

Improved Inapproximability of Lattice and Coding Problems with Preprocessing

Oded Regev

Abstract—We show that the closest vector problem with preprocessing (CVPP) is NP-hard to approximate to within $\sqrt{3}-\epsilon$ for any $\epsilon > 0$. In addition, we show that the nearest codeword problem with preprocessing (NCP) is NP-hard to approximate to within $3-\epsilon$. These results improve the results of Feige and Micciancio in [1]. We also present the first inapproximability result for the relatively nearest codeword problem with preprocessing (RNCP). Finally, we describe an n -approximation algorithm to CVPP.

Index Terms—Computational complexity, NP-hardness, linear codes, closest vector problem, nearest codeword problem, relatively nearest codeword problem

I. INTRODUCTION

An (integer) lattice is the set of all integral linear combinations of a set \mathbf{B} of n linearly independent vectors in \mathbb{Z}^n . The set \mathbf{B} is known as a basis of the lattice. The Closest Vector Problem (CVP) is: given a basis \mathbf{B} of a lattice in \mathbb{Z}^n and a target vector $\mathbf{v} \in \mathbb{Z}^n$ find the closest lattice point to \mathbf{v} . Equivalently, find a vector $\mathbf{r} \in \mathbb{Z}^n$ such that $\|\mathbf{Br} - \mathbf{v}\|$ is minimized. The norm is often taken to be the Euclidean norm but in this paper we will consider any l_p norm. The CVP is one of the main lattice problems and it has many applications in computer science, especially in coding theory and cryptography (see [2]). The best inapproximability result for CVP is due to Dinur et al. [3] where it is shown that approximating CVP to within $n^{c/\log \log n}$ is NP-hard for some $c > 0$. The best probabilistic polynomial time approximation algorithm due to Ajtai et al. [4] obtains a $2^{O(n \log \log n / \log n)}$ -approximation factor and it uses the deterministic polynomial time $2^{O(n(\log \log n)^2 / \log n)}$ -approximation algorithm by Schnorr [5].

Our model is motivated by applications of lattices in coding theory and cryptography. A common scenario in coding theory is the following: a transmitting party sends vectors from a certain lattice. The receiving party then receives a corrupted vector \mathbf{v} and has to decode it by computing the closest vector in the lattice. In cryptography, we have the following common scenario: the lattice represents the encryption key; all messages are encrypted using this lattice. The decryption process involves computing the closest vector in the lattice. Notice that in these two scenarios, the lattice is fixed and only the received message \mathbf{v} changes among different inputs. This brings us to the following natural question: is the hardness of the CVP caused by the requirement that the algorithm

The author is with the Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. Research was done while the author was with the Institute for Advanced Study, Princeton, NJ and supported by NSF grant CCR-9987845.

solves the CVP for *any* lattice? Perhaps there exists a good approximation algorithm that first applies preprocessing to the lattice (which is not necessarily computable in polynomial time) and then answers queries of the form \mathbf{v} efficiently. Interestingly, a positive answer is implied by [6]: by using a representation that combines several bases of the so-called Korkin-Zolotarev form, one can obtain a good approximation ratio of $O(n^{1.5})$ to the CVP. Although this representation is NP-hard to compute, once we have it we can approximate CVP to within polynomial factors. In this paper we will be interested in showing that there are lattices for which no matter what preprocessing is performed, no polynomial time algorithm can approximate the CVP to within a certain constant factor unless $P = NP$. This problem is known as the preprocessing variant of CVP, or in short, CVPP. A formal definition is given in Section II. For further motivation the reader is referred to [1], [2].

The CVP has an analogous problem in coding theory to which we refer as the Nearest Codeword Problem (NCP). Here, we are given a generating matrix $\mathbf{C} \in \mathbb{F}^{n \times k}$, $n \geq k$ and a target vector $\mathbf{v} \in \mathbb{F}^n$. We are asked to find the codeword \mathbf{Cr} closest in Hamming distance to the target \mathbf{v} . The NCP is also known to be hard to approximate. Namely, Arora et al. [7] show that approximating NCP to within $2^{\log^{(1-\epsilon)} n}$ for any $\epsilon > 0$ is hard under the assumption that $NP \not\subseteq DTIME(n^{poly(\log n)})$. We also define NCP as the preprocessing variant of NCP.

Bruck and Naor [8] show that the NCP is NP-hard to solve exactly. This was later extended by Micciancio [9] to the CVPP. However, both results apply only to the exact version of the problems and as noted in [9], it is not clear how to extend them to hardness of approximation. The first inapproximability result is due to Feige and Micciancio [1]. There, it is shown that NCP over any field $GF(q)$ is NP-hard to approximate within constant factors less than $5/3$ and that as a result CVPP is NP-hard to approximate within constant factors less than $\sqrt{5/3}$. Their result is shown using a reduction from MAX3LIN - the problem of maximizing the number of satisfied equations in a system of linear equations over $GF(q)$ where each equation contains at most 3 variables. This problem was shown to be hard to approximate by Håstad in [10]. Since MAX3LIN becomes harder as q increases, their result is first shown for large q 's and then it is extended to any q by using the technique of concatenating codes.

Our results: Our first result is that CVPP is NP-hard to approximate within any constant factor less than $\sqrt{3}$, or, for the l_p norm, within any factor less than $\sqrt[3]{3}$. Actually, we begin by proving that a problem known as MLDP is NP-hard

to approximate within any constant factor less than 3. Then, using an equivalence between MLDP and NCPP we obtain that NCPP is also NP-hard to approximate to within any constant factor less than 3. Finally, by using a standard reduction from NCP to CVP, we obtain the CVPP hardness result. Like most other hardness results, our hardness result is shown for the decision version of the problem where we are only asked to approximate the distance of a vector from the lattice and not to actually find a close vector. Our techniques differ from that of [1] in two main respects. First, we directly use the PCP obtained by applying the parallel repetition theorem to the 3SAT5 problem (which are certain regular SAT instances). As mentioned above, the result of [1] is based on a reduction from MAX3LIN. Secondly, our technique directly applies to codes over any field $GF(q)$ and thus we do not need the method of concatenating codes used in [1].

As mentioned above, an upper bound of $O(n^{1.5})$ for CVPP is implied by [6]. Our second result is an improved upper bound of n for the decision problem of CVPP. Interestingly, we use non-constructive bounds on the distance of the closest vector. Therefore, it is not obvious how to extend our result to the search problem, i.e., to find close vectors. Nevertheless, this result can be compared with the $\sqrt{3}$ hardness result since both are shown for the decision problem. Finally, let us mention that our upper bound was recently improved to $O(\sqrt{n})$ in [11].

In the above we considered the preprocessing variant of NCP as a way to find whether the hardness of NCP is a result of the algorithm required to work with *any* linear code. Another reason for the hardness of NCP was raised in the literature ([12]). It might be hard to find the closest word to \mathbf{v} because \mathbf{v} is very *far* from any codeword. In other words, we are trying to recover from too many errors. The Relatively Near Codeword with parameter $\rho > 0$ (RNC $^{(\rho)}$) is defined as follows. Given a generating matrix $\mathbf{C} \in \mathbb{F}^{n \times k}$, a target vector $\mathbf{v} \in \mathbb{F}^n$ and a value $t \in \mathbb{Z}^+$ such that t is less than ρ times the minimum distance in the code generated by \mathbf{C} , find a codeword within distance t from \mathbf{v} . The algorithm is expected to work only when such a codeword exists. The problem becomes easier as ρ decreases and many classical error correcting algorithms work in polynomial time when $\rho \leq \frac{1}{2}$. For $\rho = \frac{1}{2}$ we are guaranteed to have exactly one codeword within distance t from \mathbf{v} . In [12] it is shown that RNC $^{(\rho)}$ for any $\rho > \frac{1}{2}$ is hard to approximate to within any constant factor. In this paper we consider RNCP $^{(\rho)}$, the preprocessing variant of the problem. The problem was mentioned in [1] but the authors were not able to provide any inapproximability result. The RNCP $^{(\rho)}$ is interesting because it asks for an algorithm that decodes a *specific* linear code for a *small* amount of error, hence combining the two reasons mentioned above. In this paper we provide the first inapproximability result for RNCP $^{(\rho)}$ by showing that for any $\rho > \frac{1}{2}$ approximating to within any constant factor less than $3 - \frac{1}{\rho}$ is hard.

II. PRELIMINARIES

Vectors are denoted by bold lower case letters and matrices by bold upper case letters. The set $\{1, \dots, n\}$ is denoted by

$[n]$. Throughout the paper, \mathbb{F} denotes the field $GF(q)$ for an arbitrary but fixed prime power q . The codes considered in this paper are all linear codes. We use the notation $\mathcal{C}_\mathbf{C}$ for the (linear) code generated by the columns of the matrix \mathbf{C} . The Hamming distance between two words \mathbf{v}, \mathbf{w} is denoted by $\Delta(\mathbf{v}, \mathbf{w})$ and the distance between a word \mathbf{v} and the code $\mathcal{C}_\mathbf{C}$ is denoted by $\Delta(\mathcal{C}_\mathbf{C}, \mathbf{v})$. The minimum distance of the code $\mathcal{C}_\mathbf{C}$, denoted by $\Delta(\mathcal{C}_\mathbf{C})$, is defined as $\min_{\mathbf{x} \neq 0} \{\text{weight}(\mathbf{C}\mathbf{x})\}$.

Our hardness of approximability results will be shown through the corresponding gap problems:

Definition 2.1 (Closest Vector Problem): For $\gamma \geq 1$, an instance of GAPCV $_\gamma$ is a triple $(\mathbf{B}, \mathbf{v}, t)$, $\mathbf{B} \in \mathbb{Z}^{n \times k}$, $n \geq k$, $\mathbf{v} \in \mathbb{Z}^n$ and $t \in \mathbb{R}$. It is a YES instance if there exists $\mathbf{r} \in \mathbb{Z}^k$ such that $\|\mathbf{Br} - \mathbf{v}\| \leq t$. It is a NO instance if for any $\mathbf{r} \in \mathbb{Z}^k$, $\|\mathbf{Br} - \mathbf{v}\| > \gamma \cdot t$.

Definition 2.2 (Nearest Codeword Problem): For $\gamma \geq 1$, an instance of GAPNCP $_\gamma$ is a triple $(\mathbf{C}, \mathbf{v}, t)$, $\mathbf{C} \in \mathbb{F}^{n \times k}$, $n \geq k$, $\mathbf{v} \in \mathbb{F}^n$ and $t \in \mathbb{Z}^+$. It is a YES instance if $\Delta(\mathcal{C}_\mathbf{C}, \mathbf{v}) \leq t$. It is a NO instance if $\Delta(\mathcal{C}_\mathbf{C}, \mathbf{v}) > \gamma \cdot t$.

Definition 2.3 (Maximum Likelihood Decoding): For $\gamma \geq 1$, an instance of GAPMLD $_\gamma$ is a triple $(\mathbf{C}, \mathbf{v}, t)$, $\mathbf{C} \in \mathbb{F}^{k \times n}$, $n \geq k$, $\mathbf{v} \in \mathbb{F}^k$ and $t \in \mathbb{Z}^+$. It is a YES instance if there exists a solution $\mathbf{r} \in \mathbb{F}^n$ to $\mathbf{Cr} = \mathbf{v}$ whose weight is at most t . It is a NO instance if the weight of any solution to $\mathbf{Cr} = \mathbf{v}$ is more than γt .

Definition 2.4 (Relatively Near Codeword): For $\rho > 0$ and $\gamma \geq 1$, an instance of GAPRNC $^{(\rho)}_\gamma$ is a triple $(\mathbf{C}, \mathbf{v}, t)$, $\mathbf{C} \in \mathbb{F}^{n \times k}$, $n \geq k$, $\mathbf{v} \in \mathbb{F}^n$ and $t \in \mathbb{Z}^+$ such that $t < \rho \cdot \Delta(\mathcal{C}_\mathbf{C})$. It is a YES instance if $\Delta(\mathcal{C}_\mathbf{C}, \mathbf{v}) \leq t$. It is a NO instance if $\Delta(\mathcal{C}_\mathbf{C}, \mathbf{v}) > \gamma \cdot t$.

Notice that the problem GAPRNC $^{(\infty)}_\gamma$ is equivalent to GAPNCP $_\gamma$. We define the preprocessing variant of CVP as follows:

Definition 2.5 (Closest Vector Problem with Preprocessing): For $\gamma \geq 1$, we say that a function P solves GAPCV $_\gamma$ if the following is satisfied. The input to the function P is a uniform description of a sequence of lattices of increasing dimension $\{\mathbf{B}_i\}_{i \geq 1}$, i.e., a polynomial time algorithm that on input 1^i outputs the lattice \mathbf{B}_i . The function P should output a polynomial time algorithm that on input $(1^i, \mathbf{v}, t)$ solves the GAPCV $_\gamma$ instance $(\mathbf{B}_i, \mathbf{v}, t)$. There are no computational requirements from P .

The preprocessing variants of the coding problems (GAPNCP $_\gamma$, GAPMLD $_\gamma$ and GAPRNC $_\gamma$) are defined similarly. We note that a non-uniform (i.e., circuit-based) definition of a preprocessing problem exists (see [1]). Our results apply to the non-uniform case as well with the only difference being that the assumption $P \neq NP$ is replaced by $NP \not\subseteq P/\text{poly}$.

A. A Reduction from GAPMLD to GAPNCP

The GAPMLD problem is essentially equivalent to the GAPNCP. Let us show a reduction from GAPMLD $_\gamma$ to GAPNCP $_\gamma$ (the reduction in the other direction will not be needed). Given a GAPMLD $_\gamma$ instance $(\mathbf{C}, \mathbf{v}, t)$, $\mathbf{C} \in \mathbb{F}^{k \times n}$, consider the GAPNCP $_\gamma$ instance $(\mathbf{C}^*, \mathbf{z}, t)$. The matrix $\mathbf{C}^* \in \mathbb{F}^{n \times (n-k)}$ is a matrix whose columns span the space

orthogonal to the space spanned by the rows of \mathbf{C} and hence $\mathbf{C} \cdot \mathbf{C}^* = 0$. The vector $\mathbf{z} \in \mathbb{F}^n$ is any vector that satisfies $\mathbf{Cz} = \mathbf{v}$ (if such a vector does not exist, the GAPMLD instance is trivial). If the GAPMLD_γ instance is a YES instances then there exists a vector $\mathbf{r} \in \mathbb{F}^n$ whose weight is at most t such that $\mathbf{Cr} = \mathbf{v}$. The vector $\mathbf{z} - \mathbf{r}$ satisfies $\mathbf{C}(\mathbf{z} - \mathbf{r}) = 0$ and is therefore part of the code spanned by \mathbf{C}^* . Moreover, its distance from \mathbf{z} is at most t . Hence, $(\mathbf{C}^*, \mathbf{z}, t)$ is a YES instance of GAPNCP_γ . Now assume that $(\mathbf{C}, \mathbf{v}, t)$ is a NO instance of GAPMLD_γ . Any vector $\mathbf{r}' \in \mathbb{F}^{n-k}$ satisfies $\mathbf{C}(\mathbf{z} - \mathbf{C}^*\mathbf{r}') = \mathbf{Cz} = \mathbf{v}$. Hence, the weight of $\mathbf{z} - \mathbf{C}^*\mathbf{r}'$ is more than γt . Since this is true for any \mathbf{r}' , $\Delta(\mathcal{C}_{\mathbf{C}^*}, \mathbf{z}) > \gamma t$ and the GAPNCP_γ instance is a NO instance, as required.

III. INAPPROXIMABILITY OF PREPROCESSING PROBLEMS

In this section we prove that $\text{GAPMLDP}_{3-\epsilon}$ is NP-hard for any $\epsilon > 0$. The GAPNCP hardness result follows from Subsection II-A and the GAPCVPP hardness result then follows using a well known reduction. Our proof is based on a reduction from an NP-hard problem (described in Section III-A) to GAPMLD . The reduction has the property that it produces $\text{GAPMLD}_{3-\epsilon}$ instances $(\mathbf{C}, \mathbf{v}, t)$ where the matrix \mathbf{C} depends only on the size of the input to the reduction. In other words, there exists a universal sequence of codes $\{\mathbf{C}_i\}_{i \geq 1}$ such that the reduction always outputs $\text{GAPMLD}_{3-\epsilon}$ instances of the form $(\mathbf{C}_i, \mathbf{v}, t)$ where i is the size of the input to the reduction. Now assume that there exists a function P as in Definition 2.5. Then, given the sequence $\{\mathbf{C}_i\}_{i \geq 1}$, the function outputs a polynomial time algorithm that solves the instances given by the reduction and hence solves the original NP-hard problem. Therefore, such a reduction establishes the NP-hardness of $\text{GAPMLDP}_{3-\epsilon}$.

A. The PCP

The PCP constructed in this section is obtained by applying the parallel repetition lemma [13] to the 3SAT5 problem [14]. We will observe the following property: although there is an exponential number of 3SAT5 instances on n variables, the clauses of 3SAT5 instances are taken from a set whose size is only polynomial in n . As we will see, a similar observation holds after we apply the parallel repetition lemma. We remark that the PCP is fairly standard and we describe it mainly for completeness. The results of this section are summarized in Lemma 3.1.

In a 3SAT5 problem of size n we are given a set X of $\frac{5}{3}n$ clauses over a fixed set of n variables $Y = (y_1, \dots, y_n)$. Each variable appears in exactly 5 clauses and each clause is the OR of exactly 3 literals. An assignment to the 3SAT5 is a function A from Y to the set $R_Y = \{T, F\}$ and from X to a set R_X of size 7 representing the 7 satisfying assignments of a clause¹. We define the set Φ of tests as follows. For each $x \in X$ we construct three tests $\varphi_{x,y}$ - one for each y that appears in x . The test $\varphi_{x,y}$ is supposed to check that the assignment given to x agrees with the assignment given to y . Formally,

¹Equivalently, we could define an assignment as a pair of functions: one from Y to R_Y and the other from X to R_X .

it is a function from R_X to R_Y that for each assignment to x gives either true or false based on the restriction to y of the assignment. A test $\varphi_{x,y}$ is *satisfied* by an assignment A if $\varphi_{x,y}(A(x)) = A(y)$. As shown in [14] (based on [15], [16]), it is NP-hard to distinguish between the case where there exists an assignment that satisfies all the tests and the case where no assignment satisfies more than $1 - \epsilon$ fraction of the tests for some universal constant ϵ . Notice that an instance of the problem of size n can be specified by the set X of clauses; the set of variables is assumed to be fixed and the set of tests is implied by the set X .

Now we apply the parallel repetition lemma [13] with a constant parameter u . The resulting problem is the following. We are given a set X of size $(\frac{5}{3}n)^u$ containing u -tuples of clauses and a set Y of size n^u containing u -tuples of variables. An assignment A is a function from X to a set R_X of size 7^u and from Y to a set R_Y of size 2^u . The set R_X represents the possible assignments to a u -tuple of clauses and similarly for R_Y . The set of tests Φ contains 3^u tests for each $x \in X$ and 5^u tests for each $y \in Y$. Namely, Φ contains the test $\varphi_{x,y}$ if for every $i \in [u]$ the i 'th entry of y appears in the i 'th entry of x . As before, the test $\varphi_{x,y} : R_X \rightarrow R_Y$ checks the agreement of the assignment to x with the assignment to y by mapping each assignment to x to the corresponding assignment to y . A test is satisfied by an assignment A if $\varphi_{x,y}(A(x)) = A(y)$. It is NP-hard to distinguish between the case where there exists an assignment that satisfies all the tests and the case where no assignment satisfies more than $2^{-\Omega(u)}$ fraction of the tests. Notice that we can still specify an instance of the problem of size parameter n by the set X of clauses; the set Y is fixed and the set of tests is implied. Let $\hat{X} = \hat{X}_{n,u}$ be the set of all u -tuples of clauses over n variables. Thus, we can say that an instance of the problem of size n is specified by a subset $X \subseteq \hat{X}$.

We summarize the above in the following lemma:

Lemma 3.1: For any fixed $\epsilon > 0$ the following problem is NP-hard. Let R_X, R_Y be two sets and d_X, d_Y two integers depending only on ϵ . For any size parameter n there exist two sets of variables² Y, \hat{X} and a set of tests $\hat{\Phi}$, i.e., functions from R_X to R_Y indexed by variables $x \in \hat{X}$ and $y \in Y$. Each variable $x \in \hat{X}$ has d_X tests in $\hat{\Phi}$ associated with it. For $i \in [d_X]$ we denote by $z_i(x)$ the i 'th variable in Y with which x has a test for some ordering of the variables. Then, an instance of the problem of size parameter n is specified by a subset $X \subseteq \hat{X}$. Let $\Phi \subseteq \hat{\Phi}$ be the set of tests associated with X . Each variable $y \in Y$ has d_Y tests in Φ associated to it. An assignment A is a function from X to R_X and from Y to R_Y . A test $\varphi_{x,y} \in \Phi$ is satisfied by A if $\varphi_{x,y}(A(x)) = A(y)$. The problem is to distinguish between the case where there exists an assignment that satisfies all the tests Φ and the case where no assignment satisfies more than ϵ of the tests.

B. The Code

In this section we describe a reduction from the PCP of the previous section to $\text{GAPMLD}_{3-\epsilon}$. Recall that our

²From now on, we will refer to elements of \hat{X} and Y simply as variables. The fact that they are u -tuples will not be used.

construction is over the field $\mathbb{F} = \text{GF}(q)$ for an arbitrary but fixed prime power q . For any given size parameter let $d_Y, d_X, R_X, R_Y, Y, \hat{X}, \hat{\Phi}, z_i$ be as described in Lemma 3.1. Let $S = [d_Y]^{d_X}$ be the set of all sequences of length d_X containing numbers in the range $1, \dots, d_Y$. For $x \in \hat{X}, s \in S, y \in Y$ and $j \in [d_Y]$ we say that the condition $\sigma(x, s, y, j)$ holds if there exists $i \in [d_X]$ such that $z_i(x) = y$ and $s_i = j$. In other words, $\sigma(x, s, y, j)$ holds if x is connected to y by a test, and $s_i = j$ where i is such that y is the i 'th variable with which x has a test.

For a given PCP instance $X \subseteq \hat{X}$ we define a function $s^* : X \rightarrow S$ such that for each variable $y \in Y$ and for each $j \in [d_Y]$ there exists a unique variable $x \in X$ such that $\sigma(x, s^*(x), y, j)$ holds. Intuitively, for each $y \in Y$ we can label the d_Y tests that contain y with $1, \dots, d_Y$ and then define $s^*(x)$ as the d_X labels that the tests that contain x got. More formally, such an s^* exists and can be efficiently computed, say by the following process: for every $y \in Y$ let $\alpha(y)$ be a value initially set to 0. For each value $x \in X$ in an arbitrary order we increment $\alpha(z_i(x))$ by one for each $i \in [d_X]$ and define $s^*(x)$ as $(\alpha(z_1(x)), \dots, \alpha(z_{d_X}(x)))$. This process ends when $\alpha(y)$ is d_Y for all $y \in Y$.

We can now describe the set of equations $\mathbf{Cr} = \mathbf{v}$ over \mathbb{F} given by the GAPMLDP $_{3-\epsilon}$ instance $(\mathbf{C}, \mathbf{v}, t)$. Let T denote the set $\hat{X} \times S \times R_X$. The vector \mathbf{r} is $|T|$ -dimensional and we index its coordinates by $r_{(x,s,a)}$ for $(x, s, a) \in T$.

$$\forall y \in Y, j_1, j_2 \in [d_Y], b \in R_Y, \sum_{\substack{(x, s, a) \in T \\ \sigma(x, s, y, j_1) \\ \varphi_{x,y}(a) = b}} r_{(x,s,a)} = \sum_{\substack{(x, s, a) \in T \\ \sigma(x, s, y, j_2) \\ \varphi_{x,y}(a) = b}} r_{(x,s,a)} \quad (1)$$

$$\forall x \in X \sum_{a \in R_X} r_{(x, s^*(x), a)} = 1 \quad (2)$$

$$\forall x \in X, s \neq s^*(x) \sum_{a \in R_X} r_{(x,s,a)} = 0 \quad (3)$$

$$\forall x \in \hat{X} \setminus X, s \in S \sum_{a \in R_X} r_{(x,s,a)} = 0 \quad (4)$$

Informally, the first equation checks that y ‘sees’ the same assignment from each of its neighbors. The second equation checks that for any $x \in X$, at least one of the variables $r_{(x,s^*(x),a)}$ is nonzero. Ideally, the remaining two equations should guarantee that other variables are zero, i.e., $r_{(x,s,a)} = 0$ if $x \notin X$ or if $s \neq s^*(x)$. Notice, however, that this is not guaranteed. Nevertheless, we are guaranteed that if such an $r_{(x,s,a)}$ is non-zero then there must be another $r_{(x,s,a')}$ for some $a' \neq a$ which is also non-zero.

This set of equations can be used to show the hardness of GAPMLDP because it has the property that the coefficients of \mathbf{r} (and hence the matrix \mathbf{C}) are independent of the instance X ; only the target vector \mathbf{v} depends on X . To emphasize this point, we now describe the matrix \mathbf{C} and the target vector \mathbf{v} corresponding to the set of equations above. The matrix \mathbf{C} has $|T|$ columns indexed by triples $(x, s, a) \in T$. For each $y \in Y, j_1, j_2 \in [d_Y], j_1 \neq j_2$ and $b \in R_Y$, there is a row denoted by $\alpha(y, j_1, j_2, b)$. In addition, there is a

row denoted by $\beta(x, s)$ for each $x \in \hat{X}$ and $s \in S$. The column (x, s, a) is 1 in $\alpha(z_i(x), s_i, j', \varphi_{x,z_i(x)}(a))$ and -1 in $\alpha(z_i(x), j', s_i, \varphi_{x,z_i(x)}(a))$ for each $j' \in [d_Y], j' \neq s_i$ and for each $i \in [d_X]$. In addition, it is 1 in the coordinate $\beta(x, s)$. It is 0 in all other coordinates. This completes the description of the matrix \mathbf{C} . Notice that for any given size parameter it is a fixed matrix. Given an instance $X \subseteq \hat{X}$ we define the function s^* as above and the target vector \mathbf{v} as 1 in $\beta(x, s^*(x))$ for each $x \in X$ and 0 in all other coordinates.

Lemma 3.2 (Completeness): If there exists an assignment A that satisfies all the tests in Φ then there exists a solution \mathbf{r} to $\mathbf{Cr} = \mathbf{v}$ whose weight is $|X|$.

Proof: Given an assignment A let \mathbf{r} be the vector which is 1 in the coordinates $(x, s^*(x), A(x))$ for $x \in X$ and 0 elsewhere. The weight of the vector is $|X|$. We prove $\mathbf{Cr} = \mathbf{v}$ by showing that Equations 1-4 hold. Equation 2 holds because for $x \in X$ the value of $r_{(x,s^*(x),a)}$ is 1 if $a = A(x)$ and 0 otherwise. Equations 3 and 4 hold because $r_{(x,s,a)}$ is 0 whenever $x \notin X$ or $s \neq s^*(x)$.

Consider the expression that appears on the left side of Equation 1. Since $r_{(x,s,a)}$ is non-zero only if $x \in X$ and $s = s^*(x)$, the expression equals:

$$\sum_{\substack{x \in X \mid \sigma(x, s^*(x), y, j_1) \\ a \in R_X \mid \varphi_{x,y}(a) = b}} r_{(x,s,a)}.$$

Also, by the choice of s^* there is a unique variable $x \in X$ such that $\sigma(x, s^*(x), y, j_1)$ holds. Let x' denote this variable. Then the expression above equals

$$\sum_{a \in R_X \mid \varphi_{x',y}(a) = b} r_{(x',s^*(x'),a)}$$

which is 1 if $\varphi_{x',y}(A(x')) = b$ and 0 otherwise. Since A is a satisfying assignment $\varphi_{x',y}(A(x')) = A(y)$ and therefore the expression above is 1 if $b = A(y)$ and 0 otherwise. In particular, it is independent of j_1 , and therefore Equation 1 holds. \blacksquare

Lemma 3.3 (Soundness): For any $\epsilon > 0$, if there exists a solution \mathbf{r} to $\mathbf{Cr} = \mathbf{v}$ whose weight is less than $(3-\epsilon)|X|$ then there exists an assignment that satisfies at least a $\frac{1}{6}\epsilon$ fraction of the tests.

Proof: Let \mathbf{r} be a vector of weight less than $(3-\epsilon)|X|$ such that $\mathbf{Cr} = \mathbf{v}$. Consider the following assignment. To each $x \in X$ we assign a value $a \in R_X$ chosen uniformly at random from the a 's for which $r_{(x,s^*(x),a)} \neq 0$. According to Equation 2 this set is not empty. To a variable $y \in Y$ we uniformly choose at random a value $b \in R_Y$ such that

$$\sum_{\substack{(x, s, a) \in T \mid \sigma(x, s, y, j) \\ \varphi_{x,y}(a) = b}} r_{(x,s,a)} \neq 0$$

where $j \in [d_Y]$ is arbitrary. Notice that according to Equation 1 this set is independent of the choice of j . This set is

also not empty because by summing over all $b \in R_Y$ we get

$$\begin{aligned} \sum_{b \in R_Y} \sum_{\substack{(x, s, a) \in T \mid \sigma(x, s, y, j) \\ \varphi_{x, y}(a) = b}} r_{(x, s, a)} &= \\ \sum_{(x, s, a) \in T \mid \sigma(x, s, y, j)} r_{(x, s, a)} &= \\ \sum_{x \in \hat{X}, s \in S \mid \sigma(x, s, y, j)} \sum_{a \in R_X} r_{(x, s, a)} &= 1 \end{aligned}$$

where the last equality is by Equations 2, 3 and 4. We claim that the expected number of satisfied tests is at least $\frac{1}{6}\epsilon|\Phi|$ and therefore there exists an assignment that satisfies at least a $\frac{1}{6}\epsilon$ fraction of the tests.

Associate each triple $(x, s, a) \in T$ for which $r_{(x, s, a)}$ is nonzero with the pairs $(z_i(x), s_i) \in Y \times [d_Y]$ for $i = 1, 2, \dots, d_X$. Since the weight of \mathbf{r} is at most $(3 - \epsilon)|X|$, there exist at most $(1 - \frac{1}{3}\epsilon) \cdot d_X \cdot |X| = (1 - \frac{1}{3}\epsilon)|\Phi|$ pairs with which we associate at least 3 triples. Therefore, there exist $\frac{1}{3}\epsilon|\Phi|$ pairs with which we associate 2 triples or less. Let (y', j') be such a pair and let $x' \in X$ be the unique variable such that $\sigma(x', s^*(x'), y', j')$ holds (it is unique by the choice of s^*). Triples associated with (y', j') can be of the form $(x', s^*(x'), a)$ for some $a \in R_X$. We call such triples ‘good’. According to Equation 2 there must be at least one good triple associated with (y', j') . Other triples associated with (y', j') are called ‘bad’. They can either be of the form (x, s, a) for $x \in X$ and $s \neq s^*(x)$ or of the form (x, s, a) for $x \in \hat{X} \setminus X$. According to Equations 3 and 4, if a bad triple (x, s, a) is associated with (y', j') then there must exist another bad triple of the form (x, s, a') for some other $a' \neq a$ that is also associated with (y', j') (because $r_{(x, s, a)} \neq 0$). Since we already have at least one good triple associated with (y', j') and the total number is at most 2, it must be the case that no bad triples are associated with (y', j') .

We map the pair (y', j') to the unique test in $\varphi' \in \Phi$ that is associated with x' and y' where x' is defined above. Notice that this mapping is one-to-one and thus it is enough to show that our assignment satisfies φ' with probability at least $\frac{1}{2}$. The assignment given to x' is an $a \in R_X$ for which $r_{(x', s^*(x'), a)} \neq 0$. Since there are at most two good vectors associated with (y', j') there are at most two such values. Denote them by $a_1, a_2 \in R_X$ where possibly $a_1 = a_2$. The assignment given to y' is chosen from the set of $b \in R_Y$ for which

$$\sum_{\substack{(x, s, a) \in T \mid \sigma(x, s, y', j') \\ \varphi_{x, y'}(a) = b}} r_{(x, s, a)} \neq 0.$$

Since no bad vectors are associated with (y', j') , this is equivalent to

$$\sum_{a \in R_X \mid \varphi_{x', y'}(a) = b} r_{(x', s^*(x'), a)} \neq 0.$$

The proof is completed by noting that the above expression is non-zero if and only if $b = \varphi_{x', y'}(a_1)$ or $b = \varphi_{x', y'}(a_2)$. ■

Theorem 3.4: For any $\epsilon > 0$, GAPMLDP $_{3-\epsilon}$ is NP-hard.

Proof: The proof follows from Lemmas 3.2 and 3.3 and the PCP of Lemma 3.1 with parameter $\frac{1}{6}\epsilon$. ■

Using the reduction described in Subsection II-A, we obtain:

Theorem 3.5: For any $\epsilon > 0$, GAPNCPP $_{3-\epsilon}$ is NP-hard.

Finally, using a well known and simple reduction from GAPNCPP over GF(2) to GAPCVPP (see, e.g., Theorem 6 in [1]) we obtain the following:

Theorem 3.6: For any $p \geq 1, \gamma < \sqrt[3]{3}$, GAPCVPP $_{\gamma}$ in the l_p norm is NP-hard.

Proof: For completeness, we give a sketch of the proof. Let $\mathbf{C} \in \mathbb{F}^{n \times k}$ be a matrix over $\mathbb{F} = \text{GF}(2)$ and consider $\mathcal{C}_{\mathbf{C}}$, the linear code generated by its columns. For a vector $\mathbf{w} \in \mathbb{Z}^n$, let $\mathbf{w} \bmod 2 \in \mathbb{F}^n$ be the vector obtained by reducing all coordinates modulo 2. The set of all $\mathbf{w} \in \mathbb{Z}^n$ such that $\mathbf{w} \bmod 2 \in \mathcal{C}_{\mathbf{C}}$ is a lattice; a basis \mathbf{B} of it can be computed by standard methods. It is now easy to verify that for any $\mathbf{v} \in \mathbb{F}^n$, the l_p distance of \mathbf{v} (as a vector in \mathbb{Z}^n) to the closest vector in the lattice is exactly

$$\sqrt[p]{\Delta(\mathcal{C}_{\mathbf{C}}, \mathbf{v})}.$$

The above transformation is efficient and does not depend on the target vector; hence, it implies a reduction from GAPNCPP over GF(2) to GAPCVPP that reduces the gap by a p -th root. ■

IV. INAPPROXIMABILITY OF THE RELATIVELY NEAR CODEWORD WITH PREPROCESSING

Theorem 16 in [12] shows a reduction from GAPNCPP $_{\gamma}$ to GAPRNC $_{\gamma'}^{(\rho)}$ for any $\gamma > 2, \rho > \frac{1}{2}$ and $\gamma' < \gamma/(2 + \frac{1}{2\rho-1})$. As already noted in [1], the same reduction also applies to the preprocessing variants of the problems. However, at that time the hardness of GAPNCPP $_{\gamma}$ with $\gamma > 2$ was not known. By plugging Theorem 3.5, we obtain that for any $\rho > 1$ and $\gamma' < 3/(2 + \frac{1}{2\rho-1})$, GAPRNC $_{\gamma'}^{(\rho)}$ is hard.

In this section we present an improved reduction based on [12] that shows the hardness of GAPRNC $_{\gamma'}^{(\rho)}$ for any $\rho > \frac{1}{2}$ and $\gamma' < 3 - \frac{1}{\rho}$. First, we quote the following lemma. We denote by $\mathcal{B}(\mathbf{v}, r)$ the Hamming ball of radius r around \mathbf{v} .

Lemma 4.1 (Lemma 15, [12]): For any $\epsilon \in (0, 1)$ there exists a probabilistic polynomial time algorithm that on input k, s outputs in $\text{poly}(k, s)$ -time integers l, m, r , matrices $\mathbf{A} \in \mathbb{F}^{l \times m}$ and $\mathbf{T} \in \mathbb{F}^{k \times l}$ and a vector $\mathbf{w} \in \mathbb{F}^l$ such that

- The weight of \mathbf{w} is r ,
- The minimum distance in $\mathcal{C}_{\mathbf{A}}$ is greater than $2(1 - \epsilon)r$,
- $\mathbf{T}(\mathcal{B}(\mathbf{w}, r) \cap \mathcal{C}_{\mathbf{A}}) = \mathbb{F}^k$ with probability at least $1 - 2^{-\Omega(s)}$.

Claim 4.2: The output of the algorithm in Lemma 4.1 satisfies that there is no codeword in $\mathcal{C}_{\mathbf{A}}$ whose distance to \mathbf{w} is less than $(1 - 2\epsilon)r$.

Proof: The claim follows since the weight of \mathbf{w} is r and the minimum distance in $\mathcal{C}_{\mathbf{A}}$ is more than $(2 - 2\epsilon)r$. ■

Our proof follows the lines of Theorem 16 in [12] with the following two differences. Our construction uses a more careful choice of parameters a, b and in addition, the analysis of NO instances is improved by using Claim 4.2. For completeness, we include the modified proof. Our reduction is a polynomial RUR-reduction, i.e., it is probabilistic with the property that NO instances are always mapped to NO instances while YES instances are mapped to YES with high

probability (see [12]). Such a reduction implies hardness under the assumption that $RP \neq NP$.

Theorem 4.3: For any $\rho > \frac{1}{2}$ and arbitrarily small $\epsilon > 0$ there exists a polynomial RUR-reduction from GAPNCP_γ to $\text{GAPRNC}_{\gamma'}^\rho$, where $\gamma' = (1 - \frac{1}{2\rho})\gamma + \frac{1}{2\rho} - \epsilon$. The same reduction is also a reduction from GAPNCP_{γ} to $\text{GAPRNC}_{\gamma'}^\rho$.

Proof: Let $(\mathbf{C}, \mathbf{v}, t)$ be an instance of GAPNCP_γ where $\mathbf{C} \in \mathbb{F}^{n \times k}$. We construct an instance $(\mathbf{C}', \mathbf{v}', t')$ of $\text{GAPRNC}_{\gamma'}^\rho$ as follows. We apply the algorithm of Lemma 4.1 with a parameter $\epsilon' > 0$ to be specified later. Let a, b be two integers such that $\frac{r}{t}(2\rho(1 - 2\epsilon') - 1) \leq \frac{b}{a} \leq \frac{r}{t}(2\rho(1 - \epsilon') - 1)$. Notice that we can choose a and b to be polynomial in r and t and hence polynomial in the size of the input. We define \mathbf{C}' by placing a copies of \mathbf{A} and b copies of \mathbf{CTA} . Similarly, \mathbf{v}' contains a copies of \mathbf{w} and b copies of \mathbf{v} :

$$\mathbf{C}' = \begin{bmatrix} \mathbf{A} \\ \vdots \\ \mathbf{A} \\ \mathbf{CTA} \\ \vdots \\ \mathbf{CTA} \end{bmatrix} \quad \mathbf{v}' = \begin{bmatrix} \mathbf{w} \\ \vdots \\ \mathbf{w} \\ \mathbf{v} \\ \vdots \\ \mathbf{v} \end{bmatrix}$$

Finally, we define t' as $ar + bt$. The minimum distance of the code \mathbf{C}' is

$$\Delta(\mathcal{C}_{\mathbf{C}'}) \geq a\Delta(\mathcal{C}_\mathbf{A}) > a \cdot 2(1 - \epsilon')r$$

Now t' satisfies

$$\begin{aligned} t' &= ar + bt = ar(1 + \frac{b}{a} \cdot \frac{t}{r}) \\ &\leq ar(1 + (2\rho(1 - \epsilon') - 1)) \\ &= \rho \cdot a \cdot 2(1 - \epsilon')r < \rho\Delta(\mathcal{C}_{\mathbf{C}'}) \end{aligned}$$

and therefore $(\mathbf{C}', \mathbf{v}', t')$ is indeed a valid $\text{GAPRNC}^{(\rho)}$ instance.

In case $(\mathbf{C}, \mathbf{v}, t)$ is a YES instance, there exists an \mathbf{x} such that $\Delta(\mathbf{Cx}, \mathbf{v}) \leq t$. Let \mathbf{z} be such that $\Delta(\mathbf{Az}, \mathbf{w}) \leq r$ and $\mathbf{TAz} = \mathbf{x}$. Such a \mathbf{z} exists with probability exponentially close to 1 according to the second property in Lemma 4.1. Hence,

$$\begin{aligned} \Delta(\mathbf{C}'\mathbf{z}, \mathbf{v}') &= a \cdot \Delta(\mathbf{Az}, \mathbf{w}) + b \cdot \Delta(\mathbf{CTAz}, \mathbf{v}) \\ &\leq a \cdot r + b \cdot t = t'. \end{aligned}$$

Assume that $(\mathbf{C}, \mathbf{v}, t)$ is a NO instance, i.e., the distance of \mathbf{v} from $\mathcal{C}_{\mathbf{C}}$ is greater than γt . For all $\mathbf{x} \in \mathbb{F}^m$ we have

$$\begin{aligned} \Delta(\mathbf{C}'\mathbf{x}, \mathbf{v}') &\geq a \cdot (1 - 2\epsilon')r + b \cdot \Delta(\mathbf{CTAx}, \mathbf{v}) \\ &> a \cdot (1 - 2\epsilon')r + b \cdot \gamma t \end{aligned}$$

where the first inequality is due to Claim 4.2. We claim that this number is at least $\gamma't' = ((1 - \frac{1}{2\rho})\gamma + \frac{1}{2\rho} - \epsilon)t'$. Indeed,

$$\begin{aligned} \frac{a \cdot (1 - 2\epsilon')r + b \cdot \gamma t}{t'} &= \frac{1 - 2\epsilon' + \frac{b}{a} \frac{t}{r} \gamma}{1 + \frac{b}{a} \frac{t}{r}} \\ &\geq \frac{1 - 2\epsilon' + (2\rho(1 - 2\epsilon') - 1)\gamma}{1 + (2\rho(1 - \epsilon') - 1)} \end{aligned}$$

which can be made arbitrarily close to $(1 - \frac{1}{2\rho})\gamma + \frac{1}{2\rho}$ by choosing a small enough ϵ' .

Notice that the reduction also applies to the preprocessing variants of the problems because the RNC code depends only on the NCP code. \blacksquare

Corollary 4.4: For any $\rho > \frac{1}{2}$, $\text{GAPRNC}_\gamma^{(\rho)}$ with $\gamma < 3 - \frac{1}{\rho}$ is not in RP unless $NP = RP$.

V. UPPER BOUND

In this section we describe a solution to GAPCVPP_n in the Euclidean norm. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, let $d(\mathbf{x}, \mathbf{y})$ denote the Euclidean distance between the two vectors. Also, let $d(\mathbf{x}, A)$ denote the $\min_{\mathbf{y} \in A} d(\mathbf{x}, \mathbf{y})$. The dual of a lattice L is a lattice L^* with the same linear span such that for every $\mathbf{u} \in L$ and $\mathbf{v} \in L^*$, the inner product $\langle \mathbf{u}, \mathbf{v} \rangle$ is integer. We will use the following transference theorem due to Banaszczyk:

Lemma 5.1 ([17], Theorem 2.2): For any lattice L and any $\mathbf{x} \in \mathbb{R}^n$, $d(\mathbf{x}, L) \leq \frac{1}{2\lambda_1(L^*)}n$ where $\lambda_1(L^*)$ denotes the length of the shortest nonzero vector in the dual lattice L^* .

Given a lattice L let $L_1 = L$ and let \mathbf{v}_1 be the shortest vector of L_1^* . Also, let \mathbf{u}_1 be any vector in L such that $\langle \mathbf{u}_1, \mathbf{v}_1 \rangle = 1$ and L_2 be the $n - 1$ dimensional lattice given by $L_1 \cap \{\mathbf{v}_1\}^\perp$. Notice that L_1 is a union of translations of L_2 by integer multiples of \mathbf{u}_1 . Moreover, the orthogonal distance between the linear span of two adjacent translations is $1/\|\mathbf{v}_1\|$. In general, we define \mathbf{v}_i for $i \leq n$ as the shortest vector of L_i^* and $\mathbf{u}_i \in L_i$ such that $\langle \mathbf{u}_i, \mathbf{v}_i \rangle = 1$. We let L_{i+1} be $L_i \cap \{\mathbf{v}_i\}^\perp$. The preprocessing function produces the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ and $\mathbf{u}_1, \dots, \mathbf{u}_n$ (although it is easy to compute \mathbf{u}_i given \mathbf{v}_i). We now describe a recursive procedure $C(i, \mathbf{w})$ where \mathbf{w} is in the linear span of L_i that returns a number which is between $d(\mathbf{w}, L_i)$ and $n \cdot d(\mathbf{w}, L_i)$. Clearly, $C(1, \mathbf{w})$ solves GAPCVPP_n , as required. For $i = n$ we can find $d(\mathbf{w}, L_n)$ exactly because L_n is a one dimensional lattice. For $i < n$, fix \mathbf{w} in the linear span of L_i . As mentioned above, L_i is a union of translations of L_{i+1} by multiples of \mathbf{u}_i with an orthogonal distance of $1/\|\mathbf{v}_i\|$ between two adjacent translations. Let k be the integer closest to $\langle \mathbf{w}, \mathbf{v}_i \rangle$. Then $\mathbf{w}' := \mathbf{w} - (\langle \mathbf{w}, \mathbf{v}_i \rangle - k)\mathbf{v}_i/\|\mathbf{v}_i\|^2$ is the orthogonal projection of \mathbf{w} on the closest translation of the linear span of L_{i+1} . The output of $C(i, \mathbf{w})$ is

$$\min\left(\frac{1}{2\|\mathbf{v}_i\|}n, \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (C(i+1, \mathbf{w}' - k\mathbf{u}_i))^2}\right).$$

We prove the correctness of the procedure by induction. It is obviously correct for $i = n$. Assume that the procedure is correct for $i+1, \dots, n$. First we show that $C(i, \mathbf{w}) \leq n \cdot d(\mathbf{w}, L_i)$. The closest point in L_i to \mathbf{w} can be on $L_{i+1} + k \cdot \mathbf{u}_i$ in which case,

$$\begin{aligned} d(\mathbf{w}, L_i) &= \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (d(\mathbf{w}', L_{i+1} + k \cdot \mathbf{u}_i))^2} \\ &= \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (d(\mathbf{w}' - k \cdot \mathbf{u}_i, L_{i+1}))^2} \\ &\geq \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (\frac{1}{n}C(i+1, \mathbf{w}' - k \cdot \mathbf{u}_i))^2} \\ &\geq \frac{1}{n}C(i, \mathbf{w}). \end{aligned}$$

Otherwise, the closest point to \mathbf{w} is on a different translation of L_{i+1} and

$$d(\mathbf{w}, L_i) \geq \frac{1}{2\|\mathbf{v}_i\|} \geq \frac{1}{n}C(i, \mathbf{w}).$$

It remains to show that $C(i, \mathbf{w}) \geq d(\mathbf{w}, L_i)$. According to Lemma 5.1,

$$d(\mathbf{w}, L_i) \leq \frac{1}{2\|\mathbf{v}_i\|} \cdot n.$$

Also,

$$\begin{aligned} d(\mathbf{w}, L_i) &\leq \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (d(\mathbf{w}', L_{i+1} + k \cdot \mathbf{u}_i))^2} \\ &\leq \sqrt{(d(\mathbf{w}, \mathbf{w}'))^2 + (C(i+1, \mathbf{w}' - k\mathbf{u}_i))^2} \end{aligned}$$

which completes the proof.

PLACE
PHOTO
HERE

putation.

Oded Regev is a Senior Lecturer in the Department of Computer Science at Tel-Aviv University, Israel. He received the M.Sc. and Ph.D. degrees in computer science from Tel-Aviv University, in 1997 and 2001. He worked as a Postdoctoral Associate first at the Institute for Advanced Study, Princeton, NJ from September 2001 until June 2003 and then at University of California, Berkeley from June 2003 until February 2004. He has been at his current position since then. His research interests include computational complexity theory and quantum com-

ACKNOWLEDGEMENTS

I thank Daniele Micciancio for presenting me the problem during a visit to UCSD, for helpful discussions and for his comments on an earlier version of this paper. I also thank the anonymous referees for many excellent comments.

REFERENCES

- [1] U. Feige and D. Micciancio, “The inapproximability of lattice and coding problems with preprocessing,” in *Computational Complexity*, 2002, pp. 44–52.
- [2] D. Micciancio and S. Goldwasser, *Complexity of Lattice Problems: a cryptographic perspective*, ser. The Kluwer International Series in Engineering and Computer Science. Boston, Massachusetts: Kluwer Academic Publishers, Mar. 2002, vol. 671.
- [3] I. Dinur, G. Kindler, R. Raz, and S. Safra, “Approximating CVP to within almost-polynomial factors is NP-hard,” *Combinatorica*, vol. 23, no. 2, pp. 205–243, 2003.
- [4] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the shortest lattice vector problem,” in *Proc. 33rd ACM Symp. on Theory of Computing*, 2001, pp. 601–610.
- [5] C.-P. Schnorr, “A hierarchy of polynomial time lattice basis reduction algorithms,” *Theoretical Computer Science*, vol. 53, no. 2-3, pp. 201–224, 1987.
- [6] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr, “Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice,” *Combinatorica*, vol. 10, no. 4, pp. 333–348, 1990.
- [7] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of approximate optima in lattices, codes, and systems of linear equations,” *J. Comput. System Sci.*, vol. 54, no. 2, part 2, pp. 317–331, 1997, 34th Annual Symposium on Foundations of Computer Science (Palo Alto, CA, 1993).
- [8] J. Bruck and M. Naor, “The hardness of decoding linear codes with preprocessing,” *IEEE Trans. Inform. Theory*, vol. 36, no. 2, pp. 381–385, 1990.
- [9] D. Micciancio, “The hardness of the closest vector problem with preprocessing,” *IEEE Trans. Inform. Theory*, vol. 47, no. 3, pp. 1212–1215, 2001.
- [10] J. Håstad, “Some optimal inapproximability results,” *J. ACM*, vol. 48, no. 4, pp. 798–859, 2001.
- [11] D. Aharonov and O. Regev, “Lattice problems in NP intersect coNP,” 2004, manuscript.
- [12] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of approximating the minimum distance of a linear code,” *IEEE Trans. Inform. Theory*, vol. 49, no. 1, pp. 22–37, 2003.
- [13] R. Raz, “A parallel repetition theorem,” *SIAM Journal on Computing*, vol. 27, no. 3, pp. 763–803, June 1998.
- [14] U. Feige, “A threshold of $\ln n$ for approximating set cover,” *J. ACM*, vol. 45, no. 4, pp. 634–652, 1998.
- [15] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and the hardness of approximation problems,” *J. ACM*, vol. 45, no. 3, pp. 501–555, 1998.
- [16] S. Arora and S. Safra, “Probabilistic checking of proofs: a new characterization of NP,” *J. ACM*, vol. 45, no. 1, pp. 70–122, 1998.
- [17] W. Banaszczyk, “New bounds in some transference theorems in the geometry of numbers,” *Mathematische Annalen*, vol. 296, no. 4, pp. 625–635, 1993.