In this problem, you will use a PRG to implement what we’ll call a secure “locking” scheme. A locking scheme is a protocol between two players, a locker L and a verifier V. It allows L to lock itself into one of two choices (0 or 1) without V knowing which choice was made, then later reveal its choice. The protocol works in two phases: in the first “locking” phase, L and V exchange some messages, which result in L being bound to its (secret) choice bit. In the second “unlocking” phase, L reveals its choice bit and some additional information, which allows V to check consistency with the earlier messages.

We define the following model for a locking scheme, in which the locking phase consists of an initial message from the verifier, followed by a response from the locker.

- The verifier $V()$ is a PPT algorithm that takes no input (except for the implicit security parameter 1^n and its random coins) and outputs some message $v \in \{0, 1\}^*$.
- The locker $L(\sigma, v; r_L)$ is a PPT algorithm that takes a choice bit $\sigma \in \{0, 1\}$, the verifier’s initial message v, and random coins r_L, and outputs some message $\ell \in \{0, 1\}^*$.

In the unlocking phase, the locker simply reveals σ and r_L, and the verifier checks that $\ell = L(\sigma, v; r_L)$.

(a) (3 points) A secure locking scheme should be “hiding,” i.e., a malicious (but computationally bounded) verifier V^* should not be able to learn anything about the honest locker L’s choice bit σ, no matter what initial message v^* the malicious verifier sent.

Using the notion of indistinguishability, give a formal definition of this hiding property.

(b) (3 points) A secure locking scheme should also be “binding” against even a computationally unbounded malicious locker L^*. That is, there should not exist any ℓ^* that can successfully be unlocked as both choice bits $\sigma \in \{0, 1\}$, except with negligible probability over the choice of the honest verifier V’s initial message v.

Give a formal definition of this binding property.

(c) (3 points) Let G be any length-tripling function, i.e., one for which $|G(x)| = 3|x|$ for every $x \in \{0, 1\}^*$. Give an upper bound on the probability, over the choice of a random $3n$-bit string R, that there exist two inputs $x_1, x_2 \in \{0, 1\}^n$ such that $G(x_1) \oplus G(x_2) = R$.

(d) (6 points) Let G be a length-tripling PRG (which we have seen can be obtained from any PRG). Use G to construct a secure locking scheme, and prove that it is both hiding and binding according to your definitions. [I need a hint! (ID 19922)]

(e) (0 points) Think how using the locking scheme two remote parties can toss a fair coin over the Internet, even if one of them is dishonest. For more discussion and cool applications, see Dodis’s lecture 14.

1From Peikert