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Abstract

We consider load balancing of temporary tasks on m machines in the restricted

assignment model. It is known that the best competitive ratio for this problem is

Θ(
√

m). This bound is not achieved by the greedy algorithm whose competitive

ratio is known to be Ω(m
2

3 ). We give an alternative analysis to the greedy algorithm

which is better than the known analysis for relatively small values of m. We also

show that for a small number of machines, namely m ≤ 5, the greedy algorithm is

optimal.

1 Introduction

The problem: We study the following non-preemptive on-line load balancing problem.

The input consists of a stream of temporary tasks (jobs). Each job j has an arrival

time and a departure time (which is unknown at the arrival time and becomes known

simply when the job departs), and a set of permitted machines M(j). The job should

be assigned to one machine immediately upon its arrival. A job j has a weight wj. If

it is assigned to machine i (i ∈ M(J)), it increases the load of machine i by wj , for

the duration of job j. The load on a machine at a certain time is the sum of the loads

caused by the jobs assigned to it at that time. The goal is to minimize the maximum
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load over machines and time. Note that the load and the time are two separate axes of

the problem. In this paper we are interested in the above problem for cases where m is

a small constant.

Preliminaries: In this paper we consider a greedy algorithm ”GREEDY ”. This

is the algorithm which assigns each job to the minimum loaded admissible machine (in

case of a tie - the machine with smallest index is selected).

The quality of an on-line algorithm, is measured by the competitive ratio that is

the worst case ratio between the cost (maximum load over machines and time, in this

paper) of the on-line algorithm (the on-line algorithm is denoted by ON) and the cost of

an optimal off-line algorithm which knows the whole sequence in advance (the optimal

off-line algorithm is denoted by OPT ). The cost of an algorithm A is denoted by CA.

Previous work: The results in [3] (and later in [8]) show a lower bound of Ω(
√

m)

on the competitive ratio that any on-line algorithm (deterministic or randomized) may

have for restricted assignment of temporary jobs with unknown durations. An on-line

algorithm for this problem with a competitive ratio of O(
√

m), was later presented in [5]

(the “Robin-Hood” algorithm) thereby proving that the lower bound of Ω(
√

m) is tight.

A more generalized load balancing problem is the case of unrelated machines. In that

model a job j and a machine i have a weight wj(i) which the job j causes the machine

i for the duration it is assigned to it. The restricted assignment model is the special

case where all those values are either wj or ∞. For this more general problem the best

known algorithm achieves competitive ratio m. This Algorithm simply assigns a job to

a machine with minimum wj(i). Surprisingly, a lower bound of Ω(m/ log m) given in [1]

shows that this algorithm has almost optimal competitive ratio.

On the other hand, the problem of temporary tasks assignment on identical machines

is a special case of our problem. In that case any job may be assigned to any machine.

The greedy algorithm for identical machines and permanent jobs was presented and

studied by Graham [7]. His analysis of GREEDY holds for temporary jobs as well and

gives competitive ratio of 2 − 1
m

. [4] showed that this bound is tight. The more general

versions (restricted assignment and unrelated machines) have both competitive ratio of

Θ(log m) for permanent jobs [6, 2]. For restricted assignment, this bound is achieved by

GREEDY [6].

Our results: In this paper we show that GREEDY is an optimal on-line algorithm

for the case when the number of machines is small: m ≤ 5. This is in contrast to the

known non-optimal performance of GREEDY for a general m (The tight analysis of

GREEDY for large enough m yields the competitive ratio (3n)2/3

2 (1 + o(1)) [3], [5]).
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We perform a new and simple analysis of GREEDY , which gives better upper bounds

(better than the upper bounds given by “Robin-Hood” [5]) for small m (m < 14). Finally

we show that GREEDY is optimal for 3, 4, and 5 machines, by proving matching

(deterministic) lower bounds for these three cases. We show that the values of the best

possible competitive ratios in those three cases are 3, 3.5 and 4 (respectively).

The best known lower bound for this problem for an arbitrary m is b
√

2mc [3], and

the best known upper bound for an arbitrary m is 2
√

m + 1 [5] (or trivially m, if m

is smaller than that). For 3 machines, these bounds imply a lower bound of 2 and an

upper bound of 3, for 4 machines a lower bound of 2 and an upper bound of 4, and for 5

machines a lower bound of 3 and an upper bound of 5. The results in this paper improve

the lower bounds for the cases m = 3, 4, 5 and the upper bound for the cases m = 4, 5.

For the case of 2 machines, it is easily seen that GREEDY is an optimal 2-competitive

algorithm (follows directly from the known results). Adding this to our results proves

that GREEDY is optimal for m ≤ 5.

2 Upper Bound

In this section we present a general result whcih is valid for any m. It has special interest

for small values of m where it improves previous results.

Theorem 2.1 The greedy algorithm achieves a competitive ratio of 1
2(m + 3) for the

problem of restricted assignment of temporary tasks with unknown durations.

Proof: Given an input sequence for our problem, we denote the maximum load that

OPT ever achieves for that sequence by COPT , and the maximum load that GREEDY

ever achieves for that sequence by CON . We will show that CON ≤ 1
2(m+3) ·COPT , and

thus the required competitive ratio will be proven. Note that COPT is no smaller than

the momentary load that OPT has at any certain time.

Let us consider the first moment in which GREEDY reached its maximum load

CON . We denote the machine on which GREEDY achieved this load at that moment

by machine i. Out of the active jobs on machine i at that moment, consider the last job

that had more than one admissible machine, and denote it by job j (i.e. this is the last

active job that could also be assigned elsewhere). Denote its weight by y. Obviously,

COPT ≥ y, since OPT had to assign job j to one of the machines. According to our

definition of job j, all the jobs that GREEDY assigned to machine i after job j and

are still active at this moment had no other admissible machine. Let us denote the total

load of these ”no choice jobs” by z. It is obvious that OPT also had to assign all these
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jobs to machine i, and they are all active at this certain moment, so COPT ≥ z.

Now consider the moment in which job j was assigned to machine i. We denote the

load on machine i at that moment by x. The fact that GREEDY chose to assign job j

to machine i, despite having another alternative, means that every other alternative had

a load of at least x. This means that there was at least one more machine with a load

of at least x. So at the moment in which job j was assigned, the total volume of active

jobs was at least 2x + y. The best that OPT could do was to equally divide this volume

between the m machines. So we obtain: COPT ≥ (2x + y)/m. Or: m · COPT ≥ 2x + y.

Summing this last inequality with COPT ≥ y, we obtain: (m + 1) · COPT ≥ 2x + 2y.

As we defined it, clearly CON ≤ z + y + x (this is not an equality, since some of the

jobs that were active when job j was assigned might have departed). So we obtain:

CON ≤ z + y + x ≤ COPT + 1
2(m + 1) · COPT = 1

2 (m + 3) · COPT , which completes the

proof.

3 Lower Bounds

We continue by showing the tight lower bounds for 3, 4, and 5 machines, which match

the performance that we proved for the greedy algorithm in these cases. We start with

the lower bound for 3 machines, which is the simplest to prove, and later extend those

ideas for 4 and 5 machines.

Theorem 3.1 Let ON be an on-line algorithm for restricted assignment of temporary

tasks with unknown durations on 3 machines. Then the competitive ratio of ON is at

least 3.

Proof: We describe a sequence of unit jobs, such that ON must reach a maximum load

of 3. We will show that an offline algorithm OFF can maintain a maximum load of 1

throughout that sequence. This will yield the required competitive ratio.

We start with two jobs, which are admissible to any machine. If ON assigns both

of them to the same machine, w.l.o.g. machine 1, then OFF assigns them to machines

2, 3 respectively. Now job 3 arrives, and can only be assigned to machine 1. Thus, ON

reaches a load of 3 on machine 1. OFF has exactly one job on each machine, so it

remains with a maximum load of 1, and the ratio is 3 as required. Therefore, ON must

assign each of the first two jobs to a different machine. We can assume w.l.o.g. that ON

assigns them to machines 1 and 2, respectively. Now job 3 arrives, and it is admissible

only to machines 1 and 2. Again, we can assume w.l.o.g. that ON assigns it to machine

1. On the other hand, OFF assigns job 1 to machine 3, job 2 to machine 1 and job
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3 to machine 2. Now job 2 departs (emptying machine 1 for OFF ), and job 4 arrives,

and can only be assigned to machine 1. So ON reaches a load of 3 on machine 1, while

OFF still maintains a maximum load of 1. Thus the required competitive ratio has been

proven.

Next we consider the case of four machines.

Theorem 3.2 Let ON be an on-line algorithm for restricted assignment of temporary

tasks with unknown durations on 4 machines. Then the competitive ratio of ON is at

least 3.5.

Proof: Our sequence will force ON to reach a maximum load of 7, while OFF maintains

a maximum load of 2 throughout the sequence. We start with seven unit jobs (jobs

1, ..., 7), which can be assigned to any of the machines. OFF can assign a maximum

of two jobs to each machine and have a maximum load of 2. We divide the possible

assignments of ON into two different cases.

Case 1: ON assigns the first seven jobs to less than 3 machines. Obviously,

if ON assigns all the jobs to a single machine, then it immediately reaches a load of

7 while OFF maintains a maximum load of 2, and we are done. So we should only

consider the case where ON assigns the jobs to two different machines. Again, there are

two options.

Case 1.1: ON assigns 5 or 6 jobs to a single machine. We can assume w.l.o.g. that this

single machine is machine 1, and that the rest of the jobs (one or two) were assigned

to machine 2. OFF assigns to machines 2, 3 and 4 the jobs which ON assigned to

machine 1, without exceeding the maximum of two jobs on each machine. It assigns

to machine 1 the one or two jobs that ON assigned to machine 2. Now the one or

two jobs that ON assigned to machine 2 depart, and machine 1 becomes empty

for OFF . Next arrives a job of weight 2 which can only be assigned to machine

1. Thus ON reaches a load of at least 7 on machine 1, while OFF maintains a

maximum load of 2, and we are done.

Case 1.2: ON assigns a maximum of 4 jobs to each machine. This means that ON

assigns 4 jobs to one machine, and 3 jobs to another machine. Without loss of

generality, we assume that ON assigns jobs 1, ..., 4 to machine 1 and jobs 5, 6 and

7 to machine 2. Now job 1 departs from machine 1, and job 8 arrives. Job 8 has

a weight of 2, and can only be assigned to machine 1 or machine 2. We assume

w.l.o.g. that ON assigns it to machine 1 (which reaches a load of 5). OFF assigns

jobs 2, 3 to machine 3, jobs 4, 5 to machine 4, and jobs 6, 7 to machine 1. OFF
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assigns job 1 (which departs before the arrival of job 8) to machine 2, so when job

8 arrives OFF assigns it to machine 2 without exceeding the maximum load of 2.

Now jobs 6, 7 depart, leaving machine 1 empty for OFF (and still with a load of 5

for ON). The next arriving job, job 9 has a weight of 2 and can only be assigned

to machine 1. So ON reaches a load of 7 on machine 1, while OFF still maintains

the maximum load of 2. Therefore, the ratio of maximum loads reaches 3.5 in this

case as well.

Case 2: ON assigns the first seven jobs to at least 3 machines. Without loss

of generality, we can assume that machines 1, 2, and 3 have at least one job each. Now

four jobs depart, and only one job on each of the first 3 machines remains active. We

can assume that these 3 jobs are jobs 1, 2, and 3, respectively. Next, jobs 8 and 9 arrive.

Both of them have a weight of 2 and can be assigned to any of the machines 1, 2, and 3.

There are two cases:

Case 2.1: ON assigns jobs 8 and 9 to the same machine. This brings us to a case

similar to case 1.1 discussed above: ON has a machine with a load of 5 (w.l.o.g.

machine 1), while OFF can assign the jobs which ON assigned to machine 1 to the

other machines, without exceeding the load of 2. OFF assigns jobs 2 and 3 (which

ON assigned to machines 2 and 3) to machine 1. It assigns job 1 to machine 4, job

8 to machine 2, and job 9 to machine 3. Now jobs 2 and 3 depart, leaving machine

1 empty for OFF (and still with a load of 5 for ON). Next, a job of weight 2

which can only be assigned to machine 1 arrives. This makes the load of machine

1 equal 7 for ON , while OFF maintains a maximum load of 2, and the ratio is 3.5

as required.

Case 2.2: ON assigns jobs 8 and 9 to two different machines. We assume, w.l.o.g.,

that they are assigned to machines 1 and 2 respectively, which now both reach

a load of 3. Now job 3 departs (from machine 3). This brings us to a situation

similar to the one we had in case 1.2 (two machines with a load of 3 each), but

here we have assignment restrictions that we did not have in the above case, so we

have to make sure that OFF can still maintain a maximum load of 2. Similarly to

case 1.2, job 10 now arrives, having a weight of 2, and it can only be assigned to

machines 1 and 2. We can assume w.l.o.g. that ON assigns it to machine 1. Then

job 9 departs from machine 2 and job 11 arrives, having a weight of 2. Job 11 can

only be assigned to machine 1, and thus machine 1 reaches a load of 7. Now let us

check what OFF does. OFF assigns jobs 1 and 2 to machine 4, and assigns job
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3 to machine 2. It assigns job 8 to machine 3 and job 9 to machine 1. After the

departure of job 3, machine 2 becomes empty for OFF , and job 10 is assigned to

it. After the departure of job 9, machine 1 becomes empty for OFF and job 11 is

assigned to it. OFF has a load of exactly 2 on each machine, and it maintained

a maximum load of 2 throughout the sequence. Therefore, the ratio of maximum

loads is 3.5 in this case as well.

This completes the proof of the lower bound.

We continue by proving the lower bound of 4 for the case of 5 machines.

Theorem 3.3 Let ON be an on-line algorithm for restricted assignment of temporary

tasks with unknown durations on 5 machines. Then the competitive ratio of ON is at

least 4.

Proof: Our input sequence consists only of unit jobs, and we prove that OFF maintains

a maximum load of 1 while ON reaches a load of 4. Our sequence starts with five jobs

(jobs 1, ..., 5),which are admissible to all the machines. Obviously, if ON assigns four of

them to the same machine, then OFF assigns each job to a different machine and the

ratio is immediately 4. We divide the other possibilities that ON has into three cases.

Case 1: ON assigns three of the jobs to the same machine. We can assume that

these three jobs are assigned to machine 1. Then OFF assigns one job to each

machine, such that the job it assigns to machine 1 is not one of the 3 jobs that ON

assigned to machine 1. Now the job that OFF assigned to machine 1 departs, and

a new job which is only admissible to that machine arrives. Both algorithms must

assign it to machine 1, so ON reaches a load of 4 on that machine, while OFF

only has one job on each machine, and the ratio is 4.

Case 2: ON assigns four of the jobs to two machines, two jobs each. The fifth job

is assigned to another machine. For instance, ON assigns jobs 1 and 2 to machine

1, jobs 3 and 4 to machine 2, and job 5 to machine 3. W.l.o.g., we can assume that

this is its exact assignment in this case. First, job 5 departs. Now job 6 arrives,

and it is only admissible to machines 1 and 2. Assume w.l.o.g. that ON assigns

it to machine 2. OFF assigns jobs 1, ..., 4 to machines 2, ..., 5, respectively, and

assigns job 5 to machine 1 (so that the machine which ON does not choose for

job 6 becomes empty after job 5 leaves). Then OFF assigns job 6 to machine 1.

Now job 1 departs, leaving machine 2 empty for OFF (and still with a load of 3

for ON). Job 7 now arrives, and is only admissible to machine 2. This makes the
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maximum load of ON equal 4, while OFF maintains a maximum load of 1. The

ratio is again 4.

Case 3: ON assigns the jobs to at least four machines. This is the only option left

for ON . This way no machine has a load greater than 2, and there is at most

one machine with a load of 2. Now one job departs, so that ON remains with 4

jobs, each one on a different machine. We can assume w.l.o.g. that these jobs are

jobs 1, ..., 4 and they are on machines 1, ..., 4, respectively. Our strategy is simple.

We will bring jobs that are admissible to two machines, and make sure that the

machine that ON does not choose is empty for OFF . This way OFF will be able

to assign the jobs to different machines than the one on which ON will build a

”tower” of height 3. Next, a job which will only be admissible to that ”tower” will

arrive, and ON will have a maximum load of 4, while OFF maintains a maximum

load of 1.

The next arrival is job 6, and it is only admissible to machines 1 and 2. Assume

that ON assigns it to machine 1. Now job 2 departs, and job 7 arrives. Job 7 is

only admissible to machines 3 and 4. Assume that ON chooses machine 4. This is

followed by the departure of job 3, and the arrival of job 8, which is only admissible

to machines 1 and 4 (which both have a load of 2). W.l.o.g., ON chooses machine

1. Now job 4 departs, and job 9 arrives. Job 9 is only admissible to machine 1,

so it makes the load of ON equal 4 on that machine (jobs 1, 6, 8, and 9 are all on

machine 1 now).

Let us examine what OFF does in this case, according to our strategy mentioned

above. At the beginning, OFF assigns job 5 to machine 2 (so that this machine

will be empty when job 6 arrives), job 2 is assigned to machine 3 (so that machine

3 will be empty when job 7 arrives), job 3 is assigned to machine 4 (so that it will

be empty when job 8 arrives), job 4 is assigned to machine 1 (so that machine 1 will

be empty when job 9 arrives), and job 1 is assigned to machine 5 (and will remain

there for all the rest of the sequence). Now, OFF assigns each of the jobs 6, 7 and

8 to the machine that ON does not choose. Job 6 is assigned to machine 2, job 7

to machine 3, and job 8 to machine 4. Our assignment of the first 4 jobs assures

us that these machines are empty when jobs 6, 7 and 8 are assigned to them, and

a maximum load of 1 is maintained. Now job 9 arrives and OFF assigns it to

machine 1 (which is empty because job 4 has just left). So OFF still maintains a

maximum load of 1. Therefore, the ratio is 4 in this case as well.

In this the proof is completed.
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This completes our tight analysis of the case of m ≤ 5, as we have shown the lower

bounds which match the upper bound given in section 2.

4 Conclusions

We showed that GREEDY is optimal for m ≤ 5, but it is known that GREEDY is not

optimal for large enough m. A natural open question would be: What is the smallest

value of m for which GREEDY is not optimal?
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