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Abstract

We provide the first hardness result for the Covering Radius Problem on lattices (CRP). Namely, we
show that for any large enoughp ≤ ∞ there exists a constantcp > 1 such thatCRP in the`p norm is
Π2-hard to approximate to within any constant less thancp. In particular, for the casep = ∞, we obtain
the constantc∞ = 1.5. This gets close to the factor2 beyond which the problem is not believed to be
Π2-hard [4].

1 Introduction

A lattice is the set of all integer combinations of some linearly independent vectors inRn. Given a lattice
L ⊆ Rn and some1 ≤ p ≤ ∞, the covering radius ofL in the`p norm is the smallest numberd, such that
`p balls of radiusd centered around all lattice points inL cover the entire space. Equivalently, the covering
radius is the smallestd such thatfor any point in Rn there existsa lattice point within distance at mostd.
In the Covering Radius Problem in the`p norm (CRPp), given a lattice and some valued, we are supposed
to decide if the covering radius in thèp norm is at mostd. It follows from the definition thatCRPp is in
the complexity classΠ2 of the second level of the polynomial-time hierarchy. However, not much is known
about its hardness.

In the last decade computational problems on lattices have been extensively studied, and there are many
known hardness results in this area. Some of the main and natural lattice problems are the Shortest Vector
Problem (SVP), the Closest Vector Problem (CVP) and the Shortest Independent Vectors Problem (SIVP).
All these problems are known to beNP-complete for anỳ p norm.1 Moreover, they are all hard to ap-
proximate to within some super-constant factors. For example, CVP is hard to approximate to within
n1/log log n [3], andSVP was recently shown hard to approximate to within2(log n)1/2−ε

[8]. Both results
hold for any`p norm. Arguably,CRP is the only natural lattice problem that has no known hardness result.
One indication that the problem is hard is given by the fact that the analogous problem forlinear codesis
Π2-hard in its exact and approximation variants [10, 4]. The problem on lattices is not even known to be
NP-hard.

The study of the covering radius on lattices from a computational point of view was initiated by Gu-
ruswami et al. in [4]. Among other things, it was shown there that for any norm1 ≤ p ≤ ∞, approximating
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1To be precise, forSVP with p < ∞ this is only known under randomized reductions.
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CRPp to within γ(n) can be done in random exponential time2O(n) for any constantγ(n) > 1, it is in AM

for γ(n) = 2, in coAM for γ(n) = n/
√

log n, and inNP ∩ coNP for γ(n) = n. In addition, they gave a
random polynomial-time algorithm solving this problem with someγ(n) = 2O(n log log n/ log n) and a deter-
ministic polynomial-time algorithm for someγ(n) = 2O(n(log log n)2/ log n).2 In another somewhat related
result, Kannan [6] showed that for any fixed dimension, the problem of computing the covering radius of
a lattice with respect to a given input norm, defined by a convex polytope specified as a system of linear
inequalities, can be solved in polynomial time.

In this paper we provide the first hardness proof ofCRP on lattices, solving an open question of [4].
Namely, we show thatCRPp is Π2-hard to approximate to within some constant factor for any large enough
normp ≤ ∞. For smallp, such as the interesting case of`2, the problem remains open. We remark that this
is not the first time that a lattice problem is shown hard only for large norms. For example,SVP was shown
to beNP-hard in thè ∞ norm already in1981 by van Emde Boas [15], while the hardness question in any
other norm remained open till the work of Ajtai [1]. As another example, the hardness of approximating
SVP to within arbitrarily large constants was first establishedby Dinur for the`∞ norm [2], then by Khot [7]
for large enough norms, and only then was extended to all norms [8].

Theorem 1.1 For any large enoughp ≤ ∞, there exists a constantcp > 1 such thatCRPp is Π2-hard to
approximate within any factor less thancp.

Surprisingly, the proof of Theorem 1.1 is based on a reduction from aΠ2-variant of graph coloring. This
is an approximation version ofGroupColoring, whose standard decision version was shown to beΠ2-hard
by Kráł and Nejedlý [9]. Reducing from this decision version implies that it isΠ2-hard to approximateCRP

in the`∞ norm to within any factor less thanc∞ = 1.5. For our reduction to work for any large enoughp (as
opposed to onlyp = ∞), it turns out that we need to consider the approximation version ofGroupColoring.
After defining this approximation problem we prove itsΠ2-hardness by essentially following the reduc-
tion used in [9]. For this proof to work, we have to reduce froma certain bounded occurrence version of
∀∃-3-SAT which was shown to beΠ2-hard in [5].

Open Questions

Our work raises some interesting open questions.

• The main open question is whetherCRPp is Π2-hard for small values ofp ≥ 1. Of special interest is
CRP2 in the Euclideaǹ 2 norm, which is conjectured in [11] to beΠ2-hard.

• It was shown in [4] thatCRP on linear codes isNP-hard to approximate to within any constant factor.
It would be very interesting to show a similar result forCRP on lattices.

• It is interesting to find the largest value ofγ for which approximatingCRP∞ to within γ is Π2-hard.
As mentioned before, this is at least1.5 and likely to be below2.

Outline

The rest of the paper is organized as follows. In Section2, we introduce some basic definitions and notions
and give background about lattices and group colorings. In Section3, we prove Theorem 1.1. Finally, in
Section4 we prove theΠ2-hardness of the approximation variant to theGroupColoring problem.

2In fact, some of these results were shown only for`2, but as indicated there they can be extended to any`p norm.
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2 Preliminaries

2.1 General

Let R, Q andZ be the sets of the reals, the rationals and the integers, respectively. If S ⊆ Rn is an arbitrary
region of space, andx ∈ Rn is a vector,S +x = {y+x: y ∈ S} denotes a copy ofS shifted byx. By Zq we
denote the ring of integers moduloq, which is the cyclic Abelian group of orderq. The`p norm of a vector
x ∈ Rn is ‖x‖p = p

√
∑

|xi|p, and its`∞ norm is‖x‖∞ = maxi |xi|. The associated distance between two
vectorsx, y ∈ Rn is distp(x, y) = ‖x − y‖p. The`p distance of a pointx from a set of pointsS is denoted
by distp(x, S) = infy∈S distp(x, y).

2.2 Lattices

A lattice is a discrete additive subgroup ofRn. Equivalently, it is the set of all integer combinations

L(b1, . . . , bm) =

{

m
∑

i=1

xibi : xi ∈ Z for all 1 ≤ i ≤ m

}

of m linearly independent vectorsb1, . . . , bm in Rn (n ≥ m). This set of vectors is called abasisof the
lattice. A basis can be represented by a matrix having the basis vectors as columns. If the rankm equals the
dimensionn, then the lattice is calledfull rank. All lattices in this paper are full rank.

Definition 2.1 Thecovering radiusin the`p norm of a full-rank latticeL ⊆ Rn is defined as

ρp(L) = max
x∈Rn

distp(x,L).

Hence,ρp(L) ≤ d means that for anyx ∈ Rn there exists a lattice pointy ∈ L such thatdistp(x, y) ≤ d.
Conversely,ρp(L) > d means that there exists somex ∈ Rn such that any lattice pointy ∈ L satisfies
distp(x, y) > d. For any real1 ≤ p ≤ ∞ and any approximation factorγ ≥ 1 we define the following
computational problem.

Definition 2.2 (Covering Radius Problem) An instance ofGapCRPp
γ is a pair (B, d) whereB is a full-

rank lattice basis andd ∈ Q is a rational number. InYES instancesρp(L(B)) ≤ d and inNO instances
ρp(L(B)) > γ · d.

2.3 Group Coloring

Colorings of graph vertices is one of the most popular areas in Graph Theory. One classical problem is
the 3-coloring problem, where given a graph, we are asked to colorits vertices by{0, 1, 2} (equivalently
Z3) in such a way that no two adjacent vertices have the same color. As is well known,3-coloring is an
NP-complete problem. In this paper we consider a variant of this problem known asGroupColoring. Let
G = (V,E) be a directed graph and letA be some Abelian group. For an edge-labellingϕ : E → A and
a vertex coloringc : V → A, we say that an edge(u, v) ∈ E is satisfiedif c(u) − c(v) 6= ϕ(u, v). For
a fixed edge-labellingϕ : E → Z3, we can ask whether there exists a coloringc : V → Z3 that satisfies
each oriented edge(u, v) ∈ E. Such a coloring is called alegal coloring. If for any ϕ there exists a legal
coloring, we say thatG is Z3-colorable. Similarly, for an Abelian groupA, a directed graphG = (V,E) is
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said to beA-colorable if for every edge-labellingϕ : E → A there is a vertex coloringc : V → A such
thatc(u) − c(v) 6= ϕ(u, v) for each oriented edge(u, v) ∈ E. It is easy to see thatA-colorability is in fact
a property of the underlying undirected graph, and does not depend on the specific orientation of the edges.

Definition 2.3 (Group Coloring) For an Abelian groupA, theGroupColoringA problem is that of deciding
whether a given (directed) graphG = (V,E) is A-colorable.

TheGroupColoring problem was shown to beΠ2-complete in [9] for any fixed Abelian groupA of order
at least3. It is easily can be seen that a graphG is Z2-colorable if and only if it is a forest. Therefore, for
A = Z2 the problem lies inP. The one-sided error approximation version ofGroupColoring is defined as
follows.

Definition 2.4 (GroupColoringA[α, 1]) Given a graphG = (V,E), define

ηA(G) = min
ϕ:E→A

max
c:V →A

|{(u, v) ∈ E : c(u) − c(v) 6= ϕ(u, v)}|.

In words,ηA(G) is the maximalr such that for anyϕ : E → A there exists a coloringc : V → A such that
at leastr of the edges are satisfied. InYES instances,G isA-colorable, and inNO instancesηA(G) ≤ α|E|.

In Section4 we show thatGroupColoringZ3
[α, 1] is Π2-hard for some0 < α < 1.

3 Hardness ofGapCRPp

In this section we prove Theorem 1.1 by a reduction fromGroupColoringA[α, 1]. In our reduction, we only
considerA = Zq, the cyclic group of orderq ≥ 3. In fact, our best hardness result is obtained forq = 3,
so the reader can think ofq as being3. Let G = (V,E) be an instance ofGroupColoringZq

problem withn

edges andk vertices. Our goal is to construct a latticeLG such that ifG is Zq-colorable then the covering
radius ofLG is small and otherwise it is large. Fix some orientation ofG. Every vertex coloringc : V → Zq

induces an edge-labellingϕ : E → Zq defined byϕ(u, v) = c(u)− c(v) for each oriented edge(u, v) ∈ E.
The output of this reduction is the latticeLG ⊆ Zn defined as the set of all integer vectors that, when
reduced moduloq, correspond to an edge-labelling induced by some vertex coloring of G. Notice thatLG

is a lattice, since it is an additive subgroup ofZn.
An equivalent definition ofLG is the following: Let us define a matrixC ∈ {−1, 0, 1}n×k with n

rows, one for each edge inE, andk columns, one for each vertex inV . Assume that the vertex set ofG is
V = {v1, . . . , vk} and that its edge set isE = {e1, . . . , en}. The entries of the matrix are defined by

Ci,j =











1, if ei = (vj , w) for some vertexw,

−1, if ei = (w, vj) for some vertexw,

0, otherwise.

ThenLG can also be defined as

LG = {x ∈ Zn : there existsy ∈ Zk such thatx = Cy (modq)}.

The main property of this reduction is the following: IfG is Zq-colorable, then for any integer vector
x ∈ Zn there exists a lattice vectory ∈ LG, such that for each1 ≤ i ≤ n, xi 6= yi (modq). Moreover, if
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ηZq(G) ≤ αn, there exists an integer vectorx ∈ Zn such that for anyy ∈ LG, xi = yi (modq) for at least
α fraction of the coordinates1 ≤ i ≤ n.

The next lemma is the main argument in the correctness of the reduction.

Lemma 3.1 For any graphG = (V,E), integer q ≥ 3 and 1 ≤ p ≤ ∞, if G is a YES instance of
GroupColoringZq

[α, 1] thenρp(LG) ≤ p
√

n · q−1
2 , and ifG is a NO instance ofGroupColoringZq

[α, 1] then

ρp(LG) ≥ p
√

(1 − α)n · q
2 .

In particular, for the casep = ∞ we getρ∞(LG) ≤ q−1
2 if G is aYES instance andρ∞(LG) ≥ q

2 otherwise.
Note that the latter inequality is, in fact, an equality since q · Zn ⊆ LG.

Proof: If G is a YES instance, i.e.,G is Zq-colorable, then for anyx ∈ Zn there exists a lattice point
y ∈ LG, such thatxi 6= yi (modq) for any coordinate1 ≤ i ≤ n. For any pointx ∈ Rn consider a point
z ∈ Zn + ( q

2 , . . . , q
2 ) such that|xi − zi| ≤ 1

2 for each1 ≤ i ≤ n. Observe that there existsy ∈ LG such that
zi − yi 6= q

2 (modq) for each1 ≤ i ≤ n. By adding toy an appropriate vector fromq · Zn, it is possible to
gety′ ∈ LG, such that each coordinatei satisfies|zi − y′i| ≤ q

2 − 1. Thus, for thisy′ ∈ LG, each coordinate
i satisfies

|xi − y′i| = |xi − zi + zi − y′i| ≤ |xi − zi| + |zi − y′i| ≤
1

2
+

q

2
− 1 =

q − 1

2
.

So the distance betweenx and the latticeLG satisfies

distp(x,LG) ≤ p
√

n · q − 1

2
,

and this gives us the required bound for the covering radius of LG in the`p norm.
On the other hand, ifG is aNO instance, then there exists an integer vectorx ∈ Zn for which any lattice

vectory ∈ LG satisfiesxi = yi (modq) in at least(1 − α)n of the coordinates1 ≤ i ≤ n. This means that
the vectorz = x + ( q

2 , . . . , q
2) satisfieszi − yi ∈ q

2 + q · Z in at least(1 − α)n of the coordinatesi for any
lattice pointy ∈ LG. Hence,

distp(z,LG) ≥ q

2
· p
√

(1 − α)n,

and the lemma follows.

We are ready to prove the main result of this section assumingtheΠ2-hardness ofGroupColoringZ3
[α, 1]

for some0 < α < 1 given in the next section.

Theorem 3.2 There exists an absolute constantp′ > 1, such that for anyp′ < p ≤ ∞ there existscp > 1

such that for anyε > 0, GapCRP
p
cp−ε is Π2-complete.

Proof: For anyγ ≥ 1 and1 ≤ p ≤ ∞ the problemGapCRPp
γ is in Π2 (see [12, Page 137]).

We now prove hardness by a reduction from the problemGroupColoringZ3
[α, 1], whereα is a constant

for whichGroupColoringZ3
[α, 1] is Π2-hard. For a graphG = (V,E), construct the latticeLG. Lemma 3.1

shows that ifG is aYES instance ofGroupColoringZ3
[α, 1] thenρp(LG) ≤ p

√
n and ifG is aNO instance of

GroupColoringZ3
[α, 1] thenρp(LG) ≥ p

√

(1 − α)n · 3
2 . We obtain thatGapCRPp is Π2-hard to approximate

to within any factor less than

cp =
3 · p

√

(1 − α)

2
,

which is greater than1 for anyp > p′ = − log1.5 (1 − α). Notice, that for thè∞ norm we get the constant
c∞ = 1.5.
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4 Hardness of Approximation ofGroupColoring

The main result of this section is the following.

Theorem 4.1 The problemGroupColoringZ3
[α, 1] is Π2-hard for some constant0 < α < 1.

Theorem 4.1 can be extended to any Abelian group of order at least3 (as in [9]), but for simplicity, we
concentrate on the caseA = Z3, which is of greatest interest for us. The proof is essentially the same as
the one in [9] except that we reduce from∀∃-E3-SAT-B instead of∀∃-E3-SAT as in their case. These are
some of the basic approximation problems in the second polynomial-time hierarchy (see [13, 14] for a recent
survey on the topic of completeness and hardness of approximation in the polynomial-time hierarchy).

Definition 4.2 (∀∃-3-SAT[1 − ε, 1]) An instance of∀∃-3-SAT[1 − ε, 1] is a3-CNF Boolean formulaΨ(X,Y )

over two sets of variables. We refer to variables inX as universal variables and to those inY as existential
variables. InYES instances, for every assignment toX there exists an assignment toY such that the clauses
of Ψ are all satisfied. InNO instances, there exists an assignment toX such that for every assignment toY

at most1 − ε fraction of the clauses are satisfied.

For an integerB > 0 the problem∀∃-3-SAT-B[1 − ε, 1] is defined similarly except that each variable
occurs at mostB times inΨ. In the instances of the problem∀∃-E3-SAT-B[1 − ε, 1] the number of literals
in each clause is exactly3 (as opposed to being at most3).

Theorem 4.3 ([5]) The problem∀∃-E3-SAT-B[1 − ε, 1] is Π2-hard for some constantsB andε > 0.

4.1 The Reduction

The construction in [9] uses some graph gadgets satisfying various properties. The next two lemmas summa-
rize those gadgets and their properties for the special caseA = Z3. Each lemma contains two parts: the first
one is used for the completeness proof and the second is used for the soundness proof. For self-containment,
we present the gadgets in Figure 1.3 For further details the reader is referred to [9].

The reduction outputs a graphG, that contains one universal gadget for each universal variable and one
existential gadget for each existential variable. The gadgets are edge-disjoint, but they all have one special
vertexw in common. Each gadget contains two disjoint sets of vertices: T for the positive literals of the
variable andF for its negative literals.

For a vertex coloringc : V → A and apartial coloring c′ : U → A for someU ⊆ V in a graph
G = (V,E), we say thatc agreeswith c′, if for everyu ∈ U , c(u) = c′(u).

Lemma 4.4 (Universal Gadget)For any k, ` ≥ 0 there exists an efficiently constructible directed graph
Gk,`

∀ = (V ∪ {w}, E) with two disjoint subsets of verticesT, F ⊆ V , satisfying|T | = k, |F | = `,
|V | = O(k + `), |E| = O(k + `) such that,

1. For anyϕ : E → Z3 at least oneof the following holds:

(a) There exists a partial coloringc′ : T ∪ {w} → Z3 with c′(w) = 0, such that for every partial
coloring c′′ : F → Z3 that satisfiesc′′(v) 6= ϕ(v,w) for all v ∈ F ,4 there exists a legal coloring
c : V ∪ {w} → Z3 that agrees withc′ and withc′′.

3We remark that the original gadgets in [9] are slightly different.
4This causes the edge(v, w) to be satisfied, and makes it possible to extend the coloring legally.
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T FG
3,3

∀

T F
G

3,3

∃

Figure 1: The universal gadget (left) and the existential gadget (right). The vertexw is not shown. All
hollow vertices are connected tow.

(b) There exists a partial coloringc′ : F ∪ {w} → Z3 with c′(w) = 0, such that for every partial
coloring c′′ : T → Z3 that satisfiesc′′(v) 6= ϕ(v,w) for all v ∈ T , there exists a legal coloring
c : V ∪ {w} → Z3 that agrees withc′ and withc′′.

2. Both the following hold:

(a) There exists an edge-labellingϕ1 : E → Z3 such that every legal coloringc : V ∪ {w} → Z3

colors all the vertices ofF by c(w).

(b) There exists an edge-labellingϕ2 : E → Z3 such that every legal coloringc : V ∪ {w} → Z3

colors all the vertices ofT by c(w).

Lemma 4.5 (Existential Gadget) For anyk, ` ≥ 0 there exists an efficiently constructible directed graph
Gk,`

∃ = (V ∪ {w}, E) with two disjoint subsets of verticesT, F ⊆ V , satisfying|T | = k, |F | = `,
|V | = O(k + `), |E| = O(k + `) such that,

1. For anyϕ : E → Z3 both the following properties hold:

(a) There exists a partial coloringc′ : T ∪ {w} → Z3 with c′(w) = 0, such that for every partial
coloring c′′ : F → Z3 that satisfiesc′′(v) 6= ϕ(v,w) for all v ∈ F , there exists a legal coloring
c : V ∪ {w} → Z3 that agrees withc′ and withc′′.

(b) There exists a partial coloringc′ : F ∪ {w} → Z3 with c′(w) = 0, such that for every partial
coloring c′′ : T → Z3 that satisfiesc′′(v) 6= ϕ(v,w) for all v ∈ T , there exists a legal coloring
c : V ∪ {w} → Z3 that agrees withc′ and withc′′.

2. There exists an edge-labellingϕ : E → Z3 such that every legal coloringc : V ∪ {w} → Z3 either
colors all ofT by c(w) or all of F by c(w).

Let Ψ(X,Y ) be a∀∃-E3-SAT-B instance withm clauses. Recall thatX is the set of universal variables
andY is the set of existential variables. The reduction maps it toa graphG = (V ∪ {w}, E) constructed
as follows: We first take one special vertexw. Then, for each variablexi ∈ X contained ink positive and
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` negative literals inΨ, G contains a copy ofGk,`
∀ , where itsw vertex is identified with the special vertex

w. Similarly, for each variableyi ∈ Y contained ink positive and̀ negative literals inΨ, G contains a
copy ofGk,`

∃ , again with itsw vertex identified with the special vertexw. In each such gadget, the vertices
in T are identified with the positive literals, and the vertices in F are identified with the negative literals.
In addition,G containsm clause vertices, one for each clause inΨ. We connect every clause vertex and
the three vertices corresponding to its three literals by edges. We refer to these3m edges asclause edges.
Denote byM = |E| the number of the edges inG. Notice thatM is linear in the total number of variable
occurrences, which is3m. In particular,M ≤ c · m for some absolute constantc.

4.2 Completeness

Let Ψ(X,Y ), anm clause formula, be aYES instance. Hence, for any assignment to the universal variables
X there exists an assignment to the existential variablesY such that the clauses ofΨ are all satisfied.

Let ϕ : E → Z3 be an arbitrary edge-labelling. Consider the assignmentt to X obtained fromϕ in the
following way: According to the first part of Lemma 4.4, the corresponding gadgetGk,`

∀ of every variable
xi ∈ X satisfies at least one of (1a) and (1b). In the former case, sett(xi) to beFalse and in the latter set
t(xi) to beTrue. For this assignment toX, by assumption, there exists an extension oft to X ∪ Y that
satisfiesΨ. We now show the existence of a legal vertex coloringc : V ∪ {w} → Z3 in G:

• Color the special vertexw by c(w) = 0.

• For every variablexi ∈ X, color the setT (in caset(xi) = False) or the setF (in caset(xi) = True)
of its Gk,`

∀ gadget by the partial coloring given by Lemma 4.4, part (1) (This coloring givesw the
color 0).

• For every variableyi ∈ Y , if its value isTrue, color the setF of its Gk,`
∃ gadget by the partial

coloring from Lemma 4.5, part (1b), and otherwise color the setT of this gadget by the partial coloring
from Lemma 4.5, part (1a) (This coloring also givesw the color0).

• Color any clause vertexv in a way that satisfies the edges adjacent tov. This is possible because for
any clause the corresponding vertex is adjacent to at most two vertices that are already colored.

• For every gadget (eitherGk,`
∀ or Gk,`

∃ ) do the following: First, notice that exactly one ofT andF is
colored. AssumeT is colored. Then, colorF in a way that the edges betweenF andw and those
betweenF and clause vertices are satisfied. This is possible since anyv ∈ F is connected to exactly
one clause vertex, so there are two constraints onv, yet it has three possible colors. Do a similar thing
in the caseF is colored.

• Finally, according to the first parts in Lemma 4.4 and Lemma 4.5, the coloring of the gadget vertices
can be extended, in a way that satisfies all gadget edges.

To summarize, we have shown that for anyϕ : E → Z3 there exists a coloring, such that the edges are
all satisfied. Since this is the case for anyϕ : E → Z3 we conclude thatG is Z3-colorable.
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4.3 Soundness

Now assumeΨ(X,Y ) is aNO instance, i.e., there exists an assignmentt to X such that any extension oft

to X ∪ Y satisfies at most(1 − ε)m clauses. We show that there exists an edge-labellingϕ : E → Z3 such
that for any coloringc : V → Z3 the fraction of satisfied edges is at most1 − ε

cB . Notice that by defining
α = 1 − ε

cB the theorem will follow.
Define an edge-labellingϕ : E → Z3 as follows:

• For each clause, letϕ give its three corresponding clause edges the three distinct values ofZ3.

• For every universal variablexi, if t(xi) is True defineϕ on the gadgetGk,`
∀ according toϕ1, and

otherwise according toϕ2, whereϕ1 andϕ2 are as in the second part of Lemma 4.4.

• For every existential variableyi, defineϕ on the gadgetGk,`
∃ according toϕ in the second part of

Lemma 4.5.

Next, for thejth clause we defineCj as the set of edges ‘related’ to this clause. Namely,Cj consists of
the three clause edges corresponding to clausej, together with all edges in the gadgets corresponding to the
variables in the clausej. Observe that the union

⋃m
j=1 Cj is the edge set ofG. Moreover, every edge ofG

appears in at mostB of these sets.
Now, let c : V → Z3 be an arbitrary vertex coloring. According to our choice ofϕ, for each legally

coloredGk,`
∀ gadget, ift(xi) = True then the vertex setF in the correspondingGk,`

∀ is coloredc(w), and
otherwise the vertex setT is coloredc(w).

Extendt to X ∪ Y as follows: For each existential variableyi ∈ Y , if all edges in the corresponding
Gk,`

∃ are satisfied, then by Lemma 4.5 eitherT or F is coloredc(w). In the former case sett(yi) to beFalse,
and in the latter set it to beTrue. If the coloring of the gadgetGk,`

∃ of yi is not legal, definet(yi) arbitrarily.
Assume all the edges inCj are satisfied for some1 ≤ j ≤ m. We claim that this implies that thejth

clause is satisfied byt. Indeed, if it is not, then the clause vertex is connected to three gadget vertices that
are colored withc(w). Sinceϕ assigns to three clause edges the three distinct elements ofZ3, one of the
edges must be unsatisfied. Hence, we obtain that at leastεm of the setsCj contain at least one unsatisfied
edge. Since an edge is contained in at mostB setsCj , we have that at most a1− ε

cB fraction of the edges is
satisfied, as desired.
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