Homework is due by noon of Nov 4. Send by email to both “regev” and “tess” under the cs.nyu.edu domain with subject line “CSCI-GA 3210 Homework 7” and name the attachment “YOUR NAME HERE HW7.tex/pdf”. Please also bring a printed copy to class. Start early!

Instructions. Solutions must be typeset in \LaTeX{} (a template for this homework is available on the course web page). Your work will be graded on correctness, clarity, and conciseness. You should only submit work that you believe to be correct; if you cannot solve a problem completely, you will get significantly more partial credit if you clearly identify the gap(s) in your solution. It is good practice to start any long solution with an informal (but accurate) “proof summary” that describes the main idea. You may collaborate with others on this problem set and consult external sources. However, you must write your own solutions and list your collaborators/sources for each problem.

1. In this problem, you will use a PRG to implement what we’ll call a secure “locking” scheme. A locking scheme is a protocol between two players, a locker L and a verifier V. It allows L to lock itself into one of two choices (0 or 1) without V knowing which choice was made, then later reveal its choice. The protocol works in two phases: in the first “locking” phase, L and V exchange some messages, which result in L being bound to its (secret) choice bit. In the second “unlocking” phase, L reveals its choice bit and some additional information, which allows V to check consistency with the earlier messages.

We define the following model for a locking scheme, in which the locking phase consists of an initial message from the verifier, followed by a response from the locker.

- The verifier $V()$ is a PPT algorithm that takes no input (except for the implicit security parameter 1^n and its random coins) and outputs some message $v \in \{0, 1\}^*$.
- The locker $L(\sigma, v; r_L)$ is a PPT algorithm that takes a choice bit $\sigma \in \{0, 1\}$, the verifier’s initial message v, and random coins r_L, and outputs some message $\ell \in \{0, 1\}^*$.

In the unlocking phase, the locker simply reveals σ and r_L, and the verifier checks that $\ell = L(\sigma, v; r_L)$.

(a) (3 points) A secure locking scheme should be “hiding,” i.e., a malicious (but computationally bounded) verifier V^* should not be able to learn anything about the honest locker L’s choice bit σ, no matter what initial message v^* the malicious verifier sent. Using the notion of indistinguishability, give a formal definition of this hiding property.

(b) (3 points) A secure locking scheme should also be “binding” against even a computationally unbounded malicious locker L^*. That is, there should not exist any ℓ^* that can successfully be unlocked as both choice bits $\sigma \in \{0, 1\}$, except with negligible probability over the choice of the honest verifier V’s initial message v.

Give a formal definition of this binding property.

(c) (3 points) Let G be any length-tripling function, i.e., one for which $|G(x)| = 3|x|$ for every $x \in \{0, 1\}^*$. Give an upper bound on the probability, over the choice of a random $3n$-bit string R, that there exist two inputs $x_1, x_2 \in \{0, 1\}^n$ such that $G(x_1) \oplus G(x_2) = R$.

(d) (6 points) Let G be a length-tripling PRG (which we have seen can be obtained from any PRG). Use G to construct a secure locking scheme, and prove that it is both hiding and binding according to your definitions. \textbf{I need a hint! (ID 19922)}

(e) (0 points) Think how using the locking scheme two remote parties can toss a fair coin over the Internet, even if one of them is dishonest. For more discussion and cool applications, see Dodis’s lecture 14.

\footnote{From Peikert}