Instructions as before.

1. **Talagrand’s lemma:** Let \(f : \{0, 1\}^n \to [-1, 1] \) and assume \(p = \mathbb{E}[|f|] \ll 1 \). Show that \(W_1(f) = \sum_{|S|=1} \hat{f}(S)^2 \leq O(p^2 \log(1/p)) \).

2. **Generalized Chernoff bound:** Let \(p(x_1, \ldots, x_n) \) be a multilinear polynomial over the reals of degree at most \(d \), and assume that \(\mathbb{E}[p(x_1, \ldots, x_n)^2] = 1 \) where the \(x_i \) are chosen independently from \(\{-1, 1\} \) (equivalently, this says that the sum of squares of \(p \)'s coefficients is 1). Then for any large enough \(t \),
 \[
 \Pr[|p(x_1, \ldots, x_n)| \geq t] \leq \exp(-\Omega(t^2/d)),
 \]
 where the \(x_i \) are chosen as before. The case \(d = 1 \) is a version of the Chernoff bound. Hint: use Markov’s inequality and a corollary of the hypercontractive inequality that we saw in class.

3. **Logarithmic Sobolev inequality:**
 (a) Using the hypercontractive inequality, show that for any \(f : \{0, 1\}^n \to \mathbb{R} \) and \(0 \leq \varepsilon \leq \frac{1}{2} \),
 \[
 \|T_{\sqrt{1-2\varepsilon}} f\|_2^2 \leq \|f\|_{\frac{2}{2-2\varepsilon}}^2.
 \]
 (b) Notice that we have equality at \(\varepsilon = 0 \) and use this to deduce
 \[
 \frac{d}{d\varepsilon} \|T_{\sqrt{1-2\varepsilon}} f\|_2^2 \bigg|_{\varepsilon=0} \leq \frac{d}{d\varepsilon} \|f\|_{\frac{2}{2-2\varepsilon}}^2 \bigg|_{\varepsilon=0}.
 \]
 (c) Show that the left hand side is \(-2\mathbb{I}(f)\).
 (d) Show that the right hand side is \(-\text{Ent}[f^2] \) where \(\text{Ent}[g] \) is defined for non-negative \(g \) as \(\mathbb{E}[g \ln g] - \mathbb{E}[g] \ln \mathbb{E}[g] \) (with \(0 \ln 0 \) defined as 0). No need to be 100% rigorous.

 This establishes the **logarithmic Sobolev inequality**, saying that for any \(f : \{0, 1\}^n \to \mathbb{R} \),
 \[
 \text{Ent}[f^2] \leq 2\mathbb{I}(f).
 \]
 (e) Show that if \(f : \{0, 1\}^n \to \{-1, 1\} \) has \(p = \Pr[f = -1] \leq \frac{1}{2} \) then
 \[
 \mathbb{I}(f) \geq 2p \ln(1/p).
 \]

 For small value of \(p \), this significantly improves the Poincaré inequality \(\mathbb{I}(f) \geq 4p(1 - p) \) from Homework 1.

4. **Open question:** Fix some \(0 < \rho < 1 \). Let \(f : \{0, 1\}^n \to [0, 1] \) and let \(\mu = \mathbb{E}[f] \). Note that \(\mathbb{E}[T_\rho f] = \mu \) as well. Clearly, Markov’s inequality implies that \(\Pr[(T_\rho f)(x) \geq \rho \mu] \leq \frac{1}{7} \).
 Can you improve this upper bound to \(o\left(\frac{1}{\rho}\right) \)? perhaps \(O(1/(t\sqrt{\log t})) \)? Intuitively, since \(T_\rho \) smooths \(f \), one would expect the peaks to shrink.