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Abstract

We study the simultaneous message passing model of communication complexity, for the case
where one party is quantum and the other is classical. We show that in a protocol where the first
party sends ¢ qubits and the second party sends c classical bits, the quantum message can be
replaced by a randomized message of O(qc) classical bits, as well as by a deterministic message of
O(qclog q) classical bits. In particular, our results imply that quantum-classical protocols need
to send (y/n/logn) bits/qubits to compute equality, and hence are not significantly better
than classical-classical protocols (and are much worse than quantum-quantum protocols such as
quantum fingerprinting). This essentially answers a recent question of Wim van Dam [7]. Our
proofs rely heavily on earlier results due to Scott Aaronson [1, 2].

1 Introduction

We consider the simultaneous message passing (SMP) model of communication complexity. Here
Alice receives input  and Bob receives input y. They each send one message to a third party,
called the “referee.” Given the two messages, the referee outputs a value which should equal the
function value f(z,y) with probability at least, say, 2/3.

We are interested in comparing classical and quantum SMP protocols. Consider for instance
the equality function: z,y € {0,1}", and f(z,y) = 1 iff z = y. If Alice and Bob do not share
randomness, then this function exhibits an exponential quantum-classical gap: there is an SMP
protocol for f where Alice and Bob each send O(logn) quantum bits to the referee [6], using a
technique called “quantum fingerprinting.” On the other hand, if the messages are classical, then
©(y/n)-bit messages are necessary and sufficient [3, 13, 4], as we will explain in Section 3.

Here we consider a question recently asked by Wim van Dam [7]: what happens if one of
the messages (say Alice’s) is quantum, while the other is restricted to be classical? We call such
protocols quantum-classical SMP protocols. For instance, one may ask whether some variant of
quantum fingerprinting still works if one of the two messages is classical.
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Our main results here say that the quantum message can be “simulated” by a classical message
that is only moderately larger. More specifically, we show that the following hold for protocols
computing a Boolean function:

e In Theorem 4 we show that a private-coin (resp. public-coin) quantum-classical protocol
where Alice sends ¢ qubits and Bob sends ¢ bits, gives a private-coin (resp. public-coin)
classical-classical protocol where Alice sends a randomized O(gc)-bit message and Bob sends
a randomized c-bit message.

e In Corollary 6 we show that a private-coin quantum-classical protocol where Alice sends ¢
qubits and Bob sends ¢ bits, gives a private-coin classical-classical protocol where Alice sends
a deterministic O(qclog(q))-bit message and Bob sends a randomized c¢-bit message.

Our proofs rely heavily on earlier results in the one-way communication model by Aaronson [1, 2].

The latter result implies that quantum-classical private-coin protocols for equality need to send
Q(y/n/logn) bits and/or qubits. This is not significantly better than the ©(y/n) bits that are
necessary and sufficient for classical protocols.

The results above are rather unusual in communication complexity, where typically introducing
quantum elements gives exponentially more power. The exponential improvements given by the
quantum-quantum fingerprinting protocol is a prime example of this. This is also the case with
one-way communication complexity, where we know Boolean functions whose quantum complexity
is exponentially smaller than their classical complexity [9]. As another example, Gavinsky et al. [9]
exhibit a function with an exponential gap between classical-classical SMP protocols with shared
entanglement and those with only shared randomness. Yet another example is obtained when
considering relations instead of functions in our model [5]. We elaborate on this in Section 7.

Remark: After finishing a first version of this paper, we learned that Dmitry Gavinsky had
independently (and much earlier) obtained essentially the same results, but did not publish them.
After some friendly discussion, he declined our offer to co-author this paper. The observation of
functions vs relations given in Section 7 is due to him, and included here with his permission.

2 Preliminaries

We assume familiarity with quantum computing [14] and with the basic notions of classical and
quantum communication complexity [11, 15]. Informally, the setting of communication complexity
is as follows. Alice receives some input x € X, Bob receives some input y € Y, and together they
want to compute some function f(x,y), with error probability at most 1/3 for all (z,y) in some
domain D C X x Y. If D= X x Y then the problem is called total, otherwise it is called partial.
A Boolean function f has range {0,1}. The communication matriz My corresponding to f is the
| X| x |Y| matrix whose (x,y)-entry equals f(z,y) if (z,y) € D, and equals “*" otherwise.

In the simultaneous message passing (SMP) model, Alice and Bob each send a message to a
third party (called the referee), who then computes the output. In the one-way model Alice sends
one message to Bob (no referee here), while in the two-way model they can interact arbitrarily.
The cost of a communication protocol is its total communication on the worst-case input. The
(bounded-error) communication complexity of f (in one of the above models) is the minimal cost
among all protocols that compute f with probability of error at most 1/3 for each input.



Classical protocols may be deterministic or randomized. When dealing with randomness, we
have to distinguish between private coins and public coins.! The former are visible only to individual
parties, while the latter are shared among all parties and may help them coordinate their actions. In
one-way and two-way models, the difference between public-coin and private-coin communication
complexity is at most an additive O(logn) bits [12], but in the SMP model it can make a big
difference. In particular, while the private-coin SMP complexity of equality is ©(y/n) bits, its
public-coin complexity is constant: the protocol picks a shared random n-bit string r, Alice and
Bob send the inner product of their input with » (mod 2) to the referee, who checks whether the
two received bits are equal.

The following theorem can be derived from the proof of [2, Theorem 1.4]. Here by a measurement
operator E we mean a positive semidefinite matrix with eigenvalues in [0,1]. The acceptance
probability of the two-outcome measurement with operators £ and I — E on density matrix p is
p = Tr(Ep).

Theorem 1 (Aaronson). For all § > 0 the following holds. If Alice has a q-qubit density matriz
p and Bob has a measurement operator E € {Ep}ycfo1ye, then Alice can send Bob an O(qc)-bit
randomized message to enable him to output a value that is within +6 of Tr(Ep) with probability
at least 1 — § (the constant in the O(-) depends on &, and no public coin is used).

3 Warmup: replacing a randomized message by deterministic

Our goal in this paper is to replace a quantum message by a randomized or deterministic one
that is not much bigger. Let us first consider a known case: replacing a randomized message by a
deterministic one. Babai and Kimmel [4] showed the following. If there is a bounded-error private-
coin SMP protocol for a Boolean function f, where Alice sends c4 bits and Bob sends c¢p bits, then
there exists another bounded-error private-coin SMP protocol for f where Alice deterministically
sends O(cacp) bits, and Bob (who is still randomized) sends cp bits.

As an application of this result, note that in any bounded-error protocol for equality where
Alice is deterministic, she needs to send a different message for each of the 2™ inputs x: if she sends
the same message for x and for 2/, then the referee will have the same acceptance probability on
inputs (z,z) and (2/,x) and hence on at least one of those pairs he will err with probability at least
1/2. This implies that in any bounded-error private-coin SMP protocol for equality, n < O(cacp),
and hence we obtain the bound c4 + cg > ©(v/n) mentioned in the introduction.

We sketch a simple proof of the Babai-Kimmel result. Consider any Boolean function f, partial
or total, and a bounded-error private-coin SMP protocol for f. Let r(a,b) € [0,1] denote the
referee’s acceptance probability if he receives message a € {0,1}°4 from Alice and b € {0,1}°5
from Bob. We use A, for the random variable which is Alice’s message (its distribution depends
on her input z), and similarly B, for Bob’s message. Note that for every input x,y where f is
defined, the acceptance probability Ey-a, s~5,[r(a, )] approximates the function value: |f(z,y) —
EaNAz,bNBy [T(a, b)” < 1/3.

We now modify the protocol as follows. Let Alice send her (probabilistic) message s - cp times,
for some integer s to be determined later, at a total communication cost scacp. For a fixed message
b from Bob, the referee can obtain an approximation p; of the quantity p, = E4wa,[r(a,b)], such
that Pr[|p, — pp| > 1/100] < 27°B. Here py is just the average of r(a;,b) over all messages a;

"We will not consider models with shared entanglement here.



received from Alice. Choosing s a sufficiently large constant, the Chernoff bound implies that py, is
within 1/100 of its expectation pj, except with probability < 27°8. Hence by a union bound, the
referee can obtain, with probability close to 1, approximations p;, for all b € {0,1}°8 that are all
simultaneously 1/100-close to their true value. But now the referee can compute f(z,y) for each y
of his choice, since he can compute Ey.p, [Dy] exactly, and we have

|f(z,y) — Ean A, boB, [r(a,b)]] <1/3 and ]anAz,bNBy [r(a,b)] — Eys, [D]| < 1/100.

Thus the referee obtains (with probability very close to 1) complete information about the row
of the communication matrix corresponding to x. But Alice has given him this information by
sending a message of only O(cacp) bits. This implies that Alice can actually deterministically
tell the referee which row she has using O(cacp) bits: because the referee’s behavior as described
above is deterministic, Alice can actually compute which of her messages will give the referee correct
results, and just send him that message. We have reproved:

Theorem 2 (Babai & Kimmel). Let f be a (possibly partial) Boolean function. If there is a
bounded-error private-coin SMP protocol for f where Alice sends ca bits and Bob sends cp bits,
then there is a bounded-error private-coin SMP protocol for f where Alice deterministically sends
O(cacp) bits, and Bob (who is still randomized) sends cp bits.

Actually, Babai and Kimmel showed something slightly stronger, namely that both Alice’s and
Bob’s randomized message can simultaneously be replaced by deterministic messages of length

O(cacp).

Theorem 3 (Babai & Kimmel). Let f be a (possibly partial) Boolean function. If there is a
bounded-error private-coin SMP protocol for f where Alice sends ca bits and Bob sends cp bits,
then there is a deterministic SMP protocol for f where Alice and Bob send O(cacp) bits.

This theorem is essentially tight for the equality problem, where the deterministic communica-
tion complexity is 2n. Consider the following bounded-error private-coin protocol, adapted from [3].
Alice and Bob fix, beforehand, a good error-correcting code C : {0,1}" — {0,1}™ with m = O(n).
For m = cacp, they can view the codewords as ¢4 X ¢p Boolean matrices. Alice sends a random
column of C(z) together with its index, sending c4 + logcp bits in total. Bob sends a random
row with its index, sending cg + log c4 bits. The referee checks whether the row and column agree
in the one point where they intersect. If x = y then the two bits are the same, otherwise they
differ with constant probability. Repeating a constant number of times, we obtain a bounded-error
private-coin SMP protocol where Alice sends O(c4 +1log c¢g) bits and Bob sends O(cp +log c4) bits.

Note that Theorem 2 fails spectacularly for public-coin SMP protocols: the bounded-error
public-coin SMP complexity of equality is constant, while a deterministic player needs to send n
bits, no matter what the other player sends.

4 Replacing a quantum message by a randomized one

We now prove an analogue of the Babai-Kimmel theorem for quantum-classical SMP protocols: the
“quantum leg” of the protocol can be replaced by a randomized message.

Theorem 4. Let f be a (possibly partial) Boolean function. If there is a private-coin (resp. public-
coin) bounded-error quantum-classical SMP protocol for f where Alice sends qa qubits and Bob



sends cp classical bits, then there is a private-coin (resp. public-coin) bounded-error SMP protocol
for f where Alice sends O(qacp) classical bits and Bob sends cp classical bits.

Proof: We prove the theorem for private-coin protocols. The proof for public-coin protocols is
essentially the same, just fix the shared randomness at the start of the argument and average over
it at the end. In general the three-party protocol has the following form: Alice sends the referee
a qa-qubit density matrix p,, while Bob sends a classical message b € {0, 1}B, whose distribution
depends on his input y. The referee then measures p, with a measurement operator Fp, and outputs
1 if the measurement accepts (which happens with probability p, = Tr(Epp.)).

The SMP protocol promised by the theorem is as follows: Bob sends a cp-bit message b,
exactly as in the original quantum-classical protocol. Using Theorem 1, Alice sends to the referee
a randomized message of O(gacp) bits to enable him to obtain with probability at least 1 — § an
approximation py to pp = Tr(Epp,) to within +0, where 6 = 1/10. Finally, the referee outputs 1
with probability p,, and 0 otherwise. The overall error probability is at most 2§ worse than in the
original protocol. [ |

Note the difference between the above two proofs. The proof of Theorem 2 obtains approxi-
mations py for all b € {0,1}°B simultaneously, which enables the referee to learn f(x,y) for each y
(i.e., learn the whole row of the communication matrix that corresponds to Alice’s input z). On
the other hand, the proof of Theorem 4 only obtains an approximation p; for the specific b that
the referee received from Bob, which enables the referee to predict f(x,y) for the specific input y
that Bob holds.

5 Replacing a quantum message by a deterministic one

By combining Theorem 4 with the Babai-Kimmel theorem (Theorem 2), we see that in every
quantum-classical private-coin SMP protocol with g4 qubits and cp bits, we can replace Alice’s
message by a deterministic message of O(ch2B) bits. However, we can obtain something that is
usually stronger, namely a deterministic message of O(gacplogqga) bits. The crucial tool is the
following result, which is an extension of a result of Aaronson [1, Theorem 3.4]:

Theorem 5. Suppose Alice has the classical description of an arbitrary q-qubit density matriz p,
and Bob has 2¢ measurements operators { Ep }pc (0,13 There is a deterministic message of O(qclog q)
bits from Alice that allows Bob to approximate p, = Tr(Epp) to within +0, simultaneously for all
be {0,1}°.

It is interesting to compare this with Theorem 1. While Theorem 1 allows us to approximate one
pp to within +0 (with some small probability of error) using an O(gc)-bit message, Theorem 5 allows
us to approximate all p, to within +0 (without probability of error) at the expense of increasing
the message length by a factor logg. Theorem 5 generalizes Aaronson’s [1, Theorem 3.4], which
proves the special case where Tr(Epp) is close to 0 or 1 for all b. Our proof is a modification of his.
We conjecture that the log g factor is not needed.

Proof: Suppose Alice sends r = O(log ¢) many copies of her state. Let p’ = p®” be the state she



sends, and K = rq = O(qlog q) its total number of qubits. Define the observable?
LS~ 20)
Fy==YE/’
b r ~ b

where Eéy ) applies Fp to the jth copy. This measures the fraction of successes if you separately
measure each copy of p with Ej. By a Chernoff bound, the outcome of this measurement applied
to p will be at most §/2 away from its expectation Tr(Epp), except with probability 1/poly(q).

Alice’s classical message. Consider all b = 1,...,2¢ in order. We will sequentially build a
sequence of K-qubit density matrices py, one for each Ejp. Call b good if |Tr(Fypp) — pp| < 0; call b
bad otherwise. Note that if Bob has a classical description of a good py, then he can approximate
Py to within 4§ (since he knows what Fj, is). We start with the completely mixed state: p; = /2%
and define the subsequent p;, one by one, as follows. If b is good, then define pp.1 to be equal to
pp- If b is bad, Alice appends the pair (b, p,) to her message, where p;, is the log(1/d) + O(1) most
significant bits of py, so |pp — pp| < 0. In this case, let M} be the projector on the subspace spanned
by the eigenvectors of F, with eigenvalues in the interval [p, — §/2,pp + /2], and let ppy1 be the
renormalized projection of p, on this subspace.® Continuing all the way to b = 2¢, we obtain a
message (b1,pp, ), - -, (b1, Ppy) for some T. We need to show two things: (1) this message enables
Bob to approximate all p, to within +0, and (2) T'= O(K), which implies that the message length
is O(gclog q) bits.

Why this works. Note that Bob knows which b € [2¢] are bad, since those b are exactly the
ones in Alice’s message. Bob can in fact compute the whole sequence pq, ..., poc given the message:
p1 = I1/2K;if bis good then pyr1 = pp; if b is bad then (b,p,) is part of Alice’s message and ppyq
can be computed from this information. Suppose Bob wants to approximate p, = Tr(Epp). If b is
good then by definition |Tr(Fppp) — py| < 0 and Bob can calculate Tr(Fppp). If b is bad, then the
pair (b,pp) is part of Alice’s message, so Bob knows p, with sufficient precision. Hence Bob can
approximate all p, up to 44, for all b simultaneously.

Why the message is not too long. Here we show 7' = O(K). Define n =1—-4§/(2 —6) and
t=[(K+1)/log(l/n) + 1] = O(K). Suppose, by way of contradiction, that 7' > ¢t. We consider
the sequence b1, ..., b; of the first ¢ bad b’s. Let

I
p="Tr (Mbt‘”MmZ—KMbl‘”Mbt)

be the probability that all ¢ measurements succeed if we start with the completely mixed state and
sequentially measure My, , ..., M;,. We will derive contradicting upper and lower bounds on p.

First, the upper bound on p. If we sequentially measure My, , ..., Mp,, starting from the com-
pletely mixed state, and if all ¢ measurements succeed, then we exactly have the sequence of density
matrices pp, = I/25,... py,, pp,+1- Note that if py is bad, then Tr(M,p,) < 1 by Markov’s inequal-
ity.4 Hence the probability that all ¢ measurements succeed is p < 7’.

2An observable F is a Hermitian matrix that describes a measurement, as follows. By diagonalization we can write
F =%, \iP;, where P; is the projector on the eigenspace corresponding to eigenvalue \;. These eigenspaces are all
orthogonal to each other and >, P; = I. The corresponding measurement on a density matrix p gives outcome A;
with probability Tr(P;p). Hence the expectation of the measurement is ), \iTr(Pip) = Tr(Fp).

3The fact that this projection is nonzero (and hence can be renormalized to have trace 1) follows from the argument
in the “Second, the lower bound on p” paragraph below.

4To see this, let X denote the random variable which is the outcome of measuring p, with the observable Fy.



Second, the lower bound on p. By a Chernoff bound, we have Tr(M;p') > 1 — 1/poly(q). This
allows us to measure p’ with M, while hardly disturbing the state (see for instance the “almost
as good as new lemma” [1, Lemma 2.2]). If we measure each of M, for the first ¢ bad b’s in
sequence, starting in p’, then with probability at least 1/2 all measurements will succeed. However,
the completely mixed state can be written as 2% = 2% P+ (1— ZLK) p" where p” is orthogonal to p'.
Hence if we start from I/ 2K then the probability of all measurements succeeding is p > 1 / 2K+1

Combining the bounds of the last two paragraphs together with our value of ¢ gives a contra-

diction. []

Now consider a quantum-classical private-coin SMP for a function f (total or partial). The
previous theorem enables us to replace Alice’s g4-qubit message by a deterministic message of
O(gqacplogqa) bits. This message allows the referee to closely approximate p, = Tr(Epp,). Since
f(z,y) = Eyp, [py], this allows the referee to compute f(z,y) for every y, so he now knows the row
of the communication matrix corresponding to Alice’s input.

Corollary 6. Let f be a (possibly partial) Boolean function. If there is a bounded-error quantum-
classical private-coin SMP protocol for f where Alice sends ga qubits and Bob sends cp bits,
then there is a bounded-error private-coin SMP protocol for f where Alice deterministically sends
O(qacplogqa) bits, and Bob (who is still randomized) sends cp bits.

As argued in Section 3, in a bounded-error protocol for equality where Alice is deterministic,
she needs to send at least n bits. Hence we obtain the following lower bound on quantum-classical
private-coin SMP protocols for equality, which is tight up to the y/log n-factor.

Corollary 7. Every quantum-classical private-coin SMP protocol for equality has communication
complexity Q(1/n/logn).

To make the protocol of Corollary 6 fully deterministic, it remains to replace Bob’s randomized
message by a deterministic one. Since Alice’s deterministic message gives the referee full informa-
tion about her row of the communication matrix, the problem reduces to a deterministic one-way
protocol from Bob to the referee. The minimal number of bits that Bob needs to send in such a
deterministic one-way protocol is denoted by DLB_’A( f). We have proved

Corollary 8. Let f be a (possibly partial) Boolean function. If there is a bounded-error quantum-
classical private-coin SMP protocol for f where Alice sends q4 qubits and Bob sends cp bits, then
there is a deterministic SMP protocol for f where Alice sends O(qacplogqa) bits and Bob sends
DULB=A(F) bits.

6 Tightness

The example of the equality function shows that Theorems 5 and Corollary 6 are essentially tight.

We do not know whether Theorem 4 is close to optimal, but at least it shows that the gap
between quantum-classical and classical-classical SMP protocols is at most polynomial. The fol-
lowing communication problem, adapted from [5, 10, 9], presents an interesting quantum-classical

The statement that b is bad is equivalent to the statement |[E[X] — py| > & (assume p, = pp for simplicity). Let
7 = Tr(Mypy) = Pr[|X — ps| < 6/2]. Assume E[X] > p, (the other case is similar). Then we have p, +§ < E[X] <
T(pp+6/2) + (1 — 7) - 1. This implies 7 < 1—6/(2—2p, —6) < 1-5/(2—8) =17.



public-coin protocol that uses about n'/3 qubits. We do not know an equally efficient classical-
classical public coin protocol for this problem; the best one we know sends about /n bits. This
suggests that quantum-classical SMP protocols can at least have some polynomial advantage over
classical-classical protocols.

The problem is as follows. Let n be an even integer. Alice receives x € {0,1}", while Bob
receives a perfect matching M (i.e., a partition of [n] = {1,...,n} into n/2 disjoint pairs, called
“edges”), and a string w € {0, 1}”/ 2 whose bits are indexed by the edges in M. We can view the
edges of M as rows (of weight 2) in an n/2 x n matrix M over GF(2). Then the matrix-vector
product Mz is the n/2-bit string obtained by taking, for each edge (i,7) of M in order, the XOR
x; ® x;. The promise is that the Hamming distance between w and M is either at most n/6 or at
least n/3, and the function value is 1 in the first case and 0 in the second.

One can show easily that the deterministic complexity of the problem is Q(n), as follows. By the
probabilistic method, there exists a set S C {0,1}" of size |S| = 2%(") such that all distinct =, 2’ € S
are at distance around n/2. But then for each distinct 2,2’ € S we can find a matching M where
the n/2-bit strings Mz and Mz’ have distance close to n/2 (pick as many edges as possible that
have one endpoint in a bitlocation where x and 2’ agree, and one endpoint where they disagree).
Putting w = Mz, we have f(z, M,w) =1 but f(2', M,w) = 0. Hence in a deterministic protocol,
Alice will need to send a different message for each of the x € S. Therefore the deterministic SMP
(and even one-way) communication complexity of this function is (n).

On the other hand, here is a bounded-error public-coin SMP protocol where Alice sends g4 =
n'/3 qubits and Bob sends c¢p ~ n!/3 bits. Alice and Bob use the public coin to select a random
subset S C [n] of about n?/3 elements from [n]. Now with high probability, M N (S x S) will contain
O(n'/?) edges. Alice sends the referee n'/? copies of the uniform superposition ﬁ Y ies(=1)% ).

Bob sends over ©(n'/3) edges in M N (S x S), together with the corresponding bits of w. The
referee constructs two-dimensional measurement operators from the edges he received from Bob,
and measures each of the quantum states with them. With probability close to 1, one of those
measurements will succeed and give him a bit of the string Mxz. Since the location of that bit in
Mz is random, comparing that bit with the corresponding bit of w (which is part of Bob’s message),
gives the referee the function value with probability at least 2/3.°

7 Functional separations versus relational separations

As mentioned before, Theorem 4 implies that the gap between quantum-classical and classical-
classical SMP protocols is at most polynomial for any Boolean function. In contrast, Bar-Yossef et
al. [5] exhibited a relational problem for which quantum-classical SMP protocols are ezponentially
better than classical-classical SMP protocols with a public coin. In a relational problem, for each
input pair (z,y) there is a set of valid outputs z. In the case of [5], Alice receives an arbitrary
string x € {0,1}" and Bob receives a perfect matching M on [n] from a set of n/2 possible perfect
matchings (assume n is even). Their goal is to output any z of the form (4,j,z; ® x;) where
(i,j) € M. Bar-Yossef et al. exhibit a quantum-classical SMP protocol that solves this problem
with success probability 1, with a log n-qubit message from Alice to the referee and a logn-bit
message from Bob. No public coin is needed. In contrast, they proved a ©(y/n) bound for classical-

5The best classical protocol that we know works similarly. It selects a set S of about /1 elements, and Alice
sends the corresponding bits of = to the referee at the expense of about y/n bits of communication.



classical public-coin protocols for this relational problem.

To summarize, we see that when comparing the quantum-classical SMP model to the classical-
classical SMP model, one can obtain an exponential separation for a relation but not for a Boolean
function. In this section we present an observation due to Dmitry Gavinsky [8], showing that such a
situation cannot occur for purely classical models. More precisely, we show that for models obeying
the Yao principle [16] (defined next), any separation for a relation implies a similar separation for a
function (and sometimes even for a Boolean function). Notice that the converse implications clearly
holds, i.e., a separation for a functional problem is also a separation for a relational problem, since
functions are a special case of relations.

Consider any computational model that has a class of deterministic algorithms (or protocols),
each of a certain cost. A randomized algorithm in such a model is a probability distribution over
deterministic algorithms. The Yao principle states the equality of two different complexities: (1) the
g-error complexity (the minimal cost of randomized algorithms whose error probability is at most e
on every input) and (2) the e-error distributional complexity under the hardest input distribution p
(the minimal cost of deterministic protocols that have error probability at most £ under p). Because
of the minimax theorem from game theory, allowing shared randomness in one’s communication
model is a sufficient condition for the Yao principle to hold.

Now assume any two computational models, both obeying the Yao principle. Call these models
“a” and “b”, respectively. Let R,. and R;. denote the e-error complexities in these two models.
Assume we have a separation between these two models, showing that R,2.(P) is greater than
Ry, o (P) for some relational problem P. We will next show how to construct a function f for which
there is a separation between R, (f) and Ry .(f) that is at least as large.

Let 1 be a worst-case input distribution for the distributional R, 2.-complexity of relation P.
That is, any deterministic protocol in the “a” model solving P with distributional error at most 2e
under p, must use at least R, 2.(P) bits of communication. Next, by the Yao principle, there is a
deterministic protocol in the “b” model solving P with error at most € under distribution u, using at
most Ry . (P) bits of communication. Being deterministic, this protocol necessarily computes some
function with error probability 0, call it f. Hence we see that for this function, Ry .(P) > Ry o(f).
Moreover, note that the probability under p that f(z,y) is not a valid answer for P, is at most e.

To complete the argument, we now show that R, .(f) > R4 2:(P). Consider an optimal e-error
protocol for f in the “a” model with complexity R, (f). By the Yao principle, there exists a
deterministic protocol for f in the “a” model with distributional error at most € under p, and the
same complexity. By the union bound, the same protocol computes P with distributional error at
most 2¢ under . The desired inequality now follows from the choice of y. In sum, we have found
a function f with Roc(f) 2 Ra2:(P) > Rye(P) = Ry o(f) = R (f)

The separation we obtained above is for a functional problem, but not necessarily a Boolean
one. We now observe that if the R,/R,-separation we start with is sufficiently strong, and the
number of output bits of P is not too large, then one can obtain a Boolean function with a strong
R,/Ry-separation. Assume f has a k-bit output, and assume that ¢ : {0,1}* — {0,1}'% is an error
correcting code with constant rate and constant relative distance (which is known to exist). Let
f1s--+, fior be the Boolean functions representing the bits of g(f(:)). Having e-error protocols for
each of these Boolean functions, each of complexity ¢, implies an e-error protocol for f of complexity
O(ck). Hence for at least one j we have Rq.(f;) = Q(Rac(f)/k).
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