Instructions as before.

1. **The Nisan-Szegedy bound [2]**: Let \(f : \{0,1\}^n \to \mathbb{R} \) be a nonzero function of degree at most \(d \) (i.e., \(\hat{f}(S) = 0 \) for all \(S \) of size at least \(d + 1 \)).

 (a) Show that \(\Pr[f(x) \neq 0] \geq 2^{-d} \) (this is known as the Schwartz-Zippel lemma).

 Hint: induction on \(n \).

 (b) Show that if in addition \(f \) maps into \([-1,1]\) then \(\mathbb{I}(f) \leq d \).

 (c) Show that if in addition \(f \) maps into \([-1,1]\) then \(f \) is a \(d2^d \)-junta.

 (d) Consider the address function \(\text{Addr}_k : \{0,1\}^{k+2} \to \{-1,1\} \) defined by

 \[
 \text{Addr}_k(x_1, \ldots, x_k, y_1, \ldots, y_{2^k}) = (-1)^{y_1 x_k}
 \]

 where we think of \(x \) here as an element of \(\{2^k\} \). Show that \(\deg(\text{Addr}_k) = k + 1 \).

 Conclude that the bound in (c) must be at least \(2^d - 1 + d - 1 \).

2. **Total influence of DNFs**:

 (a) Assume \(f \) can be expressed as a DNF of width \(w \) (i.e., each clause has at most \(w \) literals). Show that \(\mathbb{I}(f) \leq 2w \). Open question: improve on the constant 2.

 (b) Deduce that width-\(w \) DNFs can be learned from random examples in time \(n^{O(w/\varepsilon)} \). We will improve this in class.

3. **Unbalanced functions have a low Fourier coefficient**: Let \(f : \{0,1\}^n \to \{-1,1\} \) be such that \(\hat{f}(\emptyset) \notin \{-1,0,1\} \) (i.e., \(f \) is neither constant nor balanced).

 (a) Show that there must exist a nonempty \(S \) of size at most \(2n/3 \) such that \(\hat{f}(S) \neq 0 \). Hint: \(f^2 \)

 (b) Optional: show that the \(2n/3 \) bound above is tight.

 (c) Does a similar statement hold for balanced functions?

4. **Bent functions**: Show an upper bound on \(\|\hat{f}\|_1 := \sum_{S} |\hat{f}(S)| \) among all functions \(f : \{0,1\}^n \to \{-1,1\} \). For infinitely many \(n \), show a function achieving this bound.

5. **Deterministically estimating Fourier coefficients**: A set \(A \subseteq \{0,1\}^n \) is called \(\varepsilon \)-biased if for \(x \) chosen uniformly from \(A \) and for all nonempty \(S \subseteq [n] \), \(\mathbb{E}_x[\chi_S(x)] \leq \varepsilon \). There is a known algorithm that on inputs \(\varepsilon, n \), outputs an \(\varepsilon \)-biased set of size \((n/\varepsilon)^2 \) in time \(\text{poly}(n,1/\varepsilon) \). Use this to show how to deterministically estimate \(\hat{f}(S) \) to within \(\pm \varepsilon \) for any given \(S \) in time \(\text{poly}(\|\hat{f}\|_1, n, 1/\varepsilon) \) using query access to \(f : \{0,1\}^n \to \mathbb{R} \). You can assume the algorithm knows \(\|\hat{f}\|_1 \).

6. **Close functions and concentration**: Recall that \(f \) is \(\varepsilon \)-concentrated on a family \(S \) if \(\sum_{S \in \mathcal{S}} \hat{f}(S)^2 \leq \varepsilon \). Show that if \(\|f - g\|_2^2 \leq \varepsilon \) and \(g \) is \(\varepsilon \)-concentrated on \(S \) then \(f \) is \(4\varepsilon \)-concentrated on \(S \).
7. Learning functions with low $\|\hat{f}\|_1$:

(a) For $f : \{0, 1\}^n \rightarrow \mathbb{R}$ let $L = \|\hat{f}\|_1$. Show that for any $\varepsilon > 0$, f is ε-concentrated on a set of size at most L^2 / ε.

(b) Deduce that the set of Boolean functions f with $\|\hat{f}\|_1 \leq L$ can be learned in time $\text{poly}(L, \frac{1}{\varepsilon}, n)$ using membership queries.

(c) Define a decision tree on parities as a decision tree where on each node we can branch on an arbitrary parity of variables (as opposed to just a single variable in the usual definition of decision trees). Show that decision trees on parities of size L can be learned in time $\text{poly}(L, \frac{1}{\varepsilon}, n)$ using membership queries.

8. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no need to hand in) The input to the algorithm is an undirected graph $G = (V, E)$ on n vertices. The first step is to solve the following optimization problem over vector variables $v_1, \ldots, v_n \in \mathbb{R}^n$: maximize $\sum_{\{i,j\} \in E} (1 - \langle v_i, v_j \rangle) / 2$ subject to all vectors being unit vectors. It is known that this optimization problem can be solved efficiently (because it is a convex optimization problem, and in fact a semidefinite program). Notice that the value of the optimum is at least the number of edges in the optimal MAX-CUT. The second step in the algorithm is to take the optimal solution v_1, \ldots, v_n and to construct from it a good solution to MAX-CUT (this step is known as rounding). This is done as follows: choose a random unit vector $w \in \mathbb{R}^n$ uniformly and partition the vertices according to the sign of $\langle w, v_i \rangle$. Notice that each edge $\{i, j\}$ is cut with probability $\frac{1}{\pi} \arccos \langle v_i, v_j \rangle$. Hence the expected size of the cut given by the algorithm is $\frac{1}{\pi} \sum_{ij} \arccos \langle v_i, v_j \rangle$. To complete the proof, notice that this is at least $\alpha \cdot \sum_{\{i,j\} \in E} (1 - \langle v_i, v_j \rangle) / 2$ where $\alpha = \frac{2}{\pi} \min_{\beta \in [-1,1]} \arccos(\beta) / (1 - \beta) \approx 0.87856$.

References
