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Abstract—\We show that the closest vector problem with solves the CVP forny lattice? Perhaps there exists a good
preprocessing (CVPP) is NP-hard to approximate to withinv'3—e  approximation algorithm that first applies preprocessmthe

for any ¢ > 0. In addition, we show that the nearest codeword |a¢ice (which is not necessarily computable in polynomial
problem with preprocessing (NCPP) is NP-hard to approximag time) a(nd then answers uerigs of trr)we fonmeffil?:ie)erl
to within 3—e. These results improve the results of Feige and Mic- a Y-

ciancio in [1]. We also present the first inapproximability result ~Interestingly, a positive answer is implied by [6]: by using
for the relatively nearest codeword problem with preprocesing a representation that combines several bases of the swtcall

(RNCP). Finally, we describe ann-approximation algorithm to  Korkin-Zolotarev form, one can obtain a good approximation
CVPP. ratio of O(n'°) to the CVP. Although this representation is
Index Terms— Computational complexity, NP-hardness, linear NP-hard to compute, once we have it we can approximate
codes, closest vector problem, nearest codeword problemela-  CvP to within polynomial factors. In this paper we will
tively nearest codeword problem be interested in showing that there are lattices for which
no matter what preprocessing is performed, no polynomial
I. INTRODUCTION time algorithm can approximate the CVP to within a certain
An (integer) lattice is the set of all integral linear combiconstant factor unles® = NP. This problem is known as
nations of a seB of n |inear|y independent vectors iB". the preprocessing variant of CVP, or in short, CVPP. A formal
The setB is known as a basis of the lattice. The C|05e§{eﬁniti0n is given in Section Il. For further motivation the
Vector Problem (CVP) is: given a basi® of a lattice inz» reader is referred to [1], [2].
and a target vectov € Z" find the closest lattice point to The CVP has an analogous problem in coding theory to
v. Equivalently, find a vector € Z" such that||Br — v|| Which we refer as the Nearest Codeword Problem (NCP).
is minimized. The norm is often taken to be the Euclidediere, we are given a generating matx € F***, n > k
norm but in this paper we will consider ary norm. The and a target vectov € F". We are asked to find the
CVP is one of the main lattice problems and it has marfpdewordCr closest in Hamming distance to the target
applications in computer science, especially in codingtpe The NCP is also known to be hard to approximate. Namely,
and cryptography (see [2]). The best inapproximabilitytes Arora et al. [7] show that approximating NCP to within
for CVP is due to Dinur et al. [3] where it is shown tha2'*® " for any e > 0 is hard under the assumption that
approximating CVP to withim®/ °g1os™ js NP-hard for some NP ¢ DTIME(nrv(ce™) We also define NCPP as the
¢ > 0. The best probabilistic polynomial time approximatiofreprocessing variant of NCP.
a|gorithm due to Ajtai et al. [4] obtains %7(”10?;10?;”/ logn)_ Bruck and Naor [8] show that the NCPP is NP-hard to
approximation factor and it uses the deterministic polyngolve exactly. This was later extended by Micciancio [9] to
mial time QO(n(loglogn)z/logn)_approximation algorithm by the CVPP. However, both results apply only to the exact
Schnorr [5]. version of the problems and as noted in [9], it is not clear
Our model is motivated by applications of lattices in codingow to extend them to hardness of approximation. The first
theory and cryptography. A common scenario in coding theolij@pproximability result is due to Feige and Micciancio.[1]
is the following: a transmitting party sends vectors from &here, it is shown that NCPP over any figd"(¢) is NP-hard
certain lattice. The receiving party then receives a cdeuip t0 approximate within constant factors less tigi3 and that
vector v and has to decode it by computing the close&s a result CVPP is NP-hard to approximate within constant
vector in the lattice. In cryptography, we have the follogvin factors less thag/5/3. Their result is shown using a reduction
common scenario: the lattice represents the encryption ké@m MAX3LIN - the problem of maximizing the number
all messages are encrypted using this lattice. The deoryptPf satisfied equations in a system of linear equations over
process involves computing the closest vector in the tticGF(¢) where each equation contains at most 3 variables. This
Notice that in these two scenarios, the lattice is fixed arig orProblem was shown to be hard to approximate by Hastad in
the received message changes among different inputs. Thid10]. Since MAX3LIN becomes harder asincreases, their
brings us to the following natural question: is the hardnegesult is first shown for large’s and then it is extended to

of the CVP caused by the requirement that the algorith@y ¢ by using the technique of concatenating codes.
Our results: Our first result is that CVPP is NP-hard to
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to approximate within any constant factor less ti3arThen, [n]. Throughout the papeE denotes the fieldsF(g) for an
using an equivalence between MLDP and NCPP we obtain tlzabitrary but fixed prime poweg. The codes considered in
NCPP is also NP-hard to approximate to within any constathtis paper are all linear codes. We use the notatienfor
factor less thars. Finally, by using a standard reduction fronthe (linear) code generated by the columns of the magtix
NCP to CVP, we obtain the CVPP hardness result. Like moBhe Hamming distance between two wordsw is denoted by
other hardness results, our hardness result is shown for thév, w) and the distance between a wordand the cod€c
decision version of the problem where we are only asked i®denoted byA(Cc,v). The minimum distance of the code
approximate the distance of a vector from the lattice and n6¢, denoted byA(Cc), is defined asnin,o{weigh{Cx)}.
to actually find a close vector. Our techniques differ fromtth Our hardness of approximability results will be shown
of [1] in two main respects. First, we directly use the PCkrough the corresponding gap problems:
obtained by applying the parallel repetition theorem to the Definition 2.1 (Closest Vector ProblemlFor v+ > 1, an
3SAT5 problem (which are certain regular SAT instances). Asstance of @PCVP, is a triple(B, v,t), B € Z"**, n > k,
mentioned above, the result of [1] is based on a reductian frov € Z™ andt € R. It is a YESinstance if there exists € Z*
MAXS3LIN. Secondly, our technique directly applies to codesuch that|Br —v|| < ¢. It is a No instance if for anyr € Z*,
over any fieldGF(¢) and thus we do not need the method of Br — v|| > ~ - t.
concatenating codes used in [1]. Definition 2.2 (Nearest Codeword Problenfjor~ > 1, an

As mentioned above, an upper bound®(fn'-*) for CVPP instance of @PNCP, is a triple(C, v, t), C € F"**, n >k,
is implied by [6]. Our second result is an improved uppe¥ € F* andt € Z*. It is a YEsinstance ifA(Cq,v) < t. It
bound ofn for the decision problem of CVPP. Interestinglyis a No instance ifA(Cc,v) > v - t.
we use non-constructive bounds on the distance of the ¢tloseDefinition 2.3 (Maximum Likelihood DecodingfFor v >
vector. Therefore, it is not obvious how to extend our result 1, an instance of GPMLD , is a triple (C, v, t), C € F+¥*",
the search problem, i.e., to find close vectors. Neverteeles > k, v € F¥ andt € Z*. It is a YEsinstance if there exists
this result can be compared with thg3 hardness result a solutionr € F" to Cr = v whose weight is at most It
since both are shown for the decision problem. Finally, Ié&$ a No instance if the weight of any solution ©©r = v is
us mention that our upper bound was recently improved taore thanyt.
O(y/n) in [11]. Definition 2.4 (Relatively Near Codewordlor p > 0 and

In the above we considered the preprocessing variant 9> 1, an instance of @PRNC(V”) is a triple (C,v,t), C €
NCP as a way to find whether the hardness of NCP isFa** n > k, v € F* andt € Z* such thatt < p- A(Cc).
result of the algorithm required to work witiny linear code. It is a YEsinstance ifA(Cc,v) < t. It is a No instance if
Another reason for the hardness of NCP was raised in th€Cc,v) > v - t.
literature ([12]). It might be hard to find the closest word tiotice that the problem @RNC!™ is equivalent to
v becausev is very far from any codeword. In other words, GAPNCP,. We define the preprocessing variant of CVP as
we are trying to recover from too many errors. The Relativelpllows:
Near Codeword with parameter > 0 (RNC')) is defined  Definition 2.5 (Closest Vector Problem with Preprocessing)
as follows. Given a generating matri® € F"**, a target For~ > 1, we say that a functiol solves GPCVPP, if
vectorv € F" and a valuet € Z* such thatt is less than the following is satisfied. The input to the functidd is a
p times the minimum distance in the code generated’hy uniform description of a sequence of lattices of increasing
find a codeword within distance from v. The algorithm is dimension{B;};>1, i.e., a polynomial time algorithm that on
expected to work only when such a codeword exists. Theput 17 outputs the latticéB;. The functionP should output
problem becomes easier asdecreases and many classicah polynomial time algorithm that on inp(t?, v, t) solves the
error correcting algorithms work in polynomial time wher<  GAPCVP,, instance (B;, v,t). There are no computational
%. Forp = % we are guaranteed to have exactly one codeworgquirements fronP.
within distancet from v. In [12] it is shown that RN®) for The preprocessing variants of the coding problems
anyp > 1 is hard to approximate to within any constant facto(GAPNCPP,, GAPMLDP., and GAPRNCP,) are defined
In this paper we consider RNGP, the preprocessing variantsimilarly. We note that a non-uniform (i.e., circuit-bayed
of the problem. The problem was mentioned in [1] but thdefinition of a preprocessing problem exists (see [1]). Our
authors were not able to provide any inapproximability kesuresults apply to the non-uniform case as well with the only
The RNCP”) is interesting because it asks for an algorithrdifference being that the assumptiéh# N P is replaced by
that decodes apecificlinear code for asmall amount of NP ¢ P/poly.
error, hence combining the two reasons mentioned above. In

this paper we provide the first mapprloxmablhty result fo'rA_ A Reduction fronGAPMLD to GAPNCP

RNCP?) by showing that for any > 5 approximating to
within any constant factor less than- 1 is hard. The GapPMLD problem is essentially equivalent to the
g GAPNCP. Let us show a reduction from ABMLD., to
GAPNCP, (the reduction in the other direction will not
Il PRELIMINARIES be needed). Given a &AMLD, instance(C,v,t), C €
Vectors are denoted by bold lower case letters and matri@s", consider the GPNCP,, instance(C*, z, t). The matrix

by bold upper case letters. The ddt ...,n} is denoted by C* € F*»*(»=%) is a matrix whose columns span the space



orthogonal to the space spanned by the row€aind hence
C - C* = 0. The vectorz € F" is any vector that satisfies
Cz v (if such a vector does not exist, theAGMLD
instance is trivial). If the GPMLD. instance is a ¥s
instances then there exists a vectore F” whose weight
is at mostt such thatCr = v. The vectorz — r satisfies
C(z—r) = 0 and is therefore part of the code spannedly
Moreover, its distance from is at mostt. Hence,(C*, z,t)
is a YEsinstance of @QPNCP,. Now assume thg{C, v, 1) is
a No instance of @PMLD ,. Any vectorr’ € F"~* satisfies
C(z — C*r') = Cz = v. Hence, the weight of — C*r’ is
more thanyt. Since this is true for any’, A(Cc+,2z) > 4t
and the @QPNCP, instance is a N instance, as required.

In this section we prove that &#AMLDP;3_. is NP-hard
for any ¢ > 0. The GAPNCPP hardness result follows
from Subsection II-A and the &CVPP hardness result

| NAPPROXIMABILITY OF PREPROCESSINGPROBLEMS

then follows using a well known reduction. Our proof isu

based on a reduction from an NP-hard problem (described
Section 111-A) to GaApPMLD. The reduction has the property
that it produces GPMLD;_. instances(C,v,t) where the

it is a function fromRx to Ry that for each assignment to

x gives either true or false based on the restrictiony tof

the assignment. A test, , is satisfiedby an assignment if
vz.y(A(z)) = A(y). As shown in [14] (based on [15], [16]), it

is NP-hard to distinguish between the case where theresexist
an assignment that satisfies all the tests and the case where
no assignment satisfies more thar- ¢ fraction of the tests

for some universal constamt Notice that an instance of the
problem of sizen can be specified by the séf of clauses;

the set of variables is assumed to be fixed and the set of tests
is implied by the setX.

Now we apply the parallel repetition lemma [13] with a
constant parameter. The resulting problem is the following.
We are given a seK of size (%n)“ containingu-tuples of
clauses and a sé&t of sizen™ containingu-tuples of variables.

An assignmen# is a function fromX to a setRy of size7
and fromY to a setRy of size2". The setRx represents the
possible assignments towatuple of clauses and similarly for
Ry . The set of test® contains3* tests for eachr € X and

" tests for eacly € Y. Namely, ® contains the tesp, ,, if
f8t everyi € [u] thei'th entry of y appears in thé'th entry of
x. As before, the tesp, , : Rx — Ry checks the agreement
of the assignment te with the assignment tg by mapping

matrix C depends only on the size of the input to the reductiop, ., assignment to to the corresponding assignment;toA

In other words, there exists a universal sequence of coqgs; is satisfied b

{C.;}:i>1 such that the reduction always outputsiBILD 3_.
instances of the formiC;, v, t) wherei is the size of the input
to the reduction. Now assume that there exists a funckon

y an assignmettf ¢, ,(A(z)) = A(y). It
is NP-hard to distinguish between the case where theresexist
an assignment that satisfies all the tests and the case where

no assignment satisfies more thzr?(*) fraction of the tests.

as in Definition 2.5. Then, given the sequer(@®;};>1, the Natice that we can still specify an instance of the problem of

function outputs a polynomial time algorithm that solves thsize parameten by the setX of clauses; the seY is fixed

instances given by the reduction and hence solves the atigig 4 the set of tests is implied. L& — X,, . be the set of
NP-hard problem. Therefore, such a reduction establishes L u-tuples of clauses over variables. Thus, we can say that

NP-hardness of &MLDP;_. an instance of the problem of sizeis specified by a subset
We summarize the above in the following lemma:

The PCP constructed in this section is obtained by applyi ILDe;nmda E.:I;}I;or Zny ;'X?de > q[the ;IIO\C/lvm? pr(_)btlem IS
the parallel repetition lemma [13] to the 3SAT5 problem [14], © ard. Lelix, fty DE WO SEIS and.y, ay WO INtegers
. . i . epending only or. For any size parameterthere exist two

We will observe the following property: although there is al ts of abl&sY ¥ and t of testd i functi
exponential number of 3SATS instances orvariables, the srzs (1)[2 Viga}g 'ni:ie ::jnb a zer}'aglesfs }QI.ZHdunC |(})/ns
clauses of 3SAT5 instances are taken from a set whose sizééécnh gr'ablery : IS );asdy \t/eslts ind gssoc'ateé/ E’th .'t
only polynomial inn. As we will see, a similar observation varl € X ! ! with 1L

holds after we apply the parallel repetition lemma. We rétmafor. i € [dx] we denote by;(x) the.l th variable |_nY with
e N . which = has a test for some ordering of the variables. Then,
that the PCP is fairly standard and we describe it mainly for . ) . o
instance of the problem of size parameteés specified by

completeness. The results of this section are summarized*lh . h . .
b bsefX C X. Let® C ® be the set of tests associated with

asu
Lemma 3.1. . . . .
In a 3SAT5 problem of size: we are given a seX of 5 X. Each variabley € Y hasdy tests in® associated to it.

clauses over a fixed set ofvariablesy” — (y1, .. .. y»). Each An assignmentd is a function fromX to Rx and fromY to

variable appears in exactly 5 clauses and each clause isRhe () ° A test Py € ¢ IS §at|sf|ed byA if .. (A(z)) = A(y).
: . . ."The problem is to distinguish between the case where there
of exactly 3 literals. An assignment to the 3SAT5 is a funttio . : .
exists an assignment that satisfies all the téstnd the case
A fromY to the setRy = {T, F'} and fromX to a setRx of ; "
. ] S . where no assignment satisfies more tlhaf the tests.
size 7 representing the 7 satisfying assignments of a cfause
We define the setb of tests as follows. For each € X
we construct three tests, , - one for eachy that appears B. The Code
in 2. The testy, , is supposed to check that the assignment In this section we describe a reduction from the PCP
given tox agrees with the assignment givengoFormally, of the previous section to &MLD;_.. Recall that our

A. The PCP

Sn

2From now on, we will refer to elements of andY simply as variables.
The fact that they are-tuples will not be used.

1Equivalently, we could define an assignment as a pair of iomst one
from Y to Ry and the other fromX to Rx.



construction is over the fieldd = GF(q) for an arbitrary

row denoted byj(z,s) for eachz € X ands € S. The

but fixed prime powerg. For any given size parameter letcolumn (z,s,a) is 1 in a(zi(z), si, j’, ¥z,z()(a)) and -1 in
dy,dx,Rx,Ry,Y, X, ®,2 be as described in Lemma 3.1a(z(x), j', 5i, 0z, 2, () (@) fOr eachj’ € [dy], j* # s; and for

Let S = [dy]?x be the set of all sequences of length
containing numbers in the range...,dy. Forz € X,s €
S,y € Y andj € [dy] we say that the condition(z, s, vy, )
holds if there exists € [dx] such thatz;(z) = y ands; = j.
In other wordsg (z, s,y,7) holds if z is connected tg by a
test, ands; = j wherei is such thaty is thei'th variable with
which z has a test.

For a given PCP instanc& C X we define a function
s* : X — S such that for each variablg € Y and for
eachj € [dy] there exists a unique variablee X such that
o(x,s*(x),y,7) holds. Intuitively, for eachy € Y we can
label thedy tests that contaig with 1, ..., dy and then define
s*(z) as thedx labels that the tests that contatrgot. More

formally, such ans* exists and can be efficiently computedso, . < X the value ofr

say by the following process: for evegye Y let a(y) be a
value initially set to 0. For each valuee X in an arbitrary
order we incrementx(z;(x)) by one for eachi € [dx] and
defines*(x) as(a(z1(x)),. .., a(z4y (z))). This process ends
whena(y) isdy forally €Y.

We can now describe the set of equatidtis = v overF
given by the QPMLDP3_. instance(C, v, t). Let T' denote
the setX x S x Rx. The vectorr is |T'|-dimensional and we
index its coordinates by, s ) for (z,s,a) € T

Vy €Y, j1,J2 € [dy],b € Ry,

Z T(z,s,a) = Z T(z,s,a) (1)
(z,s,0) €T | (z,5,0) €T |
0(I7S,y,j1) 0(%3797]‘2)
@w,y(a) =b ¢w¢y(a) =b
Ve e X Z T(z,s*(z),a) = 1 (2)
aERx
Ve e X,s # s™(x) Z T(z,5a) =0 3)
a€ERx
VxEX\X,SES Z T(z,s,0) = 0 (4)
a€Rx

Informally, the first equation checks that'sees’ the same

assignment from each of its neighbors. The second equatig
checks that for anyc € X, at least one of the variables
T(x,s*(x),a) 1S NONzero. ldeally, the remaining two equation

should guarantee that other variables are zeroy{gy,,) = 0
if x ¢ X orif s # s*(x). Notice, however, that this is not

guaranteed. Nevertheless, we are guaranteed that if suckSy thatCr

T(x,s,0) 1S NON-zero then there must be anothey, ./ for
somea’ # a which is also non-zero.

eachi € [dx]. In addition, it is 1 in the coordinatg(x, s). It
is 0 in all other coordinates. This completes the descHmipib
the matrixC. Notice that for any given size parameter it is a
fixed matrix. Given an instanc& C X we define the function
s* as above and the target vectoras 1 in(3(z, s*(x)) for
eachz € X and 0 in all other coordinates.

Lemma 3.2 (Completenesdy: there exists an assignment
A that satisfies all the tests i then there exists a solution
r to Cr = v whose weight igX|.

Proof: Given an assignment let r be the vector which

is 1 in the coordinatesz, s*(z), A(z)) for x € X and 0
elsewhere. The weight of the vector|¥|. We proveCr = v
by showing that Equations 1-4 hold. Equation 2 holds because
(2,5%(2),a) 1S 1 if a = A(x) and
0 otherwise. Equations 3 and 4 hold becausg; ,) is O
whenever: ¢ X or s # s*(x).

Consider the expression that appears on the left side of
Equation 1. Sincer(, ;) is non-zero only ifx € X and
s = s*(z), the expression equals:

>

z€ X |o(x,s*(x),
a € Rx | pay(a

T(,5* (2),a)-
y?jl)

Also, by the choice of* there is a unique variable € X
such thato(x, s*(x),y, 71) holds. Letz’ denote this variable.
Then the expression above equals

2.

a€Rx | ¢y ,(a)=b

’f‘(m/_’s* (z'),a)

which is 1 if ¢, ,(A(z")) = b and 0 otherwise. Sinced is
a satisfying assignmeng, ,(A(z")) = A(y) and therefore
the expression above isif b = A(y) and 0 otherwise. In
particular, it is independent of;, and therefore Equation 1
holds. [ |
Lemma 3.3 (Soundnesdjor anye > 0, if there exists a
Slutionr to Cr = v whose weight is less thgl3—¢)| X | then
there exists an assignment that satisfies at Ie#t faaction

gf the tests.

Proof: Letr be a vector of weight less thgB — ¢)|X|

v. Consider the following assignment. To
eachz € X we assign a value € Rx chosen uniformly at
random from thea’s for which r(, - (;)..) # 0. According

This set of equations can be used to show the hardnes§%]Equation 2 this set is not empty. To a variable ¥ we

GAPMLDP because it has the property that the coefficien

kgnformly choose at random a valbe= Ry such that

of r (and hence the matri€) are independent of the instance

X; only the target vectov depends onX. To emphasize this
point, we now describe the matri€ and the target vector

v corresponding to the set of equations above. The matrix

C has |T| columns indexed by triplegz,s,a) € T. For

>

(x787a) e T I 0(1‘7 87y7j)
pay(a) =0

T(z,s,a) 7£ 0

eachy € Y, j1,j2 € [dy], 1 # j2 andb € Ry, there wherej € [dy] is arbitrary. Notice that according to Equa-
is a row denoted by(y, j1,72,0). In addition, there is a tion 1 this set is independent of the choicejofThis set is



also not empty because by summing overbadl Ry we get Using the reduction described in Subsection II-A, we obtain
Theorem 3.5:For anye > 0, GAPNCPR;_, is NP-hard.

Z Z M(@,s,0) = Finally, using a well known and simple reduction from
beRy (2,5,0) €T | o(x,5,9,) GAPNCPP overGF(2) to GAPCVPP (see, e.g., Theorem 6
Pay(@) = in [1]) we obtain the following:
Z T(x,s,a0) = Theorem 3.6:For anyp > 1,7 < /3, GAPCVPP, in the
(,5,0)€T | o(2,5,9,) I, norm is NP-hard.
-1 Proof: For completeness, we give a sketch of the proof.
Z Z T(z,s,a) =

Let C € F*** be a matrix ovelf = GF(2) and consider
o _ Cc, the linear code generated by its columns. For a vector
where the last equality is by Equations 2, 3 and 4. We claiga ¢ 7", letw mod2 € F™ be the vector obtained by reducing

that the expected number of satisfied tests is at I¢aBk| all coordinates modul@. The set of allw € Z" such that
and therefore there exists an assignment that satisfieastt Igy mod 2 € C¢ is a lattice; a basi® of it can be computed

zeX,s€S | o(z,s,y,j) *€ERX

a ge fraction of the tests. _ by standard methods. It is now easy to verify that for any
Associate each triplgz, s,a) € T' for which 7 .4) IS v e F", thel, distance ofv (as a vector irZ") to the closest

nonzero with the pairgz;(z),s;) € Y x [dy] for i = vector in the lattice is exactly

1,2,...,dx. Since the weight ofr is at most(3 — ¢)|X],

there exist at mostl — ie) - dx - |X| = (1 — 1e¢)|®| pairs VA, v).

with V}’hiCh we associate at leasttriples. Therefore, there The apove transformation is efficient and does not depend on
exist 3¢[®| pairs with which we associat2 triples or less. e target vector; hence, it implies a reduction fromeGICPP

Let (y',j’) be such a pair and let’ € X be the unique oyerGF(2) to GAPCVPP that reduces the gap bydh root.
variable such that(z/, s*(2),y’, ') holds (it is unique by -

the choice ofs*). Triples associated witly/, ;') can be of the
form (2, s*(2'),a) for somea € Rx. We call such triples
‘good’. According to Equation 2 there must be at least one
good triple associated witly’, j'). Other triples associated i )
with (y/, ') are called ‘bad’. They can either be of the form Theorem 16 in [12] shows a reduction froma@NCP, to
(z,s,a) for z € X ands # s*(z) or of the form(z, s, a) for GAPRNC!? for anyy > 2,p > & and+y’ < v/(2 + 5507)-
z € X\ X. According to Equations 3 and 4, if a bad tripleAs already noted in [1], the same reduction also applies to
(z, s, a) is associated witky’, j/) then there must exist anotherthe preprocessing variants of the problems. However, dt tha
bad tr|p|e of the forrr(x7 s, CL/) for some othew/’ # a that is time the hardness OfﬁNCPPV with v > 2 was not known.
also associated witty’, ') (becauser(, , .y # 0). Since we BY plugging Theorem 3.5, we obtain that for apy~ 1 and
already have at least one good triple associated withj’) 7' < 3/(2+ 5,=1), GAPRNCP(ﬁ) is hard.
and the total number is at mo&t it must be the case that no In this section we present an improved reduction based on
bad triples are associated with’, j'). [12] that shows the hardness ofA@RNCP(W’f) for any p > %

We map the paiKy/, ;') to the unique test i’ € ® that andy’ < 3 — L. First, we quote the following lemma. We
is associated with’ andy’ wherez’ is defined above. Notice denote byB(v,r) the Hamming ball of radius aroundv.
that this mapping is one-to-one and thus it is enough to showLemma 4.1 (Lemma 15, [12])For anye € (0,1) there
that our assignment satisfieswith probability at Ieas%. The exists a probabilistic polynomial time algorithm that ompin
assignment given to’ is ana € Rx for whichr(, s«(,1),0) # K, s outputs inpoly(k, s)-time integers, m, r, matricesA €
0. Since there are at most two good vectors associated with” and T € F**! and a vectow € F! such that
(y',j") there are at most two such values. Denote them by, The weight ofw is r,

a1,az € Rx where possiblyu; = az. The assignment given , The minimum distance G is greater thar2(1 — ¢)r,

IV. INAPPROXIMABILITY OF THE RELATIVELY NEAR
CODEWORD WITHPREPROCESSING

to y' is chosen from the set dfe Ry for which « T(B(w,r) N Ca) = F* with probability at leastl —
2752(5).
Z o M@0 7 0 Claim 4.2: The output of the algorithm in Lemma 4.1
(@5,0) € T(',;)T(ibsy ) satisfies that there is no codeword@a whose distance to
Py w is less than(1 — 2¢)r.
Since no bad vectors are associated Wi, ;’), this is Proof: The claim follows since the weight of is r and
equivalent to the minimum distance i€ is more than(2 — 2¢)r-. ]
Z . 20 Our proof follows the lines of Theorem 16 in [12] with
(@57 (2"),a) 7= T the following two differences. Our construction uses a more

a€Rx | @aryr(a)=b careful choice of parameters b and in addition, the anal-

The proof is completed by noting that the above expressionyisis of No instances is improved by using Claim 4.2. For
non-zero if and only ifb = ¢,/ 4 (a1) Or b = @, v (a2). MW completeness, we include the modified proof. Our reduction
Theorem 3.4:For anye > 0, GAPMLDP;_. is NP-hard. is a polynomial RUR-reduction, i.e., it is probabilistic ti
Proof: The proof follows from Lemmas 3.2 and 3.3 andhe property that & instances are always mapped ta N
the PCP of Lemma 3.1 with parame@r. B instances while ¥sinstances are mapped toe¥ with high



probability (see [12]). Such a reduction implies hardnesten Notice that the reduction also applies to the preprocessing

the assumption thaRP # N P. variants of the problems because the RNC code depends only
Theorem 4.3:For anyp > % and arbitrarily smalle > 0 on the NCP code. ]

there exists a polynomial RUR-reduction froma@NCP,, to Corollary 4.4: For anyp > % GAPRNCPEYP) with v <

GAPRNCQ, wherey’ = (1—%)7+%—e. The same reduction 3 — % is not in RP unlessNP = RP.

is also a reduction from &PNCPP, to GAPRNCF.,.
Proof: Let (C,v,t) be an instance of &NCP, V. UPPERBOUND
where C € F"**, We construct an instanceC’,v’,t') of In this section we describe a solution toABVPPR, in

GAPRNCSﬁ) as follows. We apply the algorithm of Lemma 4.1the Euclidean norm. Fox,y € R", let d(x,y) denote the
with a parameter’ > 0 to be specified later. Let, b be two Euclidean distance between the two vectors. Alsod(et A)
integers such that(2p(1—2¢) —1) < & < Z(2p(1—¢)—1). denote theminye 4 d(x,y). The dual of a latticel is a lattice
Notice that we can chooseandb to be polynomial in- and L* with the same linear span such that for everg L and
t and hence polynomial in the size of the input. We defiife v € L*, the inner productu, v) is integer. We will use the
by placinga copies of A andb copies of CTA. Similarly, v/ following transference theorem due to Banaszczyk:

containsa copies ofw andb copies ofv: Lemma 5.1 ([17], Theorem 2.2)or any latticeL and any
) ; - x € R", d(x,L) < mn where); (L*) denotes the length
A w of the shortest nonzero vector in the dual lattice
: : Given a latticel let L; = L and letv; be the shortest vector
A W of L. Also, letu; be any vector inl such that(u;,v;) = 1
C' = CTA v = v and L, be then — 1 dimensional lattice given by.; N {v,}.
Notice that L; is a union of translations of., by integer
: : multiples of u;. Moreover, the orthogonal distance between
| CTA | | V] the linear span of two adjacent translationslig|vi]|. In

fgeneral, we definer; for ¢+ < n as the shortest vector of
LY andu; € L; such that(u;,v;) = 1. We let L;;; be
L; N {v;}!. The preprocessing function produces the vectors
A(Ccr) > alA(Ca) > a-2(1—€)r vi,...,v, anduy,...,u, (although it is easy to compute
u; givenv;). We now describe a recursive proceddre, w)
wherew is in the linear span of.; that returns a number

Finally, we definet’ asar + bt. The minimum distance o
the codeC’ is

Now ¢’ satisfies

¢ = ar+bt=ar(l+ b, f) which is betweeni(w, L;) andn - d(w, L;). Clearly, C(1, w)
a r solves &QPCVPR,, as required. For = n we can find

< ar(l+(20(1 =€) - 1)) d(w, L,) exactly becausd.,, is a one dimensional lattice.

= p-a-2(1-¢€)r<pAlCc) For i < n, fix w in the linear span ofl;. As mentioned

above, L; is a union of translations of;;; by multiples
of u; with an orthogonal distance of/||v;|| between two
adjacent translations. Lét be the integer closest tow, v;).

Thenw’ = w — ((w,v;) — k)v;/||vs||? is the orthogonal

that A(Cx,v) < t. Let z be such thatA(Az,w) < r and L f he cl lati f the i ¢
TAz = x. Such az exists with probability exponentially closeproJeCtlon ofw on the ¢ osest transiation of the linear span o
) L;+1. The output ofC(i, w) is

to 1 according to the second property in Lemma 4.1. Hence, )

and therefore(C’,v/,t') is indeed a valid GPRNC) in-
stance.
In case(C,v,t) is a YESinstance, there exists ansuch

A(C'z,v') = a-A(Az,w)+b-A(CTAz,v) min( g, V(dw, W)+ (Ci + 1, W' — kuj))2).
< artbt=t. We prove the correctness of the procedure by induction. It
Assume tha{C, v, ¢) is a No instance, i.e., the distance of IS obwously correct for = n. Assume that thg procedure is
from Cc is greater thanyt. For all x € F™ we have correct fori + 1,...,n. Fws_t we show thatC(i,w) < n -
d(w, L;). The closest point if.; to w can be onL; 1 + k- u;
A(C'x,v') > a-(1—2€)r+b-A(CTAx,vV) in which case,
!
> a-(1=2)r+b-7t dw,L;) = /([dw,w))2+ (AW, Liss + k ;)2
where the first inequality is due to Claim 4.2. We claim that = V(dw,w))2+ (dw —k-u;, Li11)?
this number is at least’t’ = ((1 — %p)’y + % —¢)t’. Indeed, 1
> \/(d(w,w’))2 +(=C@E+1,w —k-u;))?
a-(1-2e)r+b-yt  1—-2+2Ly ! n
t B 1+5¢ > =C(i,w).
n
/ /
> 1= 2¢ 4 (2p(1 — 2¢) — 1)y Otherwise, the closest point o is on a different translation
1+ (2p(1 =€) —1) of L4, and
which can be made arbitrarily close ta — 5-)v + 5 by 1 1.
choosing a small enough. ! ’ diw, Li) 2 2[v4 | = EC(Z’W)'



It remains to show thaC'(i,w) > d(w, L;). According to Oded Regevis a Senior Lecturer in the Department
Lemma 5.1, of Comp_uter Science at Tel-Aviv University, _Israel.
1 He received the M.Sc. and Ph.D. degrees in com-
d(w, L;) < - n. puter science from Tel-Aviv University, in 1997 and
2”"1” PLACE 2001. He worked as a Postdoctoral Associate first
PHOTO
at the Institute for Advanced Study, Princeton, NJ
Also, HERE from September 2001 until June 2003 and then at
University of California, Berkeley from June 2003
. 7\)2 / . 11 )2
d(w’Ll) < \/(d(w,w )) + (d(w s Lia + k& ul) until February 2004. He has been at his current
< \/(d(w W/))2 + (C(z +1,w — kui))Q position since then. His research interests include
- ’ ’ computational complexity theory and quantum com-
which completes the proof. putation.
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