On the Hardness of Satisfiability with Bounded Occurrences in the
Polynomial-Time Hierarchy

Ishay Haviv* Oded Regev' Amnon Ta-Shma*

March 12, 2007

Abstract

In 1991, Papadimitriou and Yannakakis gave a reduction implying the NP-hardness of approximat-
ing the problem 3-SAT with bounded occurrences [10]. Their reduction is based on expander graphs.
We present an analogue of this result for the second level of the polynomial-time hierarchy based on
superconcentrator graphs. This resolves an open question of Ko and Lin [7] and should be useful in
deriving inapproximability results in the polynomial-time hierarchy.

More precisely, we show that given an instance of ¥3-3-SAT in which every variable occurs at most
B times (for some absolute constant B), it is IIs-hard to distinguish between the following two cases:
YES instances, in which for any assignment to the universal variables there exists an assignment to the
existential variables that satisfies all the clauses, and NO instances in which there exists an assignment
to the universal variables such that any assignment to the existential variables satisfies at mosta 1 — ¢
fraction of the clauses. We also generalize this result to any level of the polynomial-time hierarchy.

1 Introduction

In the problem V3-3-SAT, given a 3-CNF formula we have to decide whether for any assignment to a set of
universal variables X there exists an assignment to a set of existential variables Y, such that the formula is
satisfied. Here, by a 3-CNF formula we mean a conjunction of clauses where each clause is a disjunction
of at most 3 literals. This problem is a standard IIs-complete problem. We denote the corresponding gap
problem by V3-3-SAT[1 — €1,1 — 9] where 0 < €3 < £; < 1. This is the problem of deciding whether
for any assignment to the universal variables there exists an assignment to the existential variables such that
at least a 1 — €9 fraction of the clauses are satisfied, or there exists an assignment to the universal variables
such that any assignment to the existential variables satisfies at most a 1 — €1 fraction of the clauses. The
one-sided error gap problem V3-3-SAT[1 — &, 1] is IIz-hard for some £ > 0, as was shown in [6]. This
problem has the perfect completeness property, i.e., in YES instances it is possible to satisfy all the clauses.

In this paper we consider a restriction of V3-3-SAT, known as V3-3-SAT-B. Here, each variable appears
at most B times where B is some constant. In [7], Ko and Lin showed that ¥3-3-SAT-B[1 — 1,1 — &3] is

*Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. havivish@post.tau.ac.il

TDepartment of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Supported by an Alon Fellowship, by the
Binational Science Foundation, by the Israel Science Foundation, and by the EU Integrated Project QAP.

#Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Supported by the Binational Science Founda-
tion, by the Israel Science Foundation, and by the EU Integrated Project QAP. amnon@post.tau.ac.1il

II5-hard for some constants B and 0 < g9 < €1 < 1. Our main result is that the problem is still II5-hard for
some €1 > 0 with e = 0, i.e., with perfect completeness. This solves an open question given in [7].

Theorem 1.1 The problem Y3-3-SAT-B[1 — ¢, 1] is [ls-hard for some constants B and € > 0. Moreover,
this is true even when the number of literals in each clause is exactly 3.

We note that the problem remains II3-hard even if the number of occurrences of universal variables is
bounded by 2 and the number of occurrences of existential variables is bounded by 3. As we will explain
later, these are the least possible constants for which the problem is still IIo-hard unless the polynomial-time
hierarchy collapses. We believe that Theorem 1.1 is useful for deriving IIs-hardness results, as well as 11y
inapproximability results. In fact, Theorem 1.1 was crucial in a recent proof that the covering radius problem
on lattices with high norms is IIs-hard [5]. Moreover, using Theorem 1.1, one can simplify the proof that
the covering radius on codes is IIs-hard to approximate [4].

At a very high level, the proof is based on the following ideas. First, one can reduce the number of
occurrences of existential variables by an expander construction in much the same way as was done by Pa-
padimitriou and Yannakakis [10]. The main difficulty in the proof is in reducing the number of occurrences
of universal variables: If we duplicate universal variables (as is usually done in order to reduce the number
of occurrences), we have to deal with inconsistent assignments to the new universal variables (this prob-
lem shows up in the completeness proof). The approach taken by Ko and Lin [7] is to duplicate universal
variables and to add existential variables on top of the universal variables. Their construction, in a way,
enables the existential variables to override inconsistent assignments to the universal variables. Unfortu-
nately, it seems that this technique cannot produce instances with perfect completeness. In our approach we
also duplicate the universal variables, but instead of using them directly in the original clauses, we use a
superconcentrator-based gadget, whose purpose is intuitively to detect the majority among the duplicates of
a universal variable. Crucially, this gadget requires only a constant number of occurrences of each universal
variable.

The rest of the paper is organized as follows. Section 2 provides some background about satisfiabil-
ity problems in the second level of the polynomial-time hierarchy and about some explicit expanders and
superconcentrators. In Section 3 we prove Theorem 1.1. Section 4 discusses the least possible value of B
for which the problem remains IIs-hard. In Section 5 we generalize our main theorem to any level of the
polynomial-time hierarchy.

2 Preliminaries

2.1 [II, Satisfiability Problem

A D-CNF formula over a set of variables is a conjunction of clauses where each clause is a disjunction of at
most D literals. Each literal is either a variable or its negation. A clause is satisfied by a Boolean assignment
to the variables if it contains at least one literal that evaluates to True.

For any reals 0 < o < 8 < 1 and positive integer D > 0, we define:

Definition 2.1 (V3-D-SAT |, 3]) An instance of ¥Y3-D-SAT |, 3] is a D-CNF Boolean formula V(X,Y’)
over two sets of variables. We refer to variables in X as universal variables and to those in'Y as existential
variables. In YES instances, for every assignment to X there exists an assignment to'Y such that at least a

0 fraction of the clauses are satisfied. In NO instances, there exists an assignment to X such that for every
assignment to 'Y at most an « fraction of the clauses are satisfied.

The problem V3-D-SAT |, /] is the basic approximation problem in the second level of the polynomial-
time hierarchy (see [11, 12] for a recent survey on the topic of completeness and hardness of approximation
in the polynomial-time hierarchy). We also define some additional variants of the above problem. For any
B > 1 the problem V3-D-SAT-B|«, (3] is defined similarly except that each variable occurs at most B times
in ¥. In the instances of the problem V3-D-SAT-By|«, 3], the bound B on the number of occurrences applies
only to the universal variables (as opposed to all variables).

In [7] it was shown that ¥3-3-SAT-B[1 — 1, 1 — e9] is IIz-hard for some B and some 0 < g9 < g1 < 1.
As already mentioned, in Section 3 we show that it is II»-hard even for some B, 1 > 0 and 5 = 0.

2.2 Expanders and Superconcentrators

In this subsection, we gather some standard results on explicit constructions of expanders and supercon-
centrators (where by explicit we mean constructible in polynomial time). The first shows the existence of
certain regular expanders.

Lemma 2.2 ([8, 9]) There exists a universal constant Cy such that for any integer n, there is an explicit
14-regular graph G = (V, E) with n < |V| < Cyn vertices, such that any nonempty set S C V satisfies
[E(S,5)] > min(|S], [5]).

For the second, we need to define the notion of a superconcentrator.

Definition 2.3 (n-superconcentrator) A directed acyclic graph G = (U UV U W, E) where U denotes a
set of n inputs (i.e., vertices with indegree 0) and V' denotes a set of n outputs (i.e., vertices with outdegree
0) is an n-superconcentrator if for any subset S of U and any subset T of V' satisfying |S| = |T|, there are

|S| vertex-disjoint directed paths in G from S to T.

The explicit construction of sparse superconcentrators has been extensively studied. Gabber and Galil [3]
were the first to give an explicit expander-based construction of n-superconcentrator with O(n) edges. Alon
and Capalbo [1] presented the most economical known explicit n-superconcentrators, in which the number
of edges is 44n + O(1). Their construction is based on a modification of the well-known construction of
Ramanujan graphs by Lubotzky, Phillips and Sarnak [8] and by Margulis [9]. The following theorem of [1]
summarizes some of the properties of their graphs.

Theorem 2.4 ([1]) There exists an absolute constant k > 0 for which the following holds. For any n of the
form k2L (1 > 0) there exists an explicit n-superconcentrator H = (UUV UW, E) with |E| = 44n+O(1)
and all of whose vertices have indegree and outdegree at most 11.

In our reduction, we use a slight modification of the superconcentrator in Theorem 2.4. This graph is
described in the following claim (see Figure 1 for an illustration of the construction).

Claim 2.5 There exist absolute constants c and d for which the following holds. For any natural n > 1 there
exists an explicit directed acyclic graph G = (UUV UW,E) with a set U of 2n inputs (i.e., vertices
with indegree 0) with outdegree 1 and a set V' of n outputs (i.e., vertices with outdegree 0), such that for any

subset S of U of size |S| = n there are n vertex-disjoint directed paths from S to V. Moreover, |[E| < ¢cn

and all indegrees and outdegrees in G™ are bounded by d.

o o iibi : lib: 1 :ibi : 10: ? o ? i ? ? i ?) ? U
| RAL |
L L ARG
— I,

Figure 1: The graph G(%). All edges are directed downwards. The marked subgraph is a 6-superconcentrator
(but not necessarily the one from [1]).

Proof: Fix some n > 1. By Theorem 2.4 there exists an explicit ng-superconcentrator H' = (U’ U
V' UW' E") for some n + k < ng < 2(n + k) where k is the constant from Theorem 2.4, such that
|E'| = 44np + O(1) and all its indegrees and outdegrees are bounded by 11. Denote by U” = {uf, ... u
and by V = {vy,...,v,} arbitrary subsets of U’ and V"’ of size exactly n.

In order to construct the graph G we add to the graph H’ the 2n vertices U = {u1,...,u2,} and 2n
edges. The input set of the graph G(™) is U, and the output set of G is V. For each i € {1,...,n} we
add the directed edges (u;, u!') and (4j4n,v;). In other words, we add to the graph two matchings of size n:
the first between the vertex sets {u1, ..., u,} and U”, and the second between {uy 41, ..., u2,} and V.

It is easy to see that our graph satisfies the required properties for large enough absolute constants ¢ and
d. Let S C U be of size n, and define S; = SN{wu; : 1 <i<n}and So = SN{u;:n+1<i<2n}.
We show that there exist n vertex-disjoint paths from .S to V. According to our construction, the vertices of
S9 have paths of length 1 to their neighbors in V. So it suffices to show that the vertices of S; have vertex-
disjoint paths to the n — |S3| = |S1| remaining vertices of V. According to the property of H’, there exist
vertex-disjoint paths in G(™ between the neighbors of S; in U” and the n — |S2| vertices of V. Combining
these paths together with the matching edges between S; and U” completes the proof. [

3 Hardness of Approximation for V3-3-SAT-B

In this section we prove Theorem 1.1. The proof is by reduction from the problem ¥3-3-SAT[1 —e¢, 1], which
was shown to be II3-hard for some € > 0 in [6]. The reduction is performed in three steps. The first step is
the main one, and it is here that we present our new superconcentrator-based construction. The remaining
two steps are standard (see for example [14] and [2]) and we include them mainly for completeness. We
remark that these two steps are also used in [7].

e Step 1: Here we reduce the number of occurrences of each universal variable to at most some constant
B. As a side effect, the size of the clauses grows from being at most 3 to being at most D, where D is
some constant. More precisely, we establish that there exist absolute constants B, D and € > 0 such
that the problem V3-D-SAT-By[1 — ¢, 1] is IIz-hard.

e Step 2: Here we reduce the number of occurrences of the existential variables to some constant B.

Notice that we must make sure that this does not affect the number of occurrences of the universal
variables. More precisely, we show that there exist absolute constants B, D and £ > 0 such that the
problem V3-D-SAT-B[1 — ¢, 1] is [Ip-hard.

e Step 3: Finally, we modify the formula such that the size of the clauses is exactly 3. Clearly, we must
make sure that the number of occurrences of each variable remains constant. This would complete the
proof of Theorem 1.1.

3.1 Stepl

Before presenting the first step we offer some intuition. In order to make the number of occurrences of the
universal variables constant we replace their occurrences by new and distinct existential variables. In detail,
assume x is a universal variable that occurs ¢ times in an instance ¥ of ¥3-3-SAT[1 — ¢, 1]. For such a
variable we construct the graph G(¥) = (UUV UW, E) given in Claim 2.5 and identify its £ output vertices
V' with the ¢ new existential variables. In addition, we associate a universal variable with each of the 2/
vertices of U, and an existential variable with each vertex in W and also with each edge in £. We add
clauses that verify that in the subgraph of G) given by the edges with value True, there are ¢ vertex-disjoint
paths from U to V' (and hence each vertex in V' has one incoming path). We also add clauses that verify
that if an edge has value True then both its endpoints must have the same value. This guarantees that each
variable in V' gets the value of one of the variables in U. Completeness follows because for any assignment
to U, we can assign all the variables in V' to the same value by connecting them to those variables in U that
get the more popular assignment (recall that |U| = 2|V| and the properties given in Claim 2.5). For the
proof of soundness, we show that if all the U variables are assigned the same value, then all the V' variables
should also be assigned this value.

3.1.1 The Reduction

The proof is by reduction from the problem ¥3-3-SAT[1 — ¢, 1] which is ITs-hard for some constant € > 0
as shown in [6]. Let ¥(X,Y') be a 3-CNF Boolean formula with m clauses over the set of variables X UY,
where X = {z1,...,z x|} is the set of universal variables, and Y = {y1,...,yy|} is the set of existential
variables. The reduction constructs a formula ¥/ (X', Y”) over X’ UY’. The number of occurrences in ¥’
of each universal variable from X’ will be bounded by an absolute constant B, and the number of literals
in each clause will be at most D. In fact, these constants are B = 2 and D = d 4 1, where d is given in
Claim 2.5.

For each universal variable x; € X denote by ¢; the number of its occurrences in the formula W, and
apply Claim 2.5 to obtain the graph G; = G() = (U; UV; UW;, E;). Recall that the maximum degree
(indegree and outdegree) of these graphs is bounded by some constant d and that the number of edges
in G; is bounded by c - ¢; for some constant c. Denote the vertex sets of G; by V; = {v%i), . ,vg)},

Ui = {ugi), . ,uéz} and W; = {wgi), . ,w‘(é‘),i‘}, and its edge set by E; = {egi), . ’el(gil}' The set
of existential variables in ¥/ is Y’ = (U‘éll (V;UuW; U El)> UY. The set of universal variables in ¥’ is
X' = Uz u.

The clauses of ¥ are divided into the following five types (see Figure 2).

1. Major clauses: These clauses are obtained from clauses of the formula ¥, by replacing the jth

o v
e 3
1
Vo2
A 4

| 543

Figure 2: An illustration of the reduction for the case ¢ = 6.

occurrence of the universal variable x; with the variable v§i) eViforl <i<|X|,1<j<Y¥. The

number of clauses of this type is m.

2. Outdegree clauses: These clauses verify that among the directed edges leaving a vertex in G, at

most one has value True. For each vertex w, we add the clause (—|e(7) \% —|e§i)) for each pair of edges

J1
eyl), egz) leaving w. Each such clause is duplicated d? times. The number of clauses of this type is at

most ¢; - ¢ - d? (g) for each 1.

3. Flow clauses: These clauses verify for any vertex wl® € W; that if at least one of its outward edges

J
has value True then there exists also an edge entering w]@ with value True. This is done by adding a
clause of the form (—|e§f) % e;? VARERY egz),) for each eg.f) leaving wﬁi) ﬁ), ce eg-i), are all the
0 < d' < d edges entering wj@. The number of clauses of this type is at most ¢ - ¢; for each 1.

where e

4. V-degrees clauses: These clauses verify that each vertex v§i) has at least one incident edge with True

value. This is done by adding one clause of the form (eg? VeV eg) where eg-?, . ,e§?/ are the
d’" < d edges incident to v§i). The number of clauses of this type is ¢; for each q.
5. Edge consistency clauses: For each edge ey) € E; do the following. Let wj(i) , wj(.i) cU, UV, UW;

be its endpoints. Add the two clauses (ﬂegi) Vv w](-i)

2 is True, then w](? and wg)

V _\wj(;)) and (_‘6‘(7,7;) \V —‘w.gi) \Vi w‘gz))’ Wthh Check
that if the value of eg- have the same truth value. The number of clauses

of this type is at most 2¢/; for each i.

Note that each clause contains at most D = d + 1 literals. Using ZZ ¢; < 3m, the number of clauses in
U’, which we denote by m/, is at most O(mc - (d* + 1)) < C - m for some absolute constant C'. Moreover,
the number of occurrences of each universal variable is exactly 2, because universal variables appear only
in clauses of type (5) and vertices in the U; have outdegree 1. This completes the construction of W'.

3.1.2 Completeness

Our goal in the completeness proof is to show that if ¥ (X, Y) is a YES instance of ¥3-3-SAT[1 — ¢, 1], then
for any assignment to X', there is an assignment to Y that satisfies all the m’ clauses in ¥/(X’,Y”). Let ¢/

be an arbitrary assignment to the universal variables X’. Recall that X" is the union U‘é'l U;. We define an
assignment ¢ to X based on the majority of the assignments given by ¢'. More formally,

True, |{j: t’(u(-i)) = True}| > 4;,
False, otherwise.

By the assumption on the original formula ¥(X,Y"), the assignment ¢ can be extended to X UY, in a
way that satisfies all the clauses in W(X,Y’). Let us extend the assignment ¢’ to the existential variables
Y = (U‘Z):q1 (V; UW; U E;)) UY. First, let the assignment ¢’ give the same values as ¢ for the variables
in Y. For each i denote by S; C Uj a set of vertices from U; of size |.S;| = ¢; in which every variable has
value t(x;). There exists such a set according to the definition of ¢. By Claim 2.5 there are ¢; vertex-disjoint
directed paths in G; from S; to V;. We define ¢’ (eg.i)) to be True if eg-i) appears in one of these paths and
False otherwise. In addition, ¢’ gives the value ¢(x;) to all variables in V; U W;.

We now check that the assignment ¢’ satisfies all clauses in ¥’. The assignment to the variables in V; is
t(x;). Since the variables Y are also assigned according to t, all clauses of type (1) are satisfied. The paths
given by Claim 2.5 are vertex-disjoint. In particular, every vertex has at most one outward edge assigned
to True, so all clauses of type (2) are satisfied too. Moreover, if at least one of the edges leaving a vertex
w € W; has value True then there exists also a directed edge with value True entering w. Therefore, the
clauses of type (3) are satisfied. The number of paths in G; is ¢;, so there is one path reaching every vertex
in V;. This means that the clauses of type (4) are satisfied too. Finally, our assignment gives the value ¢(z;)
to all variables in S; U V; U W;. In particular, each edge assigned to True has both its endpoints with the
same value. Thus, the clauses of type (5) are satisfied, as required.

3.1.3 Soundness

In the soundness proof we assume V(X,Y') is a NO instance of V3-3-SAT|[1 — £,1]. We will show the
existence of an assignment to X’ for which any assignment to Y satisfies at most (1 — &’)m/’ clauses of
U'(X',Y") for e’ = &, and hence the theorem will follow.

Let ¢ be an assignment to X such that every extension of ¢ to X U 'Y satisfies at most (1 —)m clauses
in U(X,Y). Define an assignment ¢’ to X’ in which every variable ugi) has the value ¢(x;). Extend ¢’ to an
assignment to X’ U Y” in an arbitrary way. Our goal in the following is to show that the number of clauses
satisfied by ¢’ is at most (1 — ¢’)m/. We start with the following two claims.

Claim 3.1 Let t' be an assignment to X' UY" as above. Then t' can be modified to an assignment t” that

satisfies every clause of type (2) and satisfies at least as many clauses as t' satisfies.

Proof: We obtain ¢t” by performing the following modification to ¢’ for each i: For each variable in W, if it
has more than one outward edge assigned to True by ¢, t”” assigns False to all its outward edges. Since we
only modify variables in E;, clauses of type (1) are not affected. Moreover, since we only set edges to False,
we do not decrease the number of satisfied clauses of type (5). We might, however, reduce the number of
satisfied clauses of types (3) and (4) by at most d for each variable (at most d for each out-neighbor of the
vertex). On the other hand, the corresponding clause of type (2) is satisfied by ¢”, and by the duplication,
this amounts to at least d? additional satisfied clauses. In total, the number of clauses satisfied by ¢” is at
least the number of clauses satisfied by ¢/, and the claim follows. [

Claim 3.2 Let t' be an assignment to X "UY’ that satisfies all clauses of type (2). Denote by k the number
of vertices v) ¢ U, Vi satisfying t' () # t(x;), where t is the assignment to X as above. Then at least k
clauses of types (3), (4) or (5) are unsansﬁed byt

(®)
a one-to-one fashion a clause of type (3), (4) or (5) which is not satisfied by t’ To show this let G’ be the

Proof: Fix some i. It suffices to show that to each vertex v, satisfying ¢’ () # t(x;) we can assign in

subgraph of G; given by the edges assigned to True by #'. Let A; be the set of vertices that have a directed
pathin G’ to v§z)
1 < j < ¥; such that ¢/ () # t(x;). Since G; is acyclic, A; contains a vertex v whose indegree in G’

is 0. If u is in U; then at least one of the clauses of type (5) on the path from u to v](.i)

Since clauses of type (2) are all satisfied by ¢/, the sets A; are pairwise disjoint. Fix some

is unsatisfied by ¢/,

because t'(u) = t(x;) whereas t/ () # t(x;). Otherwise at least one of the clauses of types (3) and (4) is
unsatisfied by ¢'. Therefore, we see that the number of clauses of type (3)-(5) unsatisfied by ¢’ is at least the

number of vertices v(g satisfying ¢/ () # t(x;). |

Recall that ¢’ is an assignment to X’ U Y” that assigns every variable u§i) to t(x;). We have to show that
t’ satisfies at most (1 — &’)m/ clauses in ¥’. By Claim 3.1 we can assume that ¢’ satisfies all clauses of type
(2) in 0.

Now, we define an assignment t” to X’ U Y” as follows. For each i, let S; be an arbitrary subset of U;
of size /;. We know that there exist ¢; directed vertex-disjoint paths from S; to V; in GG;. The assignment
t" assigns all the eg-i) in these paths to True and all other eg-i) to False. Moreover, ¢’ gives all variables in
U; U V; U W; the value ¢(x;). Finally, we define ¢” on Y to be identical to ¢'. Notice that in " all clauses
of type (2)-(5) are satisfied. Denote by & the number of the variables v(g satisfying ¢/ () # t(z;). Then
the number of type (1) clauses satisfied by " is smaller than that of ¢’ by at most k. Moreover t’ satisfies
all clauses of type (2), so by Claim 3.2 at least k clauses of type (3)-(5) are unsatisfied by ¢’. In total, the
number of clauses satisfied by ¢” is at least the number of clauses satisfied by ¢'.

Finally, by our assumption on ¥ and on ¢ we get that at least emn clauses of type (1) are not satisfied by
t”. So the number of satisfied clauses is at most m’ — em < (1 — &’)m/, as required.

3.2 Step2

With Step 1 proven, we now apply an idea of [10] to show that there are absolute constants B and € > 0, for
which the problem V3-D-SAT-B[1 — ¢, 1] is IIo-hard. This proof uses the expander graphs from Lemma 2.2.
The Reduction: Consider the ITy-hard problem V3-D-SAT-By[1 — &', 1] for some ¢’ > 0. Let ¥(X,Y)
be an instance of this problem. For every existential variable y; € Y (1 < i < |Y|) denote by n; the
number of the occurrences of y; in W. Assuming n; is large enough, consider the graph G; = (V;, E;) given
by Lemma 2.2 for n;, with n; < |V;| < Cyn; (if n; is not large enough, we do not need to modify this
variable). Label the vertices of G; with |V;| new distinct existential variables Y; = {ygi), e y‘(‘l/) |}. We
construct a new Boolean formula ¥’(X,Y”) over the universal variables in X and the existential variables
inY’ = UlYl Y;. First, for each 1 < i < |Y| replace the occurrences of y; by n; distinct variables of Y;.
Second, for each edge (j(), yj(.,)) in GG, add to U the two clauses (ﬂy](Dy yj(.,)) and (y](Dy ﬂyj(/)), which are
both satisfied if and only if the variables yj(-i), yj(f) have the same value. The number of clauses in ¥’ is linear
in)", n; < Dm. Notice, that the number of occurrences of each variable in ¥’ is bounded by a constant.
Correctness: Let U(X,Y), an m clause formula, be a YES instance, i.e., for every assignment to X
there exists an assignment to Y such that every clause in V¥ is satisfied. Clearly, for any assignment to X

there exists an assignment to Y’ which satisfies all the clauses in ¥’, because we can set the Y; variables
the value of y; in ¥. Now , assume W is a NO instance, so there is an assignment ¢ to X such that for any
assignment to Y~ at least 'm clauses are unsatisfied in . Let ¢’ be an arbitrary extension of ¢ to X U Y.
If for some 1 < 4 < |Y|, ¢ does not assign to all the Y; variables the same value for some 1 < i < [V, it
is possible to improve the number of satisfied clauses by setting all the Y; variables to the majority vote of

t' on Y;. Indeed, denote by S; the set of variables in Y; that were assigned by ' to True. This modification
reduces the number of satisfied clauses by at most min(|.S;, |S;|), but satisfies at least | E(.S;, S;)| unsatisfied
consistency clauses. Lemma 2.2 states that | E(S;, S;)| > min(]S;|, |S;]), so this modification improves the
number of satisfied clauses. Hence, we can assume that for each 1 < ¢ < |Y|, ¢ assigns to all the Y;
variables the same value for each 1 < i < |Y|. Thus, by the assumption on ¥ we conclude that ¢’ does not

o

satisfy at least 'm clauses, meaning at least an % fraction of the clauses is not satisfied. Defining ¢ = &

completes the proof.

3.3 Step3

This subsection completes the proof of Theorem 1.1 by showing a reduction that modifies the size of the
clauses to exactly 3.

The Reduction: Let U(X,Y) be an instance of V3-D-SAT-B[1 — &', 1] with m clauses. We transform
U into a formula U(X’,Y”), whose clauses are of size exactly 3, as follows. For each clause of size 1,
like (a), we add a new universal variable z and replace it by (a V z V z). Similarly, for each clause of size
2, like (a V b), we add a new universal variable z and replace it by (a V bV z). Now consider a clause
C = (u1 VugV---Vu,) of size r > 3, where the u; are literals. For each such clause introduce — 3 new
and distinct existential variables z1, . . ., z,_3 and replace C in the formula ¥ by the clauses of C’,

C = (Ul V ug V Zl) AN (ﬁZl Vusg VvV ZQ) VANV (ﬁzr_4 V Up_2 V Zr_g) VAN (ﬁzr_3 VUp_1V u,n).

The number of the clauses in ¥’ is at most Dm. Obviously, the number of occurrences of each variable
remains the same, and the newly added variables appear either once or twice.

Correctness: It is easy to see that if ¥ is a YES instance then so is U’ and that if ¥ is a NO instance,
then there exists an assignment to X’ such for any assignment Y, at least £'m of the clauses of ¥/(X’,Y”)
are unsatisfied. So for e = %/ we get the desired result.

4 On the Number of Occurrences

The output of the reduction of Section 3 is a formula in which every universal variable occurs at most twice
and every existential variable occurs at most B times for some constant B. By performing a transformation
similar to the one in Step 2 with the graphs of Lemma 2.2 replaced by directed cycles, the number of
occurrences of each existential variable can be made at most 3 (see for example Theorem 10.2, Part 1 in
[2]). This implies that if we allow each universal variable to occur at most twice and each existential variable
to occur at most 3 times, the problem remains IIs-hard. Here, we show that 2 and 3 are the best possible
constants (unless the polynomial-time hierarchy collapses).

First note that whenever a universal variable occurs only once in a formula, we can remove it without
affecting the formula. Hence, if each universal variable occurs at most once, the problem is in NP and thus
is not IIs-hard, unless the polynomial-time hierarchy collapses.

Moreover, if we allow every existential variable to occur at most twice, the problem lies in coNP and
is thus unlikely to be ITs-hard. Given an assignment to the universal variables X, the formula ¥(X,Y)
becomes a SAT formula in which each variable appears at most twice. Checking satisfiability of such
formulas can be done in polynomial time [13]. Indeed, variables that appear only once and those that appear
twice with the same sign can be removed from the formula together with the clauses that contain them. This
means that we are left with a SAT formula in which each variable appears once as a positive literal and once
as a negative one. So consider the bipartite graph H = (AU B, E') in which A is the set of clauses of ¥ and
B is the set of its existential variables. We connect by an edge a clause in A to a variable in B if the clause
contains the variable. Notice that there exists a matching in H that saturates A if and only if the formula is
satisfiable. The existence of such a matching can be checked easily in polynomial time. Therefore V3-SAT
restricted to instances in which every existential variable occurs at most twice is in coNP.

S Extension to Higher Levels of the Hierarchy

As one might expect, Theorem 1.1 can be generalized to any level of the polynomial-time hierarchy. In this
section, we describe in some detail how this can be done. Our aim is to prove the following theorem (the
problems below are the natural extension of V3-3-SAT to higher levels of the hierarchy; see [6]).

Theorem 5.1 For any r > 1 there exists an € > 0 such that (V3)"-3-SAT-B[1 — ¢, 1] is Ia,-complete and
3(V3)"-3-SAT-B[1 — ¢, 1] is Yo, +1-complete (where B is some absolute constant). Moreover, this is true
even when the number of literals in each clause is exactly 3.

For convenience, we present the proof only for the even levels of the hierarchy (IIz,). The case of odd
levels is almost identical.

Our starting point is a result of [6], which says that for any » > 1 there exists an € > 0 such that
(V3)"-3-SAT[1 — ¢, 1] is Ila,-complete. As in Section 3, the proof proceeds in three steps. In the first we
reduce the number of occurrences of universal variables. In the second we reduce the number of occurrences
of existential variables. Finally, in the third step we modify the formula such that the size of each clause is
exactly 3.

5.1 Step1

In this step we show that for any £ > 0 there exists an &’ > 0 such that (V3)"-3-SAT[1 — &, 1] reduces to
(V3)"-D-SAT-By[1 — ¢, 1] for some absolute constants D, B (where the latter problem is a restriction of
the former to instances in which each universal variable appears at most B times). In more detail, given a
3-CNF formula ¥ on variable set X; UY; U --- U X, UY,, we show how to construct a D-CNF formula
U’ on variable set X UY{ U ---U X, UY] in which each universal variable appears at most B times, and
whose size is linear in the size of ¥, such that

max min - - - max min SAT(U, tx,, ty;, ..., tx,, ty.)
tx; ity tx, tv,
= max min - - - max min SAT (V' t ./, tyr, ... txr, tyr), (1)
txr by txr by 1 1 r r
1 1 T T

where SAT denotes the number of unsatisfied clauses in a formula for a given assignment. It is easy to see
that this is sufficient to establish the correctness of the reduction. Moreover, it can be verified that in Step 1,
Section 3 we proved Eq. (1) for the case r = 1.

10

Before describing the reduction, we note that in Step 1, Section 3, the only property of the original
formula that we used is that flipping the value of an occurrence of a variable can change the number of
satisfied clauses by at most one. This leads us to the following lemma, whose proof was essentially given
already in Step 1, Section 3.

Lemma 5.2 For any { > 1 there exists a k > { and a D-SAT formula ®(x1, . .., 220, Y1, - .., Yx) (for some
absolute constant D) on 20 + k variables of size O({) in which each of the first 2¢ variables appears at
most twice such that the following holds. For any integer-valued function f on £ Boolean variables with the
property that flipping any one variable changes the value of f by at most one, we have that

mgxf(x,...,x): max min (f(yi,...,y¢) + SAT(®, 21, .., T2, Y1y -+, Yk))s

L1026 Y1yen Yk

where x,x1,...,%2,Y1,-- -, Y are Boolean variables.

Using this lemma we can now describe our reduction. We are given a 3-CNF formula ¥ on variable set
X1UYiU---UX, UY,. We perform the following modifications for each universal variable x. Let ¢ be
such that z € X; and ¢ be the number of times x occurs in V. Let k£ and ¢ be as given by Lemma 5.2.
First, we replace « € X; with 2¢ new variables x1, ..., 29 € X; and add k new variables y1, ..., y; to Y;.
Next, we replace the ¢ occurrences of = with y1, ..., y,. Finally, we append ®(x1,..., 22, y1,...,Yk) to
the formula. Let U’ be the resulting formula and X} UY{ U---U X/ UY]/ be the resulting variable set. This
completes the description of the reduction.

Clearly, each universal variable in U’ appears at most twice, and moreover, the size of W’ is linear in
that of U. Therefore it remains to prove Eq. (1). We do this by showing that for each universal variable, the
modifications we perform leave the expression in Eq. (1) unchanged. So let ¥ be an arbitrary formula on
some variable set X; UY; U---U X, UY,, and let x € X, be a universal variable with £ occurrences. It can
be seen that our goal is to show that!

maxmin--- max maxmin---maxming(tx,,ty,... XNz} Ty - Ty by, Jtx,,ty,)
tx; tyy Ix\ e} T ly; tx, tv,
= maxmin--- max max min min---maxmin
lx, tyvy tx;\{z} T1s-T20 Y15 Yk Ly, tx, tly,.

(g(tletY1a .. 'atXi\{x}vyla e 7y€7tY¢a Q) 7tXr7tYT) + SAT((I),CUh e L20, Y1y - - 7yk‘))a

where g denotes the number of unsatisfied clauses in ¥ under the given assignment to all variables except =
and to all occurrences of x, and k£ and ® are as in Lemma 5.2. Clearly it suffices to prove this equality for
any fixed setting to the variables quantified before z, i.e.,
maxmin- - - maxmin g(tx,, ty;, -, Ex,\fa}s T - - > Tty - x5 by,
x tyz. tx, ty,

= max min min---maxmin
T1yee5T28 Y1so-0Yk Ly tx, ty,

(g(tletyla .. 'atXi\{x}vyla e 7y€7tY¢a e 7tXr7tYT) + SAT((I)vxlv e L20, Y1 - - 7yk‘))a

but this follows from Lemma 5.2.
We conclude that (V3)"-D-SAT-By[1 — ¢, 1] is IIz,-hard for some € > 0.

"We remark that the fact that we write max; x,\{=} MaXe as opposed t0 max, maxey ., Will be crucial when we apply
Lemma 5.2, as this prevents an additional quantifier alternation.

11

5.2 Step2

In this step we show that for any & > 0 there exists an ¢’ > 0 such that (V3)"-D-SAT-By[1 — ¢, 1] reduces
to (V3)"-D-SAT-B[1 — ¢/, 1] for some absolute constants D, B. The following lemma is the analogue of
Lemma 5.2 for existential variables, and its proof essentially appeared already in Step 2, Section 3.

Lemma 5.3 For any large enough { there exists a 2-SAT formula ®(y1, ... ,ye) on £ variables of size O({)
in which each variable appears at most B times (for some absolute constant B) such that the following holds.
For any integer-valued function f on £ Boolean variables with the property that flipping any one variable
changes the value of f by at most one, we have that

mylnf(ya o 7y) = y}nlgé(f(ylv v 7yf) + SAT((Dﬂyh . '7y€))7

where y,y1, . ..,y are Boolean variables.

The reduction is as follows. We are given a D-CNF formula ¥ on variable set Xy UY; U---U X, UY,.
We perform the following modifications for each existential variable y. Let 7 be such that y € Y; and ¢ be the
number of times y occurs in W. Let ¢ be as given by Lemma 5.3. First, we replace y € Y; with ¢ variables
Y1, .- .,ye € Y;. Next, we replace the ¢ occurrences of y with y1, . .., y,. Finally, we append ®(y1,...,yp)
to the formula. This completes the description of the reduction. The proof of correctness is similar to the
previous one and uses Lemma 5.3.

5.3 Step3

To complete the proof of Theorem 5.1 we now modify the formula so that the number of literals in each
clause is exactly 3. Given a formula ¥ on variable set X1 U Y; U--- U X, UY, we apply the modification
of Step 3, Section 3. We add the new existential variables to Y, and the new universal variables to X,.. The
proof of correctness is easy and is omitted.

Acknowledgement

We thank Ker-I Ko for sending us a copy of [7]. Some of the early ideas that eventually led us to the
construction of Section 3 were obtained while the second author was working on [4] together with Daniele
Micciancio and Venkatesan Guruswami. We also thank two anonymous referees for their helpful comments.

References

[1] N. Alon and M. Capalbo. Smaller explicit superconcentrators. Internet Math., 1(2):151-163, 2004.

[2] S. Arora and C. Lund. Hardness of approximation. In D. S. Hochbaum, editor, Approximation algo-
rithms for NP-hard problems. PWS, Boston, 1996.

[3] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. J. Comput. Syst.
Sci., 22(3):407-420, June 1981.

[4] V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering radius problem on
lattices and codes. Computational Complexity, 14(2):90-121, 2005. Preliminary version in CCC’04.

12

[5] I. Haviv and O. Regev. Hardness of the covering radius problem on lattices. In Proc. of 21th IEEE
Annual Conference on Computational Complexity (CCC), 2006.

[6] K.-I. Ko and C.-L. Lin. Non-approximability in the polynomial-time hierarchy. Technical Report 94-2,
Dept. of Computer Science, SUNY at Stony Brook, 1994.

[7] K.-I. Ko and C.-L. Lin. On the longest circuit in an alterable digraph. J. Global Optim., 7(3):279-295,
1995.

[8] A.Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988.

[9] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their applications
in the construction of expanders and concentrators. Problemy Peredachi Informatsii, 24(1):51-60,
1988.

[10] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Jour-
nal of Computing and System Sciences, 43:425—-440, 1991.

[11] M. Schaefer and C. Umans. Completeness in the Polynomial-Time Hierarchy: A Compendium.
SIGACT News, Sept. 2002.

[12] M. Schaefer and C. Umans. Completeness in the Polynomial-Time Hierarchy: Part II. SIGACT News,
Dec. 2002.

[13] C. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics 8(1),
8(1):85-89, 1984.

[14] V. V. Vazirani. Approximation algorithms. Springer-Verlag, Berlin, 2001.

13

