes it possible to extend the coloeigailly.
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Figure 1: The universal gadget (left) and the existentialgga (right). The vertexv is not shown. All
hollow vertices are connected i@

(b) There exists a partial coloring : F U {w} — Z3 with ¢/(w) = 0, such that for every partial

coloring ¢’ : T — Zs that satisfies” (v) # ¢(v,w) for all v € T, there exists a legal coloring
c: VU{w} — Z;3 that agrees with/ and withc”.

2. Boththe following hold:

(@) There exists an edge-labelling : E — Z3 such that every legal coloring: V U {w} — Zs
colors all the vertices of’ by c¢(w).

(b) There exists an edge-labelling, : E — Z3 such that every legal coloring: V U {w} — Zs
colors all the vertices of” by c(w).

Lemma 4.5 (Existential Gadget) For any k, ¢ > 0 there exists an efficiently constructible directed graph
Gg’é = (V U {w}, E) with two disjoint subsets of verticé§ F' C V, satisfying|T| = k, |F| = ¢,
V| =0O(k+¢),|E| = O(k + ¢) such that,

1. Foranyy : E — Z3 boththe following properties hold:

(@) There exists a partial coloring : T'U {w} — Zs with ¢ (w) = 0, such that for every partial

coloring ¢’ : F — Zg that satisfies” (v) # ¢(v,w) for all v € F, there exists a legal coloring
c: VU{w} — Z; that agrees with/ and withc”.

(b) There exists a partial coloring : F U {w} — Z3 with ¢/(w) = 0, such that for every partial

coloring ¢’ : T — Zs that satisfies” (v) # ¢(v,w) for all v € T, there exists a legal coloring
c: VU{w} — Z;3 that agrees with/ and withc”.

2. There exists an edge-labelling: E — Z3 such that every legal coloring: V U {w} — Zjs either
colors all of 7" by ¢(w) or all of F' by ¢(w).

Let U(X,Y) be av3-E3-SAT-B instance withm clauses. Recall thaX is the set of universal variables
andY is the set of existential variables. The reduction maps & ¢waphG = (V U {w}, E) constructed
as follows: We first take one special vertex Then, for each variable, € X contained ink positive and



¢ negative literals inV, GG contains a copy oG\lj’g, where itsw vertex is identified with the special vertex
w. Similarly, for each variablg; € Y contained ink positive andl negative literals in¥, G contains a
copy of GE, again with itsw vertex identified with the special vertex In each such gadget, the vertices
in T are identified with the positive literals, and the verticedi are identified with the negative literals.
In addition, G containsm clause verticesone for each clause ir. We connect every clause vertex and
the three vertices corresponding to its three literals tgesd We refer to thesen edges aslause edges
Denote byM = |E| the number of the edges @. Notice that) is linear in the total number of variable
occurrences, which Bm. In particular,M/ < ¢ - m for some absolute constant

4.2 Completeness

Let U(X,Y'), anm clause formula, be ¥ES instance. Hence, for any assignment to the universal \agab
X there exists an assignment to the existential variabilesch that the clauses @f are all satisfied.

Letyp : E — Z3 be an arbitrary edge-labelling. Consider the assignménmiX obtained fromy in the
following way: According to the first part of Lemma 4.4, the@sponding gadge{t?\'f”/’z of every variable
x; € X satisfies at least one of (1a) and (1b). In the former case(sgtto beFalse and in the latter set
t(x;) to be True. For this assignment t&, by assumption, there exists an extensiont tf X U Y that
satisfiesl. We now show the existence of a legal vertex coloind” U {w} — Zs in G:

e Color the special vertew by c¢(w) = 0.

e For every variable:; € X, color the sefl” (in caset(z;) = False) or the setF’ (in caset(x;) = True)
of its G\’_j”Z gadget by the partial coloring given by Lemma 4.4, part (BigTcoloring givesw the
color0).

e For every variabley; € Y, if its value is True, color the setF’ of its Gg,e gadget by the partial
coloring from Lemma 4.5, part (1b), and otherwise color #td%of this gadget by the partial coloring
from Lemma 4.5, part (1a) (This coloring also giveghe color0).

e Color any clause vertex in a way that satisfies the edges adjacent.t@his is possible because for
any clause the corresponding vertex is adjacent to at mastéwtices that are already colored.

e For every gadget (eithe®’ or G&*) do the following: First, notice that exactly one Bfand F" is
colored. Assumd’ is colored. Then, coloF' in a way that the edges betweéhandw and those
betweenF" and clause vertices are satisfied. This is possible since any’ is connected to exactly
one clause vertex, so there are two constraints, get it has three possible colors. Do a similar thing
in the caseF' is colored.

e Finally, according to the first parts in Lemma 4.4 and Lemn&a the coloring of the gadget vertices
can be extended, in a way that satisfies all gadget edges.

To summarize, we have shown that for any £ — Z3 there exists a coloring, such that the edges are
all satisfied. Since this is the case for any £ — Z3 we conclude tha7 is Zs-colorable.



4.3 Soundness

Now assumel (X,Y") is aNO instance, i.e., there exists an assignnment X such that any extension of
to X UY satisfies at mostl — ¢)m clauses. We show that there exists an edge-labefing? — Z3 such
that for any coloring: : V' — Z3 the fraction of satisfied edges is at mast 5. Notice that by defining
a = 1 — 5 the theorem will follow.

Define an edge-labelling : £ — Zj3 as follows:

e For each clause, let give its three corresponding clause edges the three disahees ofZs.

e For every universal variable;, if ¢(z;) is True definey on the gadgeG* according top;, and
otherwise according tgs, wherep; andys are as in the second part of Lemma 4.4.

e For every existential variablg;, define on the gadgeGg’é according toyp in the second part of
Lemma 4.5.

Next, for thejth clause we defin€’; as the set of edges ‘related’ to this clause. Nan@jyconsists of
the three clause edges corresponding to clausmether with all edges in the gadgets corresponding to the
variables in the clausg Observe that the unioLry;”:1 C; is the edge set af/. Moreover, every edge af
appears in at mo® of these sets.

Now, letc : V' — Zs be an arbitrary vertex coloring. According to our choicesoffor each legally
coloredG\’j’E gadget, ift(x;) = True then the vertex sek’ in the corresponding}\’j’é is coloredc(w), and
otherwise the vertex sét is coloredc(w).

Extendt to X U Y as follows: For each existential variahje € Y, if all edges in the corresponding
GY* are satisfied, then by Lemma 4.5 eitfieor F is colorede(w). In the former case séty;) to beFalse,
and in the latter set it to b&rue. If the coloring of the gadgeE™" of ; is not legal, defing(y;) arbitrarily.

Assume all the edges ifi; are satisfied for some < j < m. We claim that this implies that thgh
clause is satisfied by Indeed, if it is not, then the clause vertex is connectedhiteet gadget vertices that
are colored with:(w). Sincey assigns to three clause edges the three distinct elemefits ohe of the
edges must be unsatisfied. Hence, we obtain that atdeasif the sets’’; contain at least one unsatisfied
edge. Since an edge is contained in at nibsetsC';, we have that at mostla— 5 fraction of the edges is
satisfied, as desired.
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