
1

Improved Inapproximability of Lattice and Coding
Problems with Preprocessing

Oded Regev

Abstract— We show that the closest vector problem with
preprocessing (CVPP) is NP-hard to approximate to within

√

3−ε

for any ε > 0. In addition, we show that the nearest codeword
problem with preprocessing (NCPP) is NP-hard to approximate
to within 3−ε. These results improve the results of Feige and Mic-
ciancio in [1]. We also present the first inapproximability result
for the relatively nearest codeword problem with preprocessing
(RNCP). Finally, we describe ann-approximation algorithm to
CVPP.

Index Terms— Computational complexity, NP-hardness, linear
codes, closest vector problem, nearest codeword problem, rela-
tively nearest codeword problem

I. I NTRODUCTION

An (integer) lattice is the set of all integral linear combi-
nations of a setB of n linearly independent vectors inZn.
The setB is known as a basis of the lattice. The Closest
Vector Problem (CVP) is: given a basisB of a lattice inZn

and a target vectorv ∈ Zn find the closest lattice point to
v. Equivalently, find a vectorr ∈ Zn such that‖Br − v‖
is minimized. The norm is often taken to be the Euclidean
norm but in this paper we will consider anylp norm. The
CVP is one of the main lattice problems and it has many
applications in computer science, especially in coding theory
and cryptography (see [2]). The best inapproximability result
for CVP is due to Dinur et al. [3] where it is shown that
approximating CVP to withinnc/ log log n is NP-hard for some
c > 0. The best probabilistic polynomial time approximation
algorithm due to Ajtai et al. [4] obtains a2O(n log log n/ log n)-
approximation factor and it uses the deterministic polyno-
mial time 2O(n(log log n)2/ log n)-approximation algorithm by
Schnorr [5].

Our model is motivated by applications of lattices in coding
theory and cryptography. A common scenario in coding theory
is the following: a transmitting party sends vectors from a
certain lattice. The receiving party then receives a corrupted
vector v and has to decode it by computing the closest
vector in the lattice. In cryptography, we have the following
common scenario: the lattice represents the encryption key;
all messages are encrypted using this lattice. The decryption
process involves computing the closest vector in the lattice.
Notice that in these two scenarios, the lattice is fixed and only
the received messagev changes among different inputs. This
brings us to the following natural question: is the hardness
of the CVP caused by the requirement that the algorithm

The author is with the Department of Computer Science, Tel-Aviv Uni-
versity, Tel-Aviv, Israel. Research was done while the author was with the
Institute for Advanced Study, Princeton, NJ and supported by NSF grant CCR-
9987845.

solves the CVP forany lattice? Perhaps there exists a good
approximation algorithm that first applies preprocessing to the
lattice (which is not necessarily computable in polynomial
time) and then answers queries of the formv efficiently.
Interestingly, a positive answer is implied by [6]: by using
a representation that combines several bases of the so-called
Korkin-Zolotarev form, one can obtain a good approximation
ratio of O(n1.5) to the CVP. Although this representation is
NP-hard to compute, once we have it we can approximate
CVP to within polynomial factors. In this paper we will
be interested in showing that there are lattices for which
no matter what preprocessing is performed, no polynomial
time algorithm can approximate the CVP to within a certain
constant factor unlessP = NP . This problem is known as
the preprocessing variant of CVP, or in short, CVPP. A formal
definition is given in Section II. For further motivation the
reader is referred to [1], [2].

The CVP has an analogous problem in coding theory to
which we refer as the Nearest Codeword Problem (NCP).
Here, we are given a generating matrixC ∈ Fn×k, n ≥ k
and a target vectorv ∈ Fn. We are asked to find the
codewordCr closest in Hamming distance to the targetv.
The NCP is also known to be hard to approximate. Namely,
Arora et al. [7] show that approximating NCP to within
2log(1−ε) n for any ε > 0 is hard under the assumption that
NP * DTIME(npoly(log n)). We also define NCPP as the
preprocessing variant of NCP.

Bruck and Naor [8] show that the NCPP is NP-hard to
solve exactly. This was later extended by Micciancio [9] to
the CVPP. However, both results apply only to the exact
version of the problems and as noted in [9], it is not clear
how to extend them to hardness of approximation. The first
inapproximability result is due to Feige and Micciancio [1].
There, it is shown that NCPP over any fieldGF(q) is NP-hard
to approximate within constant factors less than5/3 and that
as a result CVPP is NP-hard to approximate within constant
factors less than

√

5/3. Their result is shown using a reduction
from MAX3LIN - the problem of maximizing the number
of satisfied equations in a system of linear equations over
GF(q) where each equation contains at most 3 variables. This
problem was shown to be hard to approximate by Håstad in
[10]. Since MAX3LIN becomes harder asq increases, their
result is first shown for largeq’s and then it is extended to
any q by using the technique of concatenating codes.

Our results: Our first result is that CVPP is NP-hard to
approximate within any constant factor less than

√
3, or, for

the lp norm, within any factor less thanp
√

3. Actually, we
begin by proving that a problem known as MLDP is NP-hard

2

to approximate within any constant factor less than3. Then,
using an equivalence between MLDP and NCPP we obtain that
NCPP is also NP-hard to approximate to within any constant
factor less than3. Finally, by using a standard reduction from
NCP to CVP, we obtain the CVPP hardness result. Like most
other hardness results, our hardness result is shown for the
decision version of the problem where we are only asked to
approximate the distance of a vector from the lattice and not
to actually find a close vector. Our techniques differ from that
of [1] in two main respects. First, we directly use the PCP
obtained by applying the parallel repetition theorem to the
3SAT5 problem (which are certain regular SAT instances). As
mentioned above, the result of [1] is based on a reduction from
MAX3LIN. Secondly, our technique directly applies to codes
over any fieldGF(q) and thus we do not need the method of
concatenating codes used in [1].

As mentioned above, an upper bound ofO(n1.5) for CVPP
is implied by [6]. Our second result is an improved upper
bound ofn for the decision problem of CVPP. Interestingly,
we use non-constructive bounds on the distance of the closest
vector. Therefore, it is not obvious how to extend our resultto
the search problem, i.e., to find close vectors. Nevertheless,
this result can be compared with the

√
3 hardness result

since both are shown for the decision problem. Finally, let
us mention that our upper bound was recently improved to
O(

√
n) in [11].

In the above we considered the preprocessing variant of
NCP as a way to find whether the hardness of NCP is a
result of the algorithm required to work withany linear code.
Another reason for the hardness of NCP was raised in the
literature ([12]). It might be hard to find the closest word to
v becausev is very far from any codeword. In other words,
we are trying to recover from too many errors. The Relatively
Near Codeword with parameterρ > 0 (RNC(ρ)) is defined
as follows. Given a generating matrixC ∈ Fn×k, a target
vector v ∈ Fn and a valuet ∈ Z+ such thatt is less than
ρ times the minimum distance in the code generated byC,
find a codeword within distancet from v. The algorithm is
expected to work only when such a codeword exists. The
problem becomes easier asρ decreases and many classical
error correcting algorithms work in polynomial time whenρ ≤
1
2 . Forρ = 1

2 we are guaranteed to have exactly one codeword
within distancet from v. In [12] it is shown that RNC(ρ) for
anyρ > 1

2 is hard to approximate to within any constant factor.
In this paper we consider RNCP(ρ), the preprocessing variant
of the problem. The problem was mentioned in [1] but the
authors were not able to provide any inapproximability result.
The RNCP(ρ) is interesting because it asks for an algorithm
that decodes aspecific linear code for asmall amount of
error, hence combining the two reasons mentioned above. In
this paper we provide the first inapproximability result for
RNCP(ρ) by showing that for anyρ > 1

2 approximating to
within any constant factor less than3 − 1

ρ is hard.

II. PRELIMINARIES

Vectors are denoted by bold lower case letters and matrices
by bold upper case letters. The set{1, . . . , n} is denoted by

[n]. Throughout the paper,F denotes the fieldGF(q) for an
arbitrary but fixed prime powerq. The codes considered in
this paper are all linear codes. We use the notationCC for
the (linear) code generated by the columns of the matrixC.
The Hamming distance between two wordsv,w is denoted by
∆(v,w) and the distance between a wordv and the codeCC

is denoted by∆(CC,v). The minimum distance of the code
CC, denoted by∆(CC), is defined asminx 6=0{weight(Cx)}.

Our hardness of approximability results will be shown
through the corresponding gap problems:

Definition 2.1 (Closest Vector Problem):For γ ≥ 1, an
instance of GAPCVPγ is a triple(B,v, t), B ∈ Zn×k, n ≥ k,
v ∈ Zn andt ∈ R. It is a YES instance if there existsr ∈ Zk

such that‖Br−v‖ ≤ t. It is a NO instance if for anyr ∈ Zk,
‖Br− v‖ > γ · t.

Definition 2.2 (Nearest Codeword Problem):Forγ ≥ 1, an
instance of GAPNCPγ is a triple(C,v, t), C ∈ Fn×k, n ≥ k,
v ∈ Fn and t ∈ Z+. It is a YES instance if∆(CC,v) ≤ t. It
is a NO instance if∆(CC,v) > γ · t.

Definition 2.3 (Maximum Likelihood Decoding):For γ ≥
1, an instance of GAPMLD γ is a triple (C,v, t), C ∈ Fk×n,
n ≥ k, v ∈ Fk andt ∈ Z+. It is a YES instance if there exists
a solutionr ∈ Fn to Cr = v whose weight is at mostt. It
is a NO instance if the weight of any solution toCr = v is
more thanγt.

Definition 2.4 (Relatively Near Codeword):For ρ > 0 and
γ ≥ 1, an instance of GAPRNC(ρ)

γ is a triple (C,v, t), C ∈
Fn×k, n ≥ k, v ∈ Fn and t ∈ Z+ such thatt < ρ · ∆(CC).
It is a YES instance if∆(CC,v) ≤ t. It is a NO instance if
∆(CC,v) > γ · t.
Notice that the problem GAPRNC(∞)

γ is equivalent to
GAPNCPγ . We define the preprocessing variant of CVP as
follows:

Definition 2.5 (Closest Vector Problem with Preprocessing):
For γ ≥ 1, we say that a functionP solves GAPCVPPγ if
the following is satisfied. The input to the functionP is a
uniform description of a sequence of lattices of increasing
dimension{Bi}i≥1, i.e., a polynomial time algorithm that on
input 1i outputs the latticeBi. The functionP should output
a polynomial time algorithm that on input(1i,v, t) solves the
GAPCVPγ instance(Bi,v, t). There are no computational
requirements fromP .
The preprocessing variants of the coding problems
(GAPNCPPγ , GAPMLDPγ and GAPRNCPγ) are defined
similarly. We note that a non-uniform (i.e., circuit-based)
definition of a preprocessing problem exists (see [1]). Our
results apply to the non-uniform case as well with the only
difference being that the assumptionP 6= NP is replaced by
NP * P/poly.

A. A Reduction fromGAPMLD to GAPNCP

The GAPMLD problem is essentially equivalent to the
GAPNCP. Let us show a reduction from GAPMLD γ to
GAPNCPγ (the reduction in the other direction will not
be needed). Given a GAPMLD γ instance (C,v, t), C ∈
Fk×n, consider the GAPNCPγ instance(C∗, z, t). The matrix
C∗ ∈ Fn×(n−k) is a matrix whose columns span the space

3

orthogonal to the space spanned by the rows ofC and hence
C · C∗ = 0. The vectorz ∈ Fn is any vector that satisfies
Cz = v (if such a vector does not exist, the GAPMLD
instance is trivial). If the GAPMLD γ instance is a YES

instances then there exists a vectorr ∈ Fn whose weight
is at mostt such thatCr = v. The vectorz − r satisfies
C(z−r) = 0 and is therefore part of the code spanned byC∗.
Moreover, its distance fromz is at mostt. Hence,(C∗, z, t)
is a YES instance of GAPNCPγ . Now assume that(C,v, t) is
a NO instance of GAPMLD γ . Any vectorr′ ∈ Fn−k satisfies
C(z − C∗r′) = Cz = v. Hence, the weight ofz − C∗r′ is
more thanγt. Since this is true for anyr′, ∆(CC∗ , z) > γt
and the GAPNCPγ instance is a NO instance, as required.

III. I NAPPROXIMABILITY OF PREPROCESSINGPROBLEMS

In this section we prove that GAPMLDP3−ε is NP-hard
for any ε > 0. The GAPNCPP hardness result follows
from Subsection II-A and the GAPCVPP hardness result
then follows using a well known reduction. Our proof is
based on a reduction from an NP-hard problem (described in
Section III-A) to GAPMLD. The reduction has the property
that it produces GAPMLD 3−ε instances(C,v, t) where the
matrixC depends only on the size of the input to the reduction.
In other words, there exists a universal sequence of codes
{Ci}i≥1 such that the reduction always outputs GAPMLD 3−ε

instances of the form(Ci,v, t) wherei is the size of the input
to the reduction. Now assume that there exists a functionP
as in Definition 2.5. Then, given the sequence{Ci}i≥1, the
function outputs a polynomial time algorithm that solves the
instances given by the reduction and hence solves the original
NP-hard problem. Therefore, such a reduction establishes the
NP-hardness of GAPMLDP3−ε.

A. The PCP

The PCP constructed in this section is obtained by applying
the parallel repetition lemma [13] to the 3SAT5 problem [14].
We will observe the following property: although there is an
exponential number of 3SAT5 instances onn variables, the
clauses of 3SAT5 instances are taken from a set whose size is
only polynomial inn. As we will see, a similar observation
holds after we apply the parallel repetition lemma. We remark
that the PCP is fairly standard and we describe it mainly for
completeness. The results of this section are summarized in
Lemma 3.1.

In a 3SAT5 problem of sizen we are given a setX of 5
3n

clauses over a fixed set ofn variablesY = (y1, . . . , yn). Each
variable appears in exactly 5 clauses and each clause is the OR
of exactly 3 literals. An assignment to the 3SAT5 is a function
A from Y to the setRY = {T, F} and fromX to a setRX of
size7 representing the 7 satisfying assignments of a clause1.
We define the setΦ of tests as follows. For eachx ∈ X
we construct three testsϕx,y - one for eachy that appears
in x. The testϕx,y is supposed to check that the assignment
given to x agrees with the assignment given toy. Formally,

1Equivalently, we could define an assignment as a pair of functions: one
from Y to RY and the other fromX to RX .

it is a function fromRX to RY that for each assignment to
x gives either true or false based on the restriction toy of
the assignment. A testϕx,y is satisfiedby an assignmentA if
ϕx,y(A(x)) = A(y). As shown in [14] (based on [15], [16]), it
is NP-hard to distinguish between the case where there exists
an assignment that satisfies all the tests and the case where
no assignment satisfies more than1 − ε fraction of the tests
for some universal constantε. Notice that an instance of the
problem of sizen can be specified by the setX of clauses;
the set of variables is assumed to be fixed and the set of tests
is implied by the setX .

Now we apply the parallel repetition lemma [13] with a
constant parameteru. The resulting problem is the following.
We are given a setX of size (5

3n)u containingu-tuples of
clauses and a setY of sizenu containingu-tuples of variables.
An assignmentA is a function fromX to a setRX of size7u

and fromY to a setRY of size2u. The setRX represents the
possible assignments to au-tuple of clauses and similarly for
RY . The set of testsΦ contains3u tests for eachx ∈ X and
5u tests for eachy ∈ Y . Namely,Φ contains the testϕx,y if
for everyi ∈ [u] the i’th entry of y appears in thei’th entry of
x. As before, the testϕx,y : RX → RY checks the agreement
of the assignment tox with the assignment toy by mapping
each assignment tox to the corresponding assignment toy. A
test is satisfied by an assignmentA if ϕx,y(A(x)) = A(y). It
is NP-hard to distinguish between the case where there exists
an assignment that satisfies all the tests and the case where
no assignment satisfies more than2−Ω(u) fraction of the tests.
Notice that we can still specify an instance of the problem of
size parametern by the setX of clauses; the setY is fixed
and the set of tests is implied. Let̂X = X̂n,u be the set of
all u-tuples of clauses overn variables. Thus, we can say that
an instance of the problem of sizen is specified by a subset
X ⊆ X̂.

We summarize the above in the following lemma:
Lemma 3.1:For any fixedε > 0 the following problem is

NP -hard. LetRX , RY be two sets anddX , dY two integers
depending only onε. For any size parametern there exist two
sets of variables2 Y, X̂ and a set of testŝΦ, i.e., functions
from RX to RY indexed by variablesx ∈ X̂ and y ∈ Y .
Each variablex ∈ X̂ hasdX tests inΦ̂ associated with it.
For i ∈ [dX] we denote byzi(x) the i’th variable inY with
which x has a test for some ordering of the variables. Then,
an instance of the problem of size parametern is specified by
a subsetX ⊆ X̂. Let Φ ⊆ Φ̂ be the set of tests associated with
X . Each variabley ∈ Y hasdY tests inΦ associated to it.
An assignmentA is a function fromX to RX and fromY to
RY . A testϕx,y ∈ Φ is satisfied byA if ϕx,y(A(x)) = A(y).
The problem is to distinguish between the case where there
exists an assignment that satisfies all the testsΦ and the case
where no assignment satisfies more thanε of the tests.

B. The Code

In this section we describe a reduction from the PCP
of the previous section to GAPMLD 3−ε. Recall that our

2From now on, we will refer to elements of̂X andY simply as variables.
The fact that they areu-tuples will not be used.

4

construction is over the fieldF = GF(q) for an arbitrary
but fixed prime powerq. For any given size parameter let
dY , dX , RX , RY , Y, X̂, Φ̂, zi be as described in Lemma 3.1.
Let S = [dY]dX be the set of all sequences of lengthdX

containing numbers in the range1, . . . , dY . For x ∈ X̂, s ∈
S, y ∈ Y and j ∈ [dY] we say that the conditionσ(x, s, y, j)
holds if there existsi ∈ [dX] such thatzi(x) = y andsi = j.
In other words,σ(x, s, y, j) holds if x is connected toy by a
test, andsi = j wherei is such thaty is thei’th variable with
which x has a test.

For a given PCP instanceX ⊆ X̂ we define a function
s∗ : X → S such that for each variabley ∈ Y and for
eachj ∈ [dY] there exists a unique variablex ∈ X such that
σ(x, s∗(x), y, j) holds. Intuitively, for eachy ∈ Y we can
label thedY tests that containy with 1, . . . , dY and then define
s∗(x) as thedX labels that the tests that containx got. More
formally, such ans∗ exists and can be efficiently computed,
say by the following process: for everyy ∈ Y let α(y) be a
value initially set to 0. For each valuex ∈ X in an arbitrary
order we incrementα(zi(x)) by one for eachi ∈ [dX] and
defines∗(x) as(α(z1(x)), . . . , α(zdX

(x))). This process ends
whenα(y) is dY for all y ∈ Y .

We can now describe the set of equationsCr = v over F
given by the GAPMLDP3−ε instance(C,v, t). Let T denote
the setX̂ × S ×RX . The vectorr is |T |-dimensional and we
index its coordinates byr(x,s,a) for (x, s, a) ∈ T .

∀y ∈ Y, j1, j2 ∈ [dY], b ∈ RY ,
∑

(x, s, a) ∈ T |
σ(x, s, y, j1)
ϕx,y(a) = b

r(x,s,a) =
∑

(x, s, a) ∈ T |
σ(x, s, y, j2)
ϕx,y(a) = b

r(x,s,a) (1)

∀x ∈ X
∑

a∈RX

r(x,s∗(x),a) = 1 (2)

∀x ∈ X, s 6= s∗(x)
∑

a∈RX

r(x,s,a) = 0 (3)

∀x ∈ X̂ \ X, s ∈ S
∑

a∈RX

r(x,s,a) = 0 (4)

Informally, the first equation checks thaty ‘sees’ the same
assignment from each of its neighbors. The second equation
checks that for anyx ∈ X , at least one of the variables
r(x,s∗(x),a) is nonzero. Ideally, the remaining two equations
should guarantee that other variables are zero, i.e.,r(x,s,a) = 0
if x /∈ X or if s 6= s∗(x). Notice, however, that this is not
guaranteed. Nevertheless, we are guaranteed that if such an
r(x,s,a) is non-zero then there must be anotherr(x,s,a′) for
somea′ 6= a which is also non-zero.

This set of equations can be used to show the hardness of
GAPMLDP because it has the property that the coefficients
of r (and hence the matrixC) are independent of the instance
X ; only the target vectorv depends onX . To emphasize this
point, we now describe the matrixC and the target vector
v corresponding to the set of equations above. The matrix
C has |T | columns indexed by triples(x, s, a) ∈ T . For
each y ∈ Y , j1, j2 ∈ [dY], j1 6= j2 and b ∈ RY , there
is a row denoted byα(y, j1, j2, b). In addition, there is a

row denoted byβ(x, s) for eachx ∈ X̂ and s ∈ S. The
column (x, s, a) is 1 in α(zi(x), si, j

′, ϕx,zi(x)(a)) and -1 in
α(zi(x), j′, si, ϕx,zi(x)(a)) for eachj′ ∈ [dY], j′ 6= si and for
eachi ∈ [dX]. In addition, it is 1 in the coordinateβ(x, s). It
is 0 in all other coordinates. This completes the description of
the matrixC. Notice that for any given size parameter it is a
fixed matrix. Given an instanceX ⊆ X̂ we define the function
s∗ as above and the target vectorv as 1 inβ(x, s∗(x)) for
eachx ∈ X and 0 in all other coordinates.

Lemma 3.2 (Completeness):If there exists an assignment
A that satisfies all the tests inΦ then there exists a solution
r to Cr = v whose weight is|X |.

Proof: Given an assignmentA let r be the vector which
is 1 in the coordinates(x, s∗(x), A(x)) for x ∈ X and 0
elsewhere. The weight of the vector is|X |. We proveCr = v

by showing that Equations 1-4 hold. Equation 2 holds because
for x ∈ X the value ofr(x,s∗(x),a) is 1 if a = A(x) and
0 otherwise. Equations 3 and 4 hold becauser(x,s,a) is 0
wheneverx /∈ X or s 6= s∗(x).

Consider the expression that appears on the left side of
Equation 1. Sincer(x,s,a) is non-zero only ifx ∈ X and
s = s∗(x), the expression equals:

∑

x ∈ X | σ(x, s∗(x), y, j1)
a ∈ RX | ϕx,y(a) = b

r(x,s∗(x),a).

Also, by the choice ofs∗ there is a unique variablex ∈ X
such thatσ(x, s∗(x), y, j1) holds. Letx′ denote this variable.
Then the expression above equals

∑

a∈RX | ϕx′,y(a)=b

r(x′,s∗(x′),a)

which is 1 if ϕx′,y(A(x′)) = b and 0 otherwise. SinceA is
a satisfying assignmentϕx′,y(A(x′)) = A(y) and therefore
the expression above is1 if b = A(y) and 0 otherwise. In
particular, it is independent ofj1, and therefore Equation 1
holds.

Lemma 3.3 (Soundness):For any ε > 0, if there exists a
solutionr to Cr = v whose weight is less than(3−ε)|X | then
there exists an assignment that satisfies at least a1

6 ε fraction
of the tests.

Proof: Let r be a vector of weight less than(3 − ε)|X |
such thatCr = v. Consider the following assignment. To
eachx ∈ X we assign a valuea ∈ RX chosen uniformly at
random from thea’s for which r(x,s∗(x),a) 6= 0. According
to Equation 2 this set is not empty. To a variabley ∈ Y we
uniformly choose at random a valueb ∈ RY such that

∑

(x, s, a) ∈ T | σ(x, s, y, j)
ϕx,y(a) = b

r(x,s,a) 6= 0

where j ∈ [dY] is arbitrary. Notice that according to Equa-
tion 1 this set is independent of the choice ofj. This set is

5

also not empty because by summing over allb ∈ RY we get
∑

b∈RY

∑

(x, s, a) ∈ T | σ(x, s, y, j)
ϕx,y(a) = b

r(x,s,a) =

∑

(x,s,a)∈T | σ(x,s,y,j)

r(x,s,a) =

∑

x∈X̂,s∈S | σ(x,s,y,j)

∑

a∈RX

r(x,s,a) = 1

where the last equality is by Equations 2, 3 and 4. We claim
that the expected number of satisfied tests is at least1

6ε|Φ|
and therefore there exists an assignment that satisfies at least
a 1

6ε fraction of the tests.
Associate each triple(x, s, a) ∈ T for which r(x,s,a) is

nonzero with the pairs(zi(x), si) ∈ Y × [dY] for i =
1, 2, . . . , dX . Since the weight ofr is at most(3 − ε)|X |,
there exist at most(1 − 1

3ε) · dX · |X | = (1 − 1
3 ε)|Φ| pairs

with which we associate at least3 triples. Therefore, there
exist 1

3ε|Φ| pairs with which we associate2 triples or less.
Let (y′, j′) be such a pair and letx′ ∈ X be the unique
variable such thatσ(x′, s∗(x′), y′, j′) holds (it is unique by
the choice ofs∗). Triples associated with(y′, j′) can be of the
form (x′, s∗(x′), a) for somea ∈ RX . We call such triples
‘good’. According to Equation 2 there must be at least one
good triple associated with(y′, j′). Other triples associated
with (y′, j′) are called ‘bad’. They can either be of the form
(x, s, a) for x ∈ X ands 6= s∗(x) or of the form(x, s, a) for
x ∈ X̂ \ X . According to Equations 3 and 4, if a bad triple
(x, s, a) is associated with(y′, j′) then there must exist another
bad triple of the form(x, s, a′) for some othera′ 6= a that is
also associated with(y′, j′) (becauser(x,s,a) 6= 0). Since we
already have at least one good triple associated with(y′, j′)
and the total number is at most2, it must be the case that no
bad triples are associated with(y′, j′).

We map the pair(y′, j′) to the unique test inϕ′ ∈ Φ that
is associated withx′ andy′ wherex′ is defined above. Notice
that this mapping is one-to-one and thus it is enough to show
that our assignment satisfiesϕ′ with probability at least12 . The
assignment given tox′ is ana ∈ RX for which r(x′,s∗(x′),a) 6=
0. Since there are at most two good vectors associated with
(y′, j′) there are at most two such values. Denote them by
a1, a2 ∈ RX where possiblya1 = a2. The assignment given
to y′ is chosen from the set ofb ∈ RY for which

∑

(x, s, a) ∈ T | σ(x, s, y′, j′)
ϕx,y′(a) = b

r(x,s,a) 6= 0.

Since no bad vectors are associated with(y′, j′), this is
equivalent to

∑

a∈RX | ϕx′,y′ (a)=b

r(x′,s∗(x′),a) 6= 0.

The proof is completed by noting that the above expression is
non-zero if and only ifb = ϕx′,y′(a1) or b = ϕx′,y′(a2).

Theorem 3.4:For anyε > 0, GAPMLDP3−ε is NP-hard.
Proof: The proof follows from Lemmas 3.2 and 3.3 and

the PCP of Lemma 3.1 with parameter1
6ε.

Using the reduction described in Subsection II-A, we obtain:
Theorem 3.5:For anyε > 0, GAPNCPP3−ε is NP-hard.
Finally, using a well known and simple reduction from

GAPNCPP overGF(2) to GAPCVPP (see, e.g., Theorem 6
in [1]) we obtain the following:

Theorem 3.6:For anyp ≥ 1, γ < p
√

3, GAPCVPPγ in the
lp norm is NP-hard.

Proof: For completeness, we give a sketch of the proof.
Let C ∈ Fn×k be a matrix overF = GF(2) and consider
CC, the linear code generated by its columns. For a vector
w ∈ Zn, let w mod2 ∈ Fn be the vector obtained by reducing
all coordinates modulo2. The set of allw ∈ Zn such that
w mod 2 ∈ CC is a lattice; a basisB of it can be computed
by standard methods. It is now easy to verify that for any
v ∈ Fn, the lp distance ofv (as a vector inZn) to the closest
vector in the lattice is exactly

p
√

∆(CC,v).

The above transformation is efficient and does not depend on
the target vector; hence, it implies a reduction from GAPNCPP
overGF(2) to GAPCVPP that reduces the gap by ap-th root.

IV. I NAPPROXIMABILITY OF THE RELATIVELY NEAR

CODEWORD WITH PREPROCESSING

Theorem 16 in [12] shows a reduction from GAPNCPγ to
GAPRNC(ρ)

γ′ for any γ > 2, ρ > 1
2 and γ′ < γ/(2 + 1

2ρ−1).
As already noted in [1], the same reduction also applies to
the preprocessing variants of the problems. However, at that
time the hardness of GAPNCPPγ with γ > 2 was not known.
By plugging Theorem 3.5, we obtain that for anyρ > 1 and
γ′ < 3/(2 + 1

2ρ−1), GAPRNCP(ρ)
γ′ is hard.

In this section we present an improved reduction based on
[12] that shows the hardness of GAPRNCP(ρ)

γ′ for any ρ > 1
2

and γ′ < 3 − 1
ρ . First, we quote the following lemma. We

denote byB(v, r) the Hamming ball of radiusr aroundv.
Lemma 4.1 (Lemma 15, [12]):For any ε ∈ (0, 1) there

exists a probabilistic polynomial time algorithm that on input
k, s outputs inpoly(k, s)-time integersl, m, r, matricesA ∈
Fl×m andT ∈ Fk×l and a vectorw ∈ Fl such that

• The weight ofw is r,
• The minimum distance inCA is greater than2(1 − ε)r,
• T(B(w, r) ∩ CA) = Fk with probability at least1 −

2−Ω(s).
Claim 4.2: The output of the algorithm in Lemma 4.1

satisfies that there is no codeword inCA whose distance to
w is less than(1 − 2ε)r.

Proof: The claim follows since the weight ofw is r and
the minimum distance inCA is more than(2 − 2ε)r.

Our proof follows the lines of Theorem 16 in [12] with
the following two differences. Our construction uses a more
careful choice of parametersa, b and in addition, the anal-
ysis of NO instances is improved by using Claim 4.2. For
completeness, we include the modified proof. Our reduction
is a polynomial RUR-reduction, i.e., it is probabilistic with
the property that NO instances are always mapped to NO

instances while YES instances are mapped to YES with high

6

probability (see [12]). Such a reduction implies hardness under
the assumption thatRP 6= NP .

Theorem 4.3:For anyρ > 1
2 and arbitrarily smallε > 0

there exists a polynomial RUR-reduction from GAPNCPγ to
GAPRNCρ

γ′ whereγ′ = (1− 1
2ρ)γ+ 1

2ρ−ε. The same reduction
is also a reduction from GAPNCPPγ to GAPRNCPρ

γ′ .
Proof: Let (C,v, t) be an instance of GAPNCPγ

where C ∈ Fn×k. We construct an instance(C′,v′, t′) of
GAPRNC(ρ)

γ′ as follows. We apply the algorithm of Lemma 4.1
with a parameterε′ > 0 to be specified later. Leta, b be two
integers such thatrt (2ρ(1−2ε′)−1) ≤ b

a ≤ r
t (2ρ(1−ε′)−1).

Notice that we can choosea andb to be polynomial inr and
t and hence polynomial in the size of the input. We defineC′

by placinga copies ofA andb copies ofCTA. Similarly, v′

containsa copies ofw andb copies ofv:

C′ =





















A
...
A

CTA
...

CTA





















v′ =





















w
...
w

v
...
v





















Finally, we definet′ asar + bt. The minimum distance of
the codeC′ is

∆(CC′) ≥ a∆(CA) > a · 2(1 − ε′)r

Now t′ satisfies

t′ = ar + bt = ar(1 +
b

a
· t

r
)

≤ ar(1 + (2ρ(1 − ε′) − 1))

= ρ · a · 2(1 − ε′)r < ρ∆(CC′)

and therefore(C′,v′, t′) is indeed a valid GAPRNC(ρ) in-
stance.

In case(C,v, t) is a YES instance, there exists anx such
that ∆(Cx,v) ≤ t. Let z be such that∆(Az,w) ≤ r and
TAz = x. Such az exists with probability exponentially close
to 1 according to the second property in Lemma 4.1. Hence,

∆(C′z,v′) = a · ∆(Az,w) + b · ∆(CTAz,v)

≤ a · r + b · t = t′.

Assume that(C,v, t) is a NO instance, i.e., the distance ofv

from CC is greater thanγt. For all x ∈ Fm we have

∆(C′x,v′) ≥ a · (1 − 2ε′)r + b · ∆(CTAx,v)

> a · (1 − 2ε′)r + b · γt

where the first inequality is due to Claim 4.2. We claim that
this number is at leastγ′t′ = ((1 − 1

2ρ)γ + 1
2ρ − ε)t′. Indeed,

a · (1 − 2ε′)r + b · γt

t′
=

1 − 2ε′ + b
a

t
r γ

1 + b
a

t
r

≥ 1 − 2ε′ + (2ρ(1 − 2ε′) − 1)γ

1 + (2ρ(1 − ε′) − 1)

which can be made arbitrarily close to(1 − 1
2ρ)γ + 1

2ρ by
choosing a small enoughε′.

Notice that the reduction also applies to the preprocessing
variants of the problems because the RNC code depends only
on the NCP code.

Corollary 4.4: For any ρ > 1
2 , GAPRNCP(ρ)

γ with γ <
3 − 1

ρ is not in RP unlessNP = RP .

V. UPPERBOUND

In this section we describe a solution to GAPCVPPn in
the Euclidean norm. Forx,y ∈ Rn, let d(x,y) denote the
Euclidean distance between the two vectors. Also, letd(x, A)
denote theminy∈A d(x,y). The dual of a latticeL is a lattice
L∗ with the same linear span such that for everyu ∈ L and
v ∈ L∗, the inner product〈u,v〉 is integer. We will use the
following transference theorem due to Banaszczyk:

Lemma 5.1 ([17], Theorem 2.2):For any latticeL and any
x ∈ Rn, d(x, L) ≤ 1

2λ1(L∗)n whereλ1(L
∗) denotes the length

of the shortest nonzero vector in the dual latticeL∗.
Given a latticeL let L1 = L and letv1 be the shortest vector

of L∗
1. Also, letu1 be any vector inL such that〈u1,v1〉 = 1

andL2 be then− 1 dimensional lattice given byL1 ∩{v1}†.
Notice thatL1 is a union of translations ofL2 by integer
multiples of u1. Moreover, the orthogonal distance between
the linear span of two adjacent translations is1/‖v1‖. In
general, we definevi for i ≤ n as the shortest vector of
L∗

i and ui ∈ Li such that〈ui,vi〉 = 1. We let Li+1 be
Li ∩ {vi}†. The preprocessing function produces the vectors
v1, . . . ,vn and u1, . . . ,un (although it is easy to compute
ui givenvi). We now describe a recursive procedureC(i,w)
where w is in the linear span ofLi that returns a number
which is betweend(w, Li) andn ·d(w, Li). Clearly,C(1,w)
solves GAPCVPPn, as required. Fori = n we can find
d(w, Ln) exactly becauseLn is a one dimensional lattice.
For i < n, fix w in the linear span ofLi. As mentioned
above,Li is a union of translations ofLi+1 by multiples
of ui with an orthogonal distance of1/‖vi‖ between two
adjacent translations. Letk be the integer closest to〈w,vi〉.
Then w′ := w − (〈w,vi〉 − k)vi/‖vi‖2 is the orthogonal
projection ofw on the closest translation of the linear span of
Li+1. The output ofC(i,w) is

min(
1

2‖vi‖
n,

√

(d(w,w′))2 + (C(i + 1,w′ − kui))2).

We prove the correctness of the procedure by induction. It
is obviously correct fori = n. Assume that the procedure is
correct for i + 1, . . . , n. First we show thatC(i,w) ≤ n ·
d(w, Li). The closest point inLi to w can be onLi+1 +k ·ui

in which case,

d(w, Li) =
√

(d(w,w′))2 + (d(w′, Li+1 + k · ui)2

=
√

(d(w,w′))2 + (d(w′ − k · ui, Li+1)2

≥
√

(d(w,w′))2 + (
1

n
C(i + 1,w′ − k · ui))2

≥ 1

n
C(i,w).

Otherwise, the closest point tow is on a different translation
of Li+1 and

d(w, Li) ≥
1

2‖vi‖
≥ 1

n
C(i,w).

7

It remains to show thatC(i,w) ≥ d(w, Li). According to
Lemma 5.1,

d(w, Li) ≤
1

2‖vi‖
· n.

Also,

d(w, Li) ≤
√

(d(w,w′))2 + (d(w′, Li+1 + k · ui)2

≤
√

(d(w,w′))2 + (C(i + 1,w′ − kui))2

which completes the proof.

ACKNOWLEDGEMENTS

I thank Daniele Micciancio for presenting me the problem
during a visit to UCSD, for helpful discussions and for his
comments on an earlier version of this paper. I also thank the
anonymous referees for many excellent comments.

REFERENCES

[1] U. Feige and D. Micciancio, “The inapproximability of lattice and
coding problems with preprocessing,” inComputational Complexity,
2002, pp. 44–52.

[2] D. Micciancio and S. Goldwasser,Complexity of Lattice Problems:
a cryptographic perspective, ser. The Kluwer International Series in
Engineering and Computer Science. Boston, Massachusetts:Kluwer
Academic Publishers, Mar. 2002, vol. 671.

[3] I. Dinur, G. Kindler, R. Raz, and S. Safra, “Approximating CVP to
within almost-polynomial factors is NP-hard,”Combinatorica, vol. 23,
no. 2, pp. 205–243, 2003.

[4] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the
shortest lattice vector problem,” inProc. 33rd ACM Symp. on Theory of
Computing, 2001, pp. 601–610.

[5] C.-P. Schnorr, “A hierarchy of polynomial time lattice basis reduction
algorithms,” Theoretical Computer Science, vol. 53, no. 2-3, pp. 201–
224, 1987.

[6] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr, “Korkin-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice,”
Combinatorica, vol. 10, no. 4, pp. 333–348, 1990.

[7] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of
approximate optima in lattices, codes, and systems of linear equations,”
J. Comput. System Sci., vol. 54, no. 2, part 2, pp. 317–331, 1997, 34th
Annual Symposium on Foundations of Computer Science (Palo Alto,
CA, 1993).

[8] J. Bruck and M. Naor, “The hardness of decoding linear codes with
preprocessing,”IEEE Trans. Inform. Theory, vol. 36, no. 2, pp. 381–
385, 1990.

[9] D. Micciancio, “The hardness of the closest vector problem with
preprocessing,”IEEE Trans. Inform. Theory, vol. 47, no. 3, pp. 1212–
1215, 2001.

[10] J. Håstad, “Some optimal inapproximability results,” J. ACM, vol. 48,
no. 4, pp. 798–859, 2001.

[11] D. Aharonov and O. Regev, “Lattice problems in NP intersect coNP,”
2004, manuscript.

[12] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of approximating
the minimum distance of a linear code,”IEEE Trans. Inform. Theory,
vol. 49, no. 1, pp. 22–37, 2003.

[13] R. Raz, “A parallel repetition theorem,”SIAM Journal on Computing,
vol. 27, no. 3, pp. 763–803, June 1998.

[14] U. Feige, “A threshold of ln n for approximating set cover,” J. ACM,
vol. 45, no. 4, pp. 634–652, 1998.

[15] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof
verification and the hardness of approximation problems,”J. ACM,
vol. 45, no. 3, pp. 501–555, 1998.

[16] S. Arora and S. Safra, “Probabilistic checking of proofs: a new charac-
terization of NP,”J. ACM, vol. 45, no. 1, pp. 70–122, 1998.

[17] W. Banaszczyk, “New bounds in some transference theorems in the
geometry of numbers,”Mathematische Annalen, vol. 296, no. 4, pp.
625–635, 1993.

PLACE
PHOTO
HERE

Oded Regevis a Senior Lecturer in the Department
of Computer Science at Tel-Aviv University, Israel.
He received the M.Sc. and Ph.D. degrees in com-
puter science from Tel-Aviv University, in 1997 and
2001. He worked as a Postdoctoral Associate first
at the Institute for Advanced Study, Princeton, NJ
from September 2001 until June 2003 and then at
University of California, Berkeley from June 2003
until February 2004. He has been at his current
position since then. His research interests include
computational complexity theory and quantum com-

putation.

