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Abstract

We consider Grover’s unstructured search problem in the setting where each oracle call has
some small probability of failing. We show that no quantum speed-up is possible in this case.

1 Introduction

Unstructured search problem: The unstructured search problem, also known as the unordered
search problem or as Grover’s search problem, is the most basic problem in the query model. The
goal is to find a marked entry out of N possible entries. In this model the entries are accessible
only through a black box (the oracle), and the complexity of the algorithm is measured in terms
of the number of oracle queries. In the classical world, it is easy to see that solving this search
problem requires Θ(N) queries, even if we allow randomization. In the quantum world, however,
one can find a marked item with only O(

√
N) queries, as was shown in Grover’s seminal paper

[8]. Moreover, it is known that this is optimal (see, e.g., [4, 5, 1]). This remarkable quadratic
improvement is considered one of the biggest successes of quantum computing, and has sparked
a huge interest in the quantum query model (see [2] for a recent survey).

Searching with a faulty oracle: In this paper we consider the unstructured search problem in
the faulty oracle model, a question originally presented to us by Harrow [9]. In this model, each
oracle call succeeds with some probability 1− p, and with the remaining probability p the state
given to the oracle remains unchanged. More formally, each oracle call maps an input state ρ into
(1− p) ·OρO† + p · ρ where O is the original (unitary) oracle operation. We note that this model
can be seen to be equivalent to other, seemingly more realistic, models of faults, such as the model
considered in Shenvi et al. [19] in which the oracle’s operation is subject to small random phase
fluctuations.

Our motivation for considering the faulty oracle model is twofold. First, we believe that since
the unstructured search problem is such a basic question, it is theoretically interesting to consider
it in different settings, as this might shed more light on the strengths and weaknesses of quantum
query algorithms. A second motivation is related to implementation aspects of quantum query
algorithms, as one can expect any future implementation of a Grover oracle to be imperfect (see
[19] for a further discussion of the physical significance of the model).
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To motivate our main result and to get some intuition for the model, let us consider the be-
havior of Grover’s original algorithm in this setting. Recall that Grover’s algorithm can be seen
as a sequence of two alternating reflections, OUOUOU · · ·OU where U is the reflection given by
Grover’s algorithm and O is the reflection representing the oracle call. In the analysis of Grover’s
algorithm, one observes that the state of the system is restricted to a two-dimensional subspace,
inside which lie the initial state and the target state. The angle between these two states is essen-
tially π/2. Furthermore, the combined operation OU of two consecutive reflections can be seen a
rotation by an angle of essentially 1/

√
N inside this two dimensional subspace. Hence the total

number of oracle calls required to get to the target state is O(
√

N).
In the faulty oracle model, each oracle call O has some constant probability of not doing any-

thing. Hence, the sequence of reflections might look like OUOUOUUOUOUOUO. The effect of
this is that after a sequence of rotations OU by 1/

√
N, we instead obtain a sequence of rotations

UO = (OU)† by −1/
√

N which cancel the previous ones. The cancellation can also be seen by
noting that U2 = O2 = I. The end result is that instead of rotating towards the target, our rotation
behaves like a random walk, alternating between steps of 1/

√
N and steps of −1/

√
N. Using

known properties of random walks on a line, the number of steps required for this walk to reach
the target is Θ(N), which shows that Grover’s algorithm is no better than the naive classical search
algorithm.

But can there be another, more sophisticated algorithm that copes better with the faults? Our
main result shows that the answer is essentially ‘no’.

Our result: Our main result shows that there is essentially no quantum advantage when search-
ing with a faulty oracle.

Theorem 1. Any algorithm that solves the p-faulty Grover problem must use T > p
10(1−p) N queries.

In particular, for any constant p > 0, this gives a lower bound of Ω(N).
Notice that the above statement holds for any quantum algorithm, and not just for Grover’s

algorithm. In particular, it shows that some natural approaches, like fault-tolerant quantum com-
putation [14], cannot help in this setting. Note, however, that this impossibility result applies only
in case that the oracle is truly a black-box oracle; if, instead, the oracle is given as a faulty cir-
cuit, then fault-tolerant schemes can be used to achieve a quantum speed-up by applying them to
the circuit obtained by taking Grover’s algorithm and replacing the oracle calls with their circuit
implementation.

Related work: There has been a considerable amount of work dedicated to analyzing Grover’s
algorithm in all kinds of faulty settings (see, e.g., [15, 19, 18]). All these works concentrate on
Grover’s algorithm (or variants thereof) and none of them give a general statement that applies
to all algorithms. In particular, Shenvi et al. [19] analyze the behavior of Grover’s algorithm in a
physically motivated model that is equivalent to ours. Our result answers the main open question
presented in their paper.

There has also been a significant amount of work on searching with an imperfect, but still uni-
tary, oracle (see, e.g., [6, 11, 7, 12, 20]). Such oracles are sometimes known as noisy oracles. The
motivation for this model is algorithmic, and is related to what is known as amplitude amplifi-
cation. Typically in this case, the quantum speed-up of O(

√
N) is still achievable. Very roughly

speaking, this is because a unitary operation (even an imperfect one) is reversible and does not
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lead to decoherence. There has also been some recent work on analyzing the case of an imper-
fect unitary implementation of Grover’s algorithm (as opposed to an imperfect oracle) [16], again
showing that a speed-up of O(

√
N) is achievable.

Open problems: One interesting open question is to extend our result to other physically inter-
esting fault models. We believe that our proof technique should be applicable in a more general
setting. One natural fault model suggested to us by Nicolas Cerf is the one in which each oracle
query has probability p of turning the state into the completely mixed state. Also, is there any
reasonable fault model for which a quantum speed-up is achievable? We suspect that the answer
is no.

Another open question is to extend our result to other search problems (see [2] for a recent
survey). Is there any search problem for which a quantum speed-up is achievable with a faulty
oracle? Can one extend our lower bound to a more general lower bound in the spirit of the adver-
sary method (see [1, 10])? It is also worth investigating whether the polynomial method [3] can
be used to derive lower bounds in the faulty oracle case; our attempts to do so were unsuccess-
ful. We should emphasize, however, that our faulty oracle model is not necessarily so natural for
other search problems, and before approaching the above open questions, some thought should
be given to the choice of the faulty oracle model.

2 Preliminaries

We assume familiarity with basic notions of quantum computation (see [17]).

Definition 1 (Grover oracle). For each k ∈ {1, . . . , N} where N is an integer, the perfect oracle Ôk is
the unitary transformation acting on an N-dimensional register that maps |k〉 to−|k〉 and |i〉 to |i〉 for each
i 6= k, i.e.,

Ôk = −|k〉〈k|+ ∑
i 6=k
|i〉〈i|.

We also extend the definition to k = 0 by defining Ô0 to be the ‘null’ oracle, given by the identity matrix I.

Definition 2. The p-faulty oracle Ok
p is defined as the operation that with probability 1− p, acts as the

perfect oracle Ôk and otherwise does nothing, i.e., for any density matrix ρ,

Ok
p(ρ) = (1− p) · ÔkρÔk† + p · ρ.

We note that instead of our phase-flipping oracle, one could also consider a bit-flipping oracle.
Since it is not difficult to construct the latter from the former (see, e.g., [13, Chapter 8]), our lower
bound also applies to the bit-flipping case.

Definition 3. Let 0 < p < 1 be some constant. In the p-faulty Grover problem, we are given oracle
access to the p-faulty oracle Ok

p for some unknown k ∈ {0, . . . , N} and our goal is to decide whether k = 0
or not with success probability at least 9

10 .

Note that the choice of success probability is inconsequential, as one can easily increase it by
repeating the algorithm a few times. Also note that we consider here the decision problem, as
opposed to the search problem of recovering k from Ok

p. Since we are interested in lower bounds,
this makes our result stronger.
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3 Proof

We start by giving a brief outline of the proof. For simplicity, we consider the case p = 1/2. The
proof starts with a simple, yet crucial, observation (Claim 2) which gives an alternative description
of the faulty oracle. In the case p = 1/2, it says that the oracle Ok

p is essentially performing the
two-outcome measurement given by {|k〉, |k〉⊥}. Then, in Lemma 3, we ‘approximate’ the mixed
states that arise during the algorithm with (unnormalized) pure states. This is done by assuming
that the measurements done by the oracle all end up in the |k〉⊥ subspace. The rest of the proof
is similar in structure to previous lower bounds. Using the pure state description, we define a
progress measure Hk

t , which is initially zero. We show that at the end of the algorithm it must be
high (Lemma 4), and that it cannot increase by too much at each step (Lemma 5). This yields the
desired lower bound on the number of queries T. We now proceed with the proof.

Let A be an algorithm for the p-faulty Grover problem on N elements that uses T queries.
Assume the algorithm is described by the unitary operations U0, U1, U2, . . . , UT acting on an NM-
dimensional system, composed of an N-dimensional query register used as oracle input, and an
M-dimensional ancillary register. Let ρ̃0 denote the initial state of the system, which we assume
without loss of generality to be a pure state ρ̃0 = |φ̃0〉〈φ̃0|. For k ∈ {0, . . . , N}, we let ρ̃k

0 = ρ̃0,
ρk

0 = U0ρ̃k
0U†

0 , ρ̃k
1 = Ok

p(ρk
0), ρk

1 = U1ρ̃k
1U†

1 , . . . , ρk
T = UT ρ̃k

TU†
T be the intermediate states of the

algorithm when run with oracle Ok
p (see Figure 1). In other words, ρk

t is the state of the system
right after applying Ut, and ρ̃k

t+1 is the state of the system right after applying Ok
p on ρk

t .

U0

ρ̃k
0

ρk
0

ρ̃k
1

ρk
1

ρk
t−1 ρ̃k

t ρk
t ρk

T−1 ρ̃k
T ρk

T

U1 Ut UT

Ok
p Ok

p Ok
p

Figure 1: State evolution.

First we show a different way to decompose the outcome of Ok
p.

Claim 2. Let |φ〉 ∈ CN·M be an arbitrary vector and let |βi〉 ∈ CM be such that |φ〉 = ∑N
i=1 |i, βi〉. Then

Ok
p(|φ〉〈φ|) = |φ̃〉〈φ̃|+ 4p(1− p)|k, βk〉〈k, βk|

where

|φ̃〉 :=
N

∑
i=1
|i, βi〉 − 2(1− p)|k, βk〉.

Proof: By Definition 2 we have

Ok
p(|φ〉〈φ|) = p|φ〉〈φ|+ (1− p)|ψ〉〈ψ|
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where |ψ〉 = ∑i 6=k |i, βi〉 − |k, βk〉. Therefore

Ok
p(|φ〉〈φ|) = ∑

i 6=k
∑
j 6=k
|i, βi〉〈j, β j| − (1− 2p) ∑

j 6=k
|k, βk〉〈j, β j| − (1− 2p) ∑

i 6=k
|i, βi〉〈k, βk|+ |k, βk〉〈k, βk|

=

(
∑
i 6=k
|i, βi〉 − (1− 2p)|k, βk〉

) (
∑
j 6=k
〈j, β j| − (1− 2p)〈k, βk|

)

+ (1− (1− 2p)2)|k, βk〉〈k, βk|.

We will use the following vectors to track the progress of the algorithm.

Definition 4. For k ∈ {0, . . . , N} and t ∈ {0, . . . , T} we define the vectors |φk
t 〉, |φ̃k

t 〉 ∈ CN·M and
|αk

t,i〉 ∈ CM as follows. First,

|φ̃k
0〉 := |φ̃0〉,

|φk
t 〉 := Ut|φ̃k

t 〉

and |αk
t,i〉 are given by

|φk
t 〉 =

N

∑
i=1
|i, αk

t,i〉.

Finally, for k ∈ {1, . . . , N} and t ∈ {0, . . . , T − 1} we define

|φ̃k
t+1〉 := |φk

t 〉 − 2(1− p)|k, αk
t,k〉 =

N

∑
i=1
|i, αk

t,i〉 − 2(1− p)|k, αk
t,k〉

and for k = 0 we define |φ̃0
t+1〉 := |φ0

t 〉.
Lemma 3. For all t ∈ {0, . . . , T} and k ∈ {1, . . . , N}, we can write

ρk
t = |φk

t 〉〈φk
t |+ σk

t

for some positive semidefinite matrix σk
t .

Proof: Fix some k ∈ {1, . . . , N}. The lemma clearly holds for t = 0 (with σk
0 = 0). Suppose the

lemma holds for t and let us prove it for t + 1. By the induction hypothesis,

ρ̃k
t+1 = Ok

p(ρk
t ) = Ok

p(|φk
t 〉〈φk

t |) + Ok
p(σk

t ). (1)

By Claim 2 and the definition of |φ̃k
t 〉〈φ̃k

t |

Ok
p(|φk

t 〉〈φk
t |) = |φ̃k

t+1〉〈φ̃k
t+1|+ 4p(1− p)|k, αk

t,k〉〈k, αk
t,k|.

By combining this with Eq. (1) we get

ρ̃k
t+1 = |φ̃k

t+1〉〈φ̃k
t+1|+ 4p(1− p)|k, αk

t,k〉〈k, αk
t,k|+ Ok

p(σk
t ).
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We apply Ut+1 and obtain

ρk
t+1 = Ut+1ρ̃k

t+1U†
t+1

= Ut+1|φ̃k
t+1〉〈φ̃k

t+1|U†
t+1 + Ut+1

(
4p(1− p)|k, αk

t,k〉〈k, αk
t,k|+ Ok

p(σk
t )

)
U†

t+1

= |φk
t+1〉〈φk

t+1|+ Ut+1

(
4p(1− p)|k, αk

t,k〉〈k, αk
t,k|+ Ok

p(σk
t )

)
U†

t+1.

The second term is clearly positive semidefinite, as required.

We now define our progress measure Hk
t .

Definition 5. For t ∈ {0, . . . , T} and k ∈ {1, . . . , N} we define

Hk
t :=

∥∥|φ0
t 〉 − |φk

t 〉
∥∥2

.

Notice that Hk
0 = 0. The following lemma shows that at the end of the algorithm, the progress

measure must be not too small. Intuitively, this holds since if Hk
T is small, then |φk

T〉 is close to
|φ0

T〉 and since the latter is a unit vector, the former must be of norm close to 1. This, in turn,
implies that ρk

T is close to |φk
T〉〈φk

T|, which is close to |φ0
T〉〈φ0

T| = ρ0
T and thus the algorithm cannot

distinguish between ρk
T and ρ0

T in contrast to our assumption about the algorithm. We proceed
with the formal proof.

Lemma 4. For all k ∈ {1, . . . , N}, Hk
T > 1

10 .

Proof: By our assumption on the correctness of the algorithm,

9
10
≤

∥∥∥ρk
T − ρ0

T

∥∥∥
tr

=
∥∥∥ρk

T − |φ0
T〉〈φ0

T|
∥∥∥

tr

≤
√

1− 〈φ0
T|ρk

T|φ0
T〉

=
√

1− 〈φ0
T|(|φk

T〉〈φk
T|+ σk

T)|φ0
T〉

≤
√

1− |〈φ0
T|φk

T〉|2

where our definition of trace norm is normalized to be in [0, 1] and in the second inequality
we used that for a (normalized) pure state |ϕ〉 and a mixed state ρ, we have ‖ρ− |ϕ〉〈ϕ|‖tr ≤√

1− 〈ϕ|ρ|ϕ〉 (see, e.g., [17, Chapter 9]). Therefore,

Hk
T =

∥∥|φ0
T〉 − |φk

T〉
∥∥2

= 〈φ0
T|φ0

T〉+ 〈φk
T|φk

T〉 − 2Re(〈φ0
T|φk

T〉)
≥ 1− 2|〈φ0

T|φk
T〉| >

1
10

,

where the next to last inequality uses the fact that 〈φ0
T|φ0

T〉 = 1 and 〈φk
T|φk

T〉 ≥ 0.

The following lemma bounds the amount by which the progress measure Hk
t can increase in

each step.
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Lemma 5. For all k ∈ {1, . . . , N} and any 0 ≤ t < T,

Hk
t+1 − Hk

t ≤
1− p

p
· ‖α0

t,k‖2.

Proof: By the definition of the progress measure,

Hk
t+1 =

∥∥|φk
t+1〉 − |φ0

t+1〉
∥∥2

=
∥∥Ut+1|φ̃k

t+1〉 −Ut+1|φ0
t 〉

∥∥2

=
∥∥|φ̃k

t+1〉 − |φ0
t 〉

∥∥2

= (〈φk
t | − 2(1− p)〈k, αk

t,k| − 〈φ0
t |)(|φk

t 〉 − 2(1− p)|k, αk
t,k〉 − |φ0

t 〉)
= Hk

t − 4(1− p)‖αk
t,k‖2 + 2(1− p)〈αk

t,k|α0
t,k〉+ 2(1− p)〈α0

t,k|αk
t,k〉+ 4(1− p)2‖αk

t,k‖2

≤ Hk
t − 4p(1− p)‖αk

t,k‖2 + 4(1− p)‖αk
t,k‖‖α0

t,k‖
≤ Hk

t +
1− p

p
‖α0

t,k‖2

where the last inequality follows by maximizing the quadratic expression over ‖αk
t,k‖.

Theorem 1. Any algorithm that solves the p-faulty Grover problem must use T > p
10(1−p) N queries.

Proof: By Lemma 5, for all k ∈ {1, . . . , N},

Hk
T ≤

1− p
p

T−1

∑
t=0

‖α0
t,k‖2.

Since for any t, |φ0
t 〉 is a unit vector,

N

∑
k=1

Hk
T ≤

1− p
p

N

∑
k=1

T−1

∑
t=0

‖α0
t,k‖2 =

1− p
p

T.

To complete the proof, note that by Lemma 4, ∑N
k=1 Hk

T > 1
10 N.
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