Homework is due by 7am of Nov 30. Send by email to both “regev” (under the cs.nyu.edu domain) and “mgeorgiou@nyu.edu” with subject line “CSCI-GA 3210 Homework 10” and name the attachment “YOUR NAME HERE HW10.tex/pdf”. No need for a printed copy. Start early!

Instructions. Solutions must be typeset in LATEX (a template for this homework is available on the course web page). Your work will be graded on correctness, clarity, and conciseness. You should only submit work that you believe to be correct; if you cannot solve a problem completely, you will get significantly more partial credit if you clearly identify the gap(s) in your solution. It is good practice to start any long solution with an informal (but accurate) “proof summary” that describes the main idea.

You are expected to read all the hints either before or after submission, but before the next class.

You may collaborate with others on this problem set and consult external sources. However, you must write your own solutions. You must also list your collaborators/sources for each problem.

1. (Lossy Encryption) Let \((Gen, E, D)\) be a public key encryption scheme. In this problem we define a new property for PKE schemes that we call “lossy encryption”. We say that a scheme \((Gen, E, D)\) is lossy if there exists an algorithm \(LossyGen(1^n)\) which generates a “lossy” public key \(PK’\) (without a secret key) such that the following two properties are satisfied:

1. A lossy public key is computationally indistinguishable from a public key generated by \(Gen\): \(PK \approx PK’\). More formally, for any PPT adversary \(A\) it holds:
\[
|Pr[A(PK) = 1 | (PK, SK) \leftarrow Gen(1^n)] - Pr[A(PK’) = 1 | PK’ \leftarrow LossyGen(1^n)]| \leq \text{negl}(n)
\]

2. For any lossy public key \(PK’ \leftarrow LossyGen(1^n)\), encrypting any message using \(PK’\) produces ciphertexts that have identical distribution. Namely, for any \(PK’ \leftarrow LossyGen(1^n)\), and any pair of messages \(m_0, m_1 \in \mathcal{M}\), we have \((PK’, E(PK’, m_0)) \equiv (PK’, E(PK’, m_1))\).

Intuitively, notice that this second property is telling that encrypting using the lossy public key completely looses information about the original plaintext, and thus it is not possible to decrypt.

(a) (5 points) Prove that if an encryption scheme is lossy according to the definition provided above, then the scheme is also IND-CPA-secure.

\[\text{A hint for 1 point (ID 51588)}\]

Consider the following scheme as a potential candidate for being a lossy public key encryption. \(Gen(1^n)\) chooses a random \(n\)-bit large safe prime \(p\) (i.e., \(p = 2q + 1\) for a large prime \(q\)) and chooses two random generators \(g_0, g_1\) of \(G = QR_p\) (recall that \(QR_p\) is the subgroup of quadratic residues in \(\mathbb{Z}_p^*\)). Next, it chooses two random (but distinct) values \(x_0, x_1 \in \mathbb{Z}_q\), computes \(h_0 = g_0^{x_0}\), \(h_1 = g_1^{x_1}\), and outputs \(PK = (p, g_0, g_1, h_0, h_1)\) and \(SK = (x_0, x_1)\).

To encrypt a 1-bit message \(m \in \{0, 1\}\), \(E(PK, m)\) proceeds as follows: choose a random \(r \in \mathbb{Z}_q\) and output \(C = (g_0^m, h_r^m)\).

(b) (3 points) Describe a decryption algorithm.

(c) (8 points) Second, prove that the scheme described above (together with the decryption algorithm that you obtained from part (b)) is a lossy public key encryption based on the DDH assumption. Namely, first describe a lossy key generation algorithm \(LossyGen(1^n)\) and then show that it satisfies both properties (1) and (2). Deduce that the scheme is IND-CPA-secure.\[\text{A hint for 2 points (ID 51589)}\]

\(^1\)From Dodis
(d) (5 points) Although the lossy property may be nice and useful in some contexts, this is not necessary to prove that the scheme is IND-CPA-secure. Prove directly that this scheme is IND-CPA-secure under the DDH assumption; namely,

$$(g_0, g_1, h_0, h_1, g_{r_0}, h_{r_0}) \approx (g_0, g_1, h_0, h_1, g_{r_1}, h_{r_1})$$

A hint for 1 point (ID 51599)