
Sample Solution to Exam in Computational Complexity
2007/7/13

Oded Regev, Oded Schwartz, Amnon Ta-Shma

Disclaimer: Although we tried to be careful, these solutions might still contain a bug or two. If
you find any, please let us know!

1. (a) First recall that NL = coNL. Therefore it is enough to show that D ∈ coNL, or equiva-
lently, that the problem of checking whether a given directed graph contains a directed
cycle is in NL. To do so, we will now show a log-space verifier that reads its witness
from a read-once tape (as we saw in class, NL can be defined using such verifiers).
Our verifier expects to get as a witness a list of vertices that form a directed cycle in the
graph. The verifier starts by saving the first vertex appearing in the witness into his
work tape. Since one vertex takes only log n bits of space, he can do that. He then reads
the rest of the witness, vertex by vertex, and each time verifies that the previously read
vertex is connected to the currently read vertex by an edge. Notice that for this he only
needs to remember the last vertex which takes log n bits. Finally, when he reaches the
last vertex in the witness, he checks that this vertex is connected to the first vertex in
the witness (which is stored in the work tape).
It is easy to see that this verifier requires only O(log n) space, and that it uses only read-
once access to the witness. Moreover, if the graph has a directed cycle then using the
list of vertices on this cycle as a witness would make the verifier accept, and the size of
this witness is polynomial; conversely, if the verifier accepts a witness, then the vertices
on this witness must form a directed cycle in the graph (since each vertex is connected
to the next one, and the last vertex is connected to the first one).

(b) We will prove that D is NL-hard by showing a log-space reduction from the NL-complete
language PATH to D. (Recall that PATH is the problem of deciding, given a directed
graph G and two vertices s, t in it, whether there is no path from s to t in G. Since PATH

is NL-complete, PATH is coNL-complete; but since NL = coNL, this means that PATH is
NL-complete.)
The reduction is as follows. Its input is a directed graph G = (V,E) and two vertices
s, t ∈ V . Let n = |V | be the number of vertices in the graph. It outputs the graph G′

constructed as follows. Its vertex set is V ×{1, . . . , n}, of size n2. For each k = 1, . . . , n−1
and each edge (i, j) ∈ E we add to G′ an edge from (i, k) to (j, k + 1). In addition, for
each k = 1, . . . , n, we add to G′ an edge from (t, k) to (s, 1). Less formally, the graph G′

is made of n layers where between any two consecutive layers we place a directed copy
of the graph G with all edges going ‘forward’, and we in addition place ‘backwards’
edges from the node t in each layer to the node s in the first layer.
It is easy to see that this reduction can be implemented in log-space. We now prove cor-
rectness. First, assume that there is a path in G from s to t, and assume its vertices are
(v1 = s, v2, . . . , vk−1, vk = t). We can assume without loss of generality that the path is
simple and so in particular k ≤ n. We therefore see that ((v1, 1), (v2, 2), . . . , (vk, k), (v1, 1))
is a directed cycle in G′, as required. Now assume that there is a directed cycle in G′.
This cycle must clearly contain one of the ‘backwards’ edges (since without these edges

1

G′ is acyclic). In particular, the cycle must contain the vertex (s, 1). Following along
the cycle from this vertex onwards, we encounter vertices (s, 1), (v2, 2), (v3, 3), . . . until
at some point a backward edge must be used. Therefore this list of vertices must end
with (t, k) for some k, and (s, v2, . . . , vk−1, t) forms a path from s to t in G.

Remark: Many students gave the following incorrect proof: Our goal is to show that
D̄ is NL-hard (which would imply that D is NL-hard since NL = coNL). To do this, we
repeat the proof that PATH is NL-hard with a minor modification. Namely, let L be any
language in NL and let M be a log-space NDTM for L. Our reduction from L to D̄,
given an input x ∈ {0, 1}∗, outputs the graph obtained from the configuration graph
GM,x by adding one extra edge from Caccept to Cstart. The bug in this proof is that
the configuration graph GM,x need not be acyclic (even though M always halts) since it
might contain cycles that correspond to configurations that are unreachable from Cstart.

2. (a) True. Assume that L1, L2 ∈ NP. By definition, this implies that there are poly-time
verifiers V1, V2 and polynomials p1, p2 satisfying that

∀x ∈ {0, 1}∗, x ∈ L1 ⇐⇒ ∃w ∈ {0, 1}p1(|x|) s.t. V1(x,w) = 1,

∀x ∈ {0, 1}∗, x ∈ L2 ⇐⇒ ∃w ∈ {0, 1}p2(|x|) s.t. V2(x,w) = 1.

In order to show that L1∩L2 ∈ NP we now construct a poly-time verifier V for L1∩L2.

The goal of V is to verify that its input x is in L1 ∩ L2, i.e., both in L1 and in L2. It
expects a witness of the form 〈w1, w2〉. It first applies V1 to the input x and the witness
w1, and then applies V2 to the input x and the witness w2. It accepts if and only if both
calls accept. Clearly V runs in polynomial time, and it is a legal verifier since

∀x ∈ {0, 1}∗, x ∈ L1 ∩ L2 ⇐⇒ ∃w ∈ {0, 1}p1(|x|)+p2(|x|) s.t. V (x,w) = 1.

(b) Equivalent to NP = coNP. To show this equivalence, we need to prove two things. First
assume that NP = coNP. Then clearly if L ∈ NP then L is also in coNP, which is (by
definition) equivalent to saying that L̄ ∈ NP.

Conversely, assume that for all L ∈ NP it holds that L̄ ∈ NP. Equivalently, this says that
for all L ∈ NP it holds that L ∈ coNP. But this is exactly saying that NP ⊆ coNP. Hence,
to show that NP = coNP it is enough to show that also coNP ⊆ NP. So let L be any
language in coNP. By definition, its complement L̄ is in NP, which, by our assumption,
implies that L̄ ∈ coNP and hence L ∈ NP. So we see that coNP ⊆ NP, and therefore
NP = coNP as required.

(c) Also equivalent to NP = coNP. We again need to prove two things. First assume that
NP = coNP. Then if L1, L2 ∈ NP then since NP = coNP, we also have L2 ∈ NP. Using
(a), we have that L1 \ L2 = L1 ∩ L2 ∈ NP.

Conversely, assume that for all L1, L2 ∈ NP it holds that L1\L2 ∈ NP. Take L1 = {0, 1}∗
to be the language of all strings. This language is clearly in NP (it is in fact regular). We
obtain that for all L ∈ NP, {0, 1}∗ \L = L̄ is also in NP, which, as we saw in (b), implies
that NP = coNP.

2

3. (a) Our goal is to show a reduction that gets as input a graph G = (V, E) and outputs a
number m and sets S1, . . . , Sn ⊆ {1, . . . , m} such that: (a) if G has an independent set
of size at least β|V | then there are βn pairwise disjoint sets among S1, . . . , Sn and (b)
if the largest independent set in G is of size at most α|V |, then there are at most αn

pairwise disjoint sets among S1, . . . , Sn. The reduction is as follows. We are given a
graph G = (V,E). Assume without loss of generality that V = {1, . . . , n} and that the
edges in E are indexed from 1 to m. The reduction outputs the number m = |E| and
the n = |V | sets S1, . . . , Sn where each Si ⊆ {1, . . . , m} is the set of edges that touch
vertex i.
This reduction can clearly be implemented in time polynomial in the input size, i.e.,
in time poly(n): for each i = 1, . . . , n output the list of edges that touch vertex i by
checking all m edges.
We now prove correctness. We start with (a). Assume G has an independent set I of
size β|V | = βn. Then the sets Si for all i ∈ I are pairwise disjoint since if Si ∩ Sj 6= ∅
for some i 6= j then by definition there is an edge in G that touches both i and j, which
means that {i, j} ∈ E, but this is impossible since I is an independent set. We now
prove (b). Assume that there are more than αn pairwise disjoint sets among S1, . . . , Sn,
and let I ⊆ {1, . . . , n} be their indices. Then we claim that I is an independent set.
Indeed, let {i, j} ∈ E be any edge in G. Then, by our construction, Si ∩ Sj 6= ∅ (since
the edge {i, j} touches both i and j and is therefore contained in both Si and Sj) and
therefore either i or j are not in I .

(b) Our goal now is to show a reduction in the reverse direction: given a number m and sets
S1, . . . , Sn ⊆ {1, . . . ,m}, the reduction needs to output a graph G = (V, E) such that: (a)
if there are βn pairwise disjoint subsets among S1, . . . , Sn then G has an independent
set of size β|V |, and (b) if there are at most αn pairwise disjoint sets among S1, . . . , Sn

then the largest independent set in G is of size at most α|V |. The reduction is as follows.
We are given a number m and sets S1, . . . , Sn ⊆ {1, . . . , m}. The reduction outputs the
graph G = (V, E) with V = {1, . . . , n} and E given by

E = {{i, j} : i 6= j ∧ Si ∩ Sj 6= ∅}.
In other words, we connect by an edge any two vertices that correspond to sets that are
not disjoint.
This reduction can clearly be implemented in time polynomial in the input size, i.e.,
in time poly(n, log m,

∑
i |Si|) (notice that m might be exponential in the input size):

for each pair {i, j} we check if their sets intersect, and decide whether to put an edge
between them accordingly.
We now prove correctness. We start with (a). Assume there are βn pairwise disjoint
subsets among S1, . . . , Sn, and let I denote their indices. Then clearly I is an inde-
pendent set in the graph we constructed since we only put edges between sets that
intersect. We now prove (b). Assume that G has an independent set I of size more than
α|V |. Then by our construction, the sets Si for i ∈ I are pairwise disjoint.

4. (a) The optimal solution must place item i in one of the bags, and the weight of that bag is
therefore at least ai.

3

(b) Consider the total weight of bags in the optimal solution. On one hand, it is clearly
equal to the total sum of weights of items,

∑n
i=1 ai. On the other hand, since no bag is

heavier than |OPT|, it is at most m|OPT|. Combining these two observations leads to
the required inequality.

(c) Let j be the heaviest bag in ALG, let i be the last item placed into j, and let w be the
weight of j just before i was placed into it. Notice that no bag in ALG can have weight
smaller than w since otherwise item i would not have gone into bag j. This implies
that the sum of weights of all items satisfies

∑n
i=1 ai ≥ mw. By item (b) we see that

w ≤ |OPT|, as required.

(d) As before, let j be the heaviest bag in ALG, let i be the last item placed into j, and let w

be the weight of j just before i was placed into it. Notice that the solution found by the
algorithm has value |ALG| = w + ai. By item (c) we have that w ≤ |OPT|. By item (a)
we know that ai ≤ |OPT|. Therefore, |ALG| ≤ 2|OPT|, as required.

