G.3.2008 PAC Model [Valiant '84)

We consider enly the Probably RPPrOx(maHJJ Correct  (PAC) model under the

uniform distribution A learning problem (s given by a concept class € of

functions £: ol "= {-1,1]
A learning alauri-tkm s (typically) candomired alﬂ\wi‘tkm with :
* Input * accuracy parameter €>0 .
* Either: O Random exomples (x,fx) foc x  chosen unifacmly | or
@ Membership queries to £ (where feC)
* Output: o function higep]” - 4-11] | knowm as fhe hypsthesis | descriped by a civewit,
*Goal: h showld be ©-clese to f with prob, 497

Rewmarks: * Gevem\-PAC learnwmg rc_vu\'c.s the algorithm 4o work wwdar any dist,

-
This' affects both choke of rondom samples and the claseness of handf.
Thiz typically Vexry hard.
* Ofttn one reguires W to ke of -the same “form’ as €, This is called
propes learning and is also typically much harder.
* One can alwoys check if the hypothesis h {s €-clse to £ simply
wmpare them on enowh rondem exemples, This also weoms that
Ovne can @lwoss lboost the AL correctress to 1-§ by paying @
extra O(legVs) foctor,
-

Learning Using Spectral Cancevtretion

Def: Rr a family 8 of subsets of [W], we say that f s E-contentinted ©n
ShE | a0 A
seg
Claim* Lf Fi{o,]" 24-11) is e-concextrated on § thew 3‘-’\0&3“—'@ given by
9= 859(9)7(.5 satisfes 1€-3ll, € €.
56 - VN
~ = = o n & = F(S) £ £ .
Prosf: £-9 S%FCS)%S ond hence | -5\, sgs =]
Claim: Let fiio, ' =2 4-1,1) and q:{e))" = IR satisfy UF5lly se. Then, hifo® i
given by hp9g: stsw(st) fs €-clese +of.

B
Procf: For each x suchh that ‘Ff\ﬂ#b\(x) we vttt have (‘F(F)‘S(N)) >4 . Nouw wie

NE-all =€ [(fra9?] . &



Thm: [Linial,MAhsour,NiSCm, Zs“'] Su.\:pos.o. we know a set § on whida §

is &2- concerrbreated . Then in time pely (1s) | Ye  w) usi\n:g randew examples |

1

we Can output & function h that is €-close tv ¥ w.p.299) .

Peoof » The algorithm - for each seg estimate E(&) to Within i\]—%—"; avnd
let "é be the estimate . Let §- sé-:;.;% s - Now output h=sigu (§).
This takes poly(|S)  n ,Ye) time. By the previous claim it suffices to shew

that [F-§ll; < €. De€ine 9= TEO%s . Then, 151, § Nl +U9-3ll, <
Jes tltn.nsh.. \Mv-hfs

SN AR PR ARER KRR ERE AR G

Cor: (The low degree algorithm [Lmn]) T all feC is % ~concentvoted on

S = ﬁ_S |s1€d] thew C can be learned in time ne pnlg(_‘le) u.swls random

examples

Gor (Kushilevit® Mansour 'a1] @ T any feC %y-contentmted on sowme set of

sixe € M then C Cam be learntd in time poly (m Yen) using memberslip queries,
M'- Assums we are aiven some feC and let S'be aset of Sixe ¢ M o\,

which it s €& - Gncentcoted . Let S ={seg | fist > i} . Thew £ is €, -concotmted
on S’ Using the G-L algonthm we can find o set [ containing all S s.t.

?(s)" 7 qi;; v time poly(M, 7e,n). Tn particulor | Sl lsa B is %-anmfed owll

Now apply [Lmn] o find b that s e-closeto f.

(Ye)
Thm: The class C=4§f: UM 4] is leornakle in time n Eu_sm__g randsm
~

examples .

ProoF: Recall that I(H)= E\Sl'i(S‘;_ Notice thot TMH)gd implies £heat Z\:‘,F(S) £€.
s \s\24/,

Hence, we can use the Low Degrer Alg. it S= {s: \Sl‘-"\le}.

Learning Desision Trees ?/@

¥a ~N
Remorks: We assume w.log. that on dapth:3 G‘% ‘.ZGD\'_‘;
any peth eads yariade appears at mest once. 66:\ CHORNY

Notice thek the deciswon tyrees are umiversal
gire=tleques =5,
Le., any Reclean funmction Coawn ke written oos o decizien

trer (of depth c i and size €27) .

B decision tree of dopth d lhas size S?.'l,




Bop: Assume £ifou) - 4-1,1) s computable by o depth-d decision trer. Thew

1. £ is of degree <d e, EFfsh=0)
Isl>a '

2. A Pourder coeff. of £ are integer multiples o § 279

3. The number of novterc coeff. |sat mest yd

Proof: For each path P in the decision tree let 41, bethe (ndicator Eiatbon of .

Then, we can write F: gﬂf) 1, because the paths define a pactition of Yo .

)

Because L, is the NP of ot most d literals , its Powiec coeff. are mattiples of T

and is of degree ot most . (Simce | e.5.. BND(xaTG  xa) < () |13 f_"')(t%) 3

This proves 122 .3 folleus Rom 2., @B

Coc: 1. Depth-d DTs are exactly learnable (1.e., Witk €20) in time N Uusng
randem examples

2.Depthd DTs cre exacty [earnab\e in time poly (n,2) using membuship queries,

3. Depth- O(hsn) D1s are enctb learnable 1w Time POy () Using membbaship o,uudq

-d
Prood: Estwate all nonrero Fourier coeff, *o withew * 2/ ond roundto nearest

multiple of 29
Obgervation: Any DT of size Lrs g-close to a OV of depth lag (He)
Prof: Cut everything degper than lag (“1€). The resulting DT oliffers dFrom Tl

g (49
g

original on 4 randem ivput x w.p. € L-2 &

Cac: DTs of size [ are 4E- onentroted on a set of size HM e (Me¥
of Fourier coeff of leve) € g(le).

Hence, DTs ofsize L con be learned intimp poiy (Lyn,7e) usimg qualies and time
nokh’t%) ksing Yendam e xamples.

Remark: These are the best known reswies. T4 is an open gquestion o clo poly -site
DT in time poly(») wsing Comdam examples,

L_mf‘hi ng DNFs

Def: A DNF is a digjunction $=TavTav.. VT where each term is a Svjunction

of literals (e.9., (XanTs) v (XynxXnaxs)) . The size of o DNF s the number of
slzez22 wyidths3

terms L, andthe wordth of a DNF s t\e moaximal £ of lderals (n o tecm.

Rewerk: Any DT of size | canlbe wirittew o8 oo DONF of size L Th other wdxds,




DNF -siag(£) € DT-s52e (. Similarly  DNF-width(£) spT-elopth(f).
As we saw in homework | a width W DNF £ has T(F)€21@ and hence s £-cancarbmtey
on levels ¢ EE}- . Our 9ol s to improve. this to O(vs-legYe).

Thm: Tf f is computalle by a width-w DNF then for any olxs,

e

15z20dw
De €£: P randem p-vestriction is a pair (I,X) Where TS [n] is chivsen by including

eadh oordinede w.p. p and xe&o,qf is chosen wniformly,
Thw (Hostad's switching lemma'26]: Tf £ is compwtmide by a wisth-w DNF
ond (I,%) is a random p-resivriction, then P DT -depth (.‘F,;_,-t)>d]5(spwf'.

then we g thok w.p.> ¥4 the restriction has DT o £

xam 'mw 1
dqr’dn 2. & a8
A
Claim: for T<M] | and xE'\o\t} x-»: (S) E__’,-F(SUT)%T(*\
1-_ EE TeT

Cxample: n=y - f(0°°°) o100 7

£ flosor) -

i [f(oolo} 4 ! R
[(F(oo ) 1)

F —(.Cm) 'Fx—oi(on

Tf we chuose xeﬁo.a] wnifoomly  then € Dfx-r (53\] l E[ | (S)]\ 'f(gl
F)IGOI E,‘[ ‘J:;.,E(S) ] i 8 ‘F(SUT) 2 ‘F(SUT') : E['X. el 7(.1--(3.)] =
o TlT'g_-f x

by tlaim
T 2
G B T
Tex
J
Peoof: Let (T.1X) be a rondem resiviction with p= . By Hastad's

Switching lemma , fyo7 has a decision tree of dapth ¢€d w.p. > —;{"‘
L such oo cose | SF,,_“[S) =0 Therefore, A >,-E[Z:‘. -F,,,I(s) 1=
lsbd \sp&

A5
=~ = T - pr
E [\%f.[&_,;(ﬂ ]J E [ ‘%'IATEE (soty] = ué‘f.m Clun1|>d]- foy

for Ul2 20dw |, wie get by Chernoff that F;r[luntbo\]‘&‘/z ;
(becange 1UNT| is distributed |jke Binom (> 2cdw ||m))

=d
Hbuc b b0 Nkog | 2

10l 3 2edw
Thp-.'- TF £ has Bldth-w DNF , then t(-ua) H:(U)




Solutions - Homework 2

. ‘F H ¢ = ¥ . ¥ >
(a). £0x) g%f)?(-&"ﬁ SE.D['Xs(X)] , Where D is the distribution on S given by

£
Pes]= £(9. By Chernoff | foc each fixed x, if we chone S48, _ ¢ e
fome lame fncuch ¢ then [foa-t 7ot 0allco01 a3 -0

There fore , by union bound , this Sample (s geod foc all % S%mui‘h:.ne_ou;lj w.p.% %

In partiader | such Sc.\.mpLL exasts |

(B, Weite F=£-F whece = TO% omd Simlarly for £ Now cpply ()

s
* ‘kﬁ’;o
0.0} 0.,.0)

3 £ 3
s tely to — 1 i
eperately Wad) andl " with accurocies SNEN, and ST

4 1

COhSidEI( F'—'Xmlzis} :'xlq"x'\z]' x‘al ] € i\S V‘l"&f ‘F(Om d%t'tu-tbrs. UJE C_\dt';‘h\

that the test must accept £ w.p. 14 Assume the test checks that

fafpfa= -1 5 Fefyfa= X, Xy Xy 100 Xy (B) = NG =y

So test must accept £. Simlarly, foc fuofop fer=1
28 %
(a). TF val(®) »4-2 then considec the assignment £, =X (1) , where L s the

osgignmen to the unique lobel Gover | W.p.2 472  the canstmint {uv]leE

chosen by thetester {ssk. G, (LD LMWV, Trn suth o case the testes

accept® W.p. 4-5. So overal acceptance prek. is (1-2A)(A-8) > 1-A8,

(b). Considac the assignment oiving some dictaters v each . Then the test

applies Hastads +o the avernge of twe dictates | Ay omd Xy ).

£ {=) then tha tect accepts W.p. 1-§ .

-7

2.[(a). Afunction is 1 -resilient if (tis balowed and vemoins balanced ofter fixing

ony one C(oordinate

(b). Cansider f;:hﬂ--!:cs‘t that takes X M;&““\j and W~ g for &= t‘zt awnd

checks €hat £639 - Rxrw)=d . Tts acceptance prob. is, L+ %.‘éf"‘- Fs®

TF £ is f-resifemt thenthis (s e & +58 . TF s . IS and l?(s\\ar_

<

£
SPEY . Clwosing  p=f wmekes the first case s

Lhae this is 25 45 PE +3 €

1 s)a
IE 1% the test accepts w-p. —f- T 76:- (simes the acceptance preo, is 5+ 'i§u"‘d lel

cnel the sexewd * n e e oo, distimguishh tle two with Aol guiidinee wing © (V)
epehriio~s,



(3.3.200R

Thiz implies thet T € w

Proof: Let (I,X) be & randem restriction with p=

(k=) -\
3@ 3% - (1-2Y)

orR
Yk Pt i
) = Pr[T’rlL«u:o] . So for any £ l;:\—t: m ml.

(4-2'

we can cheose Ik *—Llﬂ'ﬂuz.l :

(O, PN influences are B(2°) = @(‘_*g!) where we k@ Foc majorty thil os @ ).

[kkl] showed that this is best possible

4./ (@), E[f0-900)- E[F-ELS) =< £ 9> - 3@:)3(& = Zi’(s)%(s)_

(b). Bssuwme £ depends on L I Cavlh,f] = ?(g)ﬁm Z?(QQ(Q &
25+
EJ;&;;?LQ‘ : \\-S%L'\‘(s)z PN ;L;Kts)‘ L qsswnpt\?sh, N Tt G

L BTG e
Seg S5l Sega ' o
Therefore, (1-8)" ¥ [ailel® | € E T (+- 6) h(s)'“ € EYx
e seth i Loai
Pescibls l'mn(l‘sf,l-a)'d <|sli- -6 (1ebls)
odd 1 s iy IRy
Y Ll N T WA £ =18 . ~
J@. -2l L mi__u (s sgﬂs TisIF( T(

(B). Write F=(fafa, ., fm) and apply (@) to each £; and sum the [ues.

@), Assume F is an embedding ith distartion D

¢ E[IF0-FOumIE]) ¢ TE[IFa-Fxeeni}) € npt =7 D2in'. @

A o
Observations: 1. $,7(5) = %‘F(SUT)'?(T(K)
i A

e(l Fiol] 21 £

E(f -]~ THsury

E AREY (5 1) B & (suT)

o
Thm: TF£ is computable by a width-w DNF, thew Vdns, ZFO '€ Z
1512 204 -

Remark: This qives G time aly. to learn DNFs from randam examples

logY, :
Alse nO(losn i 2 foc poly-S1ie DNFs |

oy
Thm: T £ has width-w ONF then & (5om) -0 = 3.

= 2"5‘,3 . Thenl
El= < 3 . o e O N
Ei[u an':‘“‘]f" .E;R‘[DT depth (£, 5)=d] 2 f g;';Ll Rt = R
I, of depth-d OT (s2*
o ~
On the other hard |, EX[NF“E 11 = ELZEelif. 1] 2 elx

) by (@

= & Polued 1 Fol < Zlaw) 1F0l. @

"?[S)[J

Ssf

O (wlag're)

)¢ O(w\es V)



Gor: TH £ 1s computalle by a width »w DNF , then it s ¢ - concentrated on oo

seX of sixe g PR b
Proof : Define S = {U ' |U\S'\O(Wl°3"‘ﬂl} colbvilions lS‘ < wO(wlos‘k).
and [f(l > ,:&-T-s'ia
a A "
Moveover, EF(U)l‘E- 38 F(U)L Sl floy £ 2lg
ves (Ul S{leg ') 1€ O(:lage)
Tear | [\EME—Serl
\-__"_-v—\_.‘

SE | since LIRS haxlflo - Thwm - =

TR o : ; et
This gives : W (wheg ') \P_a.m-.(n?hw algorithm for width-w DNE and nOLlaglgn e}
time a1.5 for P“b’S';%f- DNF [Mmso;»r],

Summary: (uniform pac | canstowt €)

randem Cl/uu;es

pb\:)-si%tdq’dn PR %

arcuwits Y\O A Mgl | — ...

-si3e DNF Ollag-) =
i A% | oo adowad
p\y-size DT Y\OU‘S“) - - poly (w)

- Juntz % v
logw - juw e 30 Lag ke

Open prtbewms: ¢ Are poy() size DNFs contarttoted ov polylw) coefFiciests 1

(this wowld tmply Jacksen) Tr]hs may be Caunter example 2\

* Biy opew questitn: Can monstone polysize DNFs Lo learned from
rondom exampls in polytime 2 (ccc'oe : B Dannell & Seyvedio did
s for manctone DTs) .

Learning_ Juntos (Mossell, O'Domel , Servedin , SToC 03)

We Wart to learn k-juntas . Think of k as being very swall | say, k=legn .

Because a k-juvto. has 2% nontero Fourier Geff all in levels sk and multiple of 2"‘.
We Can learn them exactly in tme pPoly (2.n) u.siw_% quesies of in twme n“-pelj (2% n)
UsSing random examples. We will improve this slightly o W% puy( v,

S+tep 1: Finding a relevant coordinate is enowgh -

Prop: If there is an olgeritbm for finding a relevamt coordinate in evsivem (ndncnstant

= 3 . K . \
k-junte 10 tne e Py (‘)_klh) wsing Cendem exawmples then thoee 15 an alsenthe

for learning k-juntas (n the same tiwe .



Preaf sketdr: Find o relevant ecordinate . say {, New recur on f and on £ .

o-si 1L "

Notie that we can simulake examples from restiictions of £ of r variables Wsing

examples from £ with an overhead of 27 (on average). After findig all k relovant

coordinates we can dettrmine the junta by observing examples fur alt 25 possille

settings . This takes © (k-*) examples . &

Tf a k-junta has a nonrero Fowier oeff at level d>o thew we conm find it |n

twme hd.Polj(n,?.k). This gwes a relevant ordinate

Does a juntm always have o nonrero Fourier coedf. in level o<dek?

No! For instance, Parity Xiii, . ig - But parities are easy o learnl

Given examples (X', fx), (& F0) .. Write a sequnce of liveor equalities

over GF, in variables O, 0, ,0n ¢  Og%+0q% +..% Gaxa = F(x)

A XY ¥ O XL 4 v aw Xt = 6

We Only need ~n  equations. s

Step 2 Multilinear pslynamials over GF, .

Examples: PARITY (Xa, %)z Xyt %at . +Xn . of dogree 1.
AND (X, %n) = X ¢ Xa' 0 Xy of degres n,

Prop> Any 'F'-GF:-"CDF; Con e uniguely e)cprf.ss-e.-l o5 a multilivver P-“‘b"“"“‘L“\*
Proof: We cawm worite ¢ CF(CO-:CU-(M-O&)) . Uniqueviess follavs becange tha enly
AEGF }

mltlin . poly . thak (s constantly O (s the zero poly. =

i

Thm: Theclss {f:6F"» GF | dege. () S.e} is learnable from romdom
exomples 1n time n’s. P‘M& (n,2®) where W s the matfix multip lication
Constant (currently w€2.3%6 [Coppersmitis Winograd ) | Strassem logad ).
Proof: Take m=n® random examples (requires proof) (', €6), (X fo), ...
ond selve ubmﬁbhs in variables ﬂ,a-r}m&,_ over GF, :

{ Za,-jITx} ~ £(x) },": - This 4akes tme n"c"-Pol:,(n,f),

Itlge  JET
e
cownst!)

Thin [Siegentioler 8012 Tf £rboal®4)) Is sx. €120 For all S with t<|s|<d
then over GF, we com express £ os a degrer € k-d multilinear poly .

)
Proof: Lekt (3=F'x‘4"_‘k} . T4 we can vepresentYas a dogree sk-d multilin . poly

over GF, then we're done becauwse we Obtain F by adding XXt . +%a Whick is of

dﬂ_gru, 4. Notice that ¥s, é\ts)"-ffs 844,,.,%]) , hence §():0 for all S with



k-d<[sl k1. Considar the wulbilineow poly . over R, xy, %) -.--'.:-‘32;_',% (S)'E-.s(\—u-_) [
Clearly, for all xa4p-xa€lop) | ‘r\(xa,..,xu\ =‘!i"13(x.|..,x...\ €40,1}

This implies that if we expand h then the weff of every monemial |s integer
(this can be seen by induction on the degree of te monomial : the free coeff, (s
hio,...0) 0nd hence integer 5 the % coeff s h(o,.,4,0,.0) ~Wie . 0) €T, and s tharefoe
wnteger). TF we reduce each coefé of W medulo2 , we get o represesctotidn of g
as & multilin, poly ower GF, . Tt remas +to preve that Yw dogree (s € ke-d |

Notice that ';l:lg(.‘l'?—xl) sof degree =IS|. This means thet the cpefe of ‘.Ig"i tor
Some T of sizerk-d (Tonly affected by 3({4,-W) and is tharefore -353(1) -2J"
Since. all Coeff o h are fntegers | =531, CD vust oo fwbegar | This implies
that for T of sive Zkd+l the coeft (s even and therefire disappears whon we ‘el
wodulo 2. B

Remark: We could aveld the last camplicotion by using the homework (unbalancad
functions have "buw" Fowier ooeff).

n (]
Thm: k-juntas can be learned in time N G -pEy (n,‘f),’ﬁm rovnd om Cxowmpleg |

Peoof: L et d= ,ﬁ: (20.2%) . Look for nonyero Fourier coeff ap to Lu-e_!l)oL i
wvlevels 1.

ivme n“-pvly (n,7°) . TF found | we have o relevawt Coordinate  ond utre dane .
Otherwise, gur function is of degres € k—d*‘--m—t—; over GF. | s6 w2 con learn it
. k. "

w ke 1 poly(n,20). @

x st ¥,
Opmn Questions: = Learn k-jurtas 1n Hime poly (n I‘L"‘) oY even N g po\_-jtn,zk}_

* Do svmething similar over {Olll']_Jh, or over {o,1§" with .






