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1 Friedgut and KKL

Lemma 1.1. For any f : {0, 1}n → {−1, 1}, 0 ≤ ρ ≤ 1,

Infρ
i ( f ) = ∑

S3i
ρ|S| f̂ (S)2 ≤ (Infi( f ))2/(1+ρ)

Remarks:

• Small influence gets much smaller after noise

• Not a Fourier statement

• Means that small influences cannot come from low levels

Proof. Define fi : {0, 1}n → {−1, 0, 1} by fi =
1
2( f (x)− f (x⊕ ei)). Then fi = ∑S3i f̂ (S)χS,

so

Infρ
i ( f ) = ‖T√ρ( fi)‖2

2
HC
≤ ‖ fi‖2

ρ+1
range of f

= ‖ fi‖
4/(ρ+1)
2 = (Infi( f ))2/(ρ+1).

Corollary 1.2. For all i, d, ρ,

∑
S3i
|S|≤d

f̂ (S)2 ≤ ρ−d(Infi( f ))2/(1+ρ).

Lemma 1.3. For f : {0, 1}n → {−1, 1}, ε ∈ (0, 1), let d = 2I( f )/ε and

J = {j ∈ [n] : Infj( f ) ≥ 64−d}.

Then f is ε-concentrated on
S = {S ⊆ J : |S| ≤ d}.

Corollary 1.4 (Friedgut’s theorem [Fri98]). For any f : {0, 1}n → {−1, 1}, and ε ∈ (0, 1), f
is ε-close to a 2O(I( f )/ε) junta.

Proof. Define g = sign(∑|S|≤d
S⊆J

f̂ (S)χS). Since f is ε-concentrated on S , g is ε-close to f (as

we saw in a previous class), and clearly g is a |J|-junta, and |J| = 2O(I( f )/ε).

Proof of lemma.
∑

S/∈S
f̂ (S)2 = ∑

|S|>d
f̂ (S)2

︸ ︷︷ ︸
≤ε/2 since d=2I( f )/ε

+ ∑
|S|≤d,S 6⊆J

f̂ (S)2.
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Now,

∑
|S|≤d,S 6⊆J

f̂ (S)2 ≤∑
i/∈J

∑
S3i,|S|≤d

f̂ (S)2

ρ=1/2
≤ ∑

i/∈J
2d(Infi( f ))4/3

∗
≤ 2d ∑

i/∈J
4−d Infi( f )

≤ 2−dI( f ) = 2−2I( f )/εI( f )
2−x≤1/x
≤ ε/2.

(*): at this point we could just write (64−d)4/3, but not good enough...

Corollary 1.5 (Kahn, Kalai, and Linial [KKL88]). For any balanced f : {0, 1}n → {−1, 1},
there exists i s.t. Infi( f ) ≥ log n/(48n).

Proof. Assume by contradiction that ∀i, Infi( f ) < log n/(48n). Then I( f ) < 1
48 log n. So if

we take ε = 1/2 we get that f is 1/2-concentrated on subsets of

J = {j | Infj( f ) ≥ 64−d = 64−4I( f ) > 64− log n/12 = 1/
√

n} = ∅,

in contradiction to ∑S 6=∅ f̂ (S)2 = 1.

2 Friedgut-Kalai-Naor 2002

Recall that we showed that

Pr[NAE accepts f ] =
3
4
− 3

4 ∑
S
(−1

3
)|S| f̂ (S)2 ≤ 7

9
+

2
9

W1( f ).

So if the test accepts with probability 1− ε then W1( f ) ≥ 1− 9
2 ε. We already know that

if W1( f ) = 1 (i.e., when all its Fourier mass is in the first level) then f is a dictator or
antidictator, but let’s show it again with a different proof: (Notice that the claim is false
for non-Boolean functions, i.e., f : {0, 1}n → R.)

Claim 2.1. If f : {0, 1}n → {−1, 1} is such that W1( f ) = 1 then f is a dictator or antidictator.

Proof. Since f is Boolean, f 2 is the constant 1 function, i.e., χ∅. Therefore(
n

∑
i=1

f̂ ({i})2

)
χ∅ + 2 ∑

i<j
f̂ ({i}) f̂ ({j})χ{i,j} = χ∅.

Hence for all i < j, we have f̂ ({i}) f̂ ({j}) = 0 so at most one of the f̂ ({i})s is nonzeo.
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What can we say when W1( f ) ≥ 1− ε?

Theorem 2.2 ([FKN02]). If f : {0, 1}n → {−1, 1} has ∑|S|>1 f̂ (S)2 < ε then f is O(ε) close
to a 1-junta.

This shows that NAE is a valid test for “dictator or antidictator” (think why). It also
implies an approximate Arrow theorem: the only election functions having 1− ε proba-
bility of a reasonable outcome are those close to a dictator or an antidictator.

Proof. First we notice that without loss of generality we can assume that f̂ (∅) = 0 (a trick
due to Guy Kindler). Indeed we can define g : {0, 1}n+1 → {−1, 1} by

g(x, y) =

{
f (x) if y = 0
− f (x + (1, . . . , 1)) if y = 1.

This transformation sends χS for S ⊆ [n] of odd size to itself and sends χS for S ⊆ [n] of
even size to χS∪{n+1}. In particular, we get ĝ(∅) = 0 and ∑|S|>1 ĝ(S)2 < ε. Moreover, if g
is close to a 1-junta, then so is f . (Think: why don’t we just take the odd part of f ?)

Write f = `+ h with

` =
n

∑
i=1

f̂ ({i})χ{i} and h = ∑
|S|>1

f̂ (S)χS.

Then,
1 = f 2 = `2 + 2`h + h2 = `2 + h(2 f − h).

Since E[h(x)2] < ε, Pr[|h(x)| ≥ 10
√

ε] ≤ 1/100. Hence,

Pr[|h(x) · (2 f (x)− h(x))| > 21
√

ε] < 1/100.

Moreover,

`2 =

(
n

∑
i=1

f̂ ({i})2

)
︸ ︷︷ ︸

∈(1−ε,1)

χ∅ + 2 ∑
i<j

f̂ ({i}) f̂ ({j})χ{i,j}︸ ︷︷ ︸
q

.

Therefore, Pr[|q(x)| > 11
√

ε] < 1/100, or equivalently, Pr[q(x)2 > 121ε] < 1/100. By
the hypercontractive inequality, E[q(x)4] ≤ 81(E[q(x)2])2. Using the following claim
from the homework (with X ← q2, K ← 121ε, L ← E[q2], and δ ≤ 1/100), we get that
E[q(x)2] < 1000ε (since otherwise E[q4] ≥ 100(E[q2]− 121ε)2 > 81(E[q2])2, in contradic-
tion).

Claim 2.3. If X is a random variable with Pr[X > K] = δ and E[X] ≥ L > K then E[X2] ≥
(L− K)2/δ.
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Therefore,

1000ε > E[q(x)2] = ∑
i<j

f̂ ({i})2 f̂ ({j})2

=
1
2

(∑
i

f̂ ({i})2

)2

−∑
i

f̂ ({i})4


≥ 1

2

(
(1− ε)2 −∑

i
f̂ ({i})4

)
,

which implies that ∑i f̂ ({i})4 > 1− 2002ε. But since ∑i f̂ ({i})4 ≤ (∑ f̂ ({i})2)max f̂ ({i})2,
we get that there exists an i such that | f̂ ({i})| ≥ 1− 1002ε.
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