Introduction to Cryptography
Courant, Fall 2016

Homework 7
Student: YOUR NAME HERE

Instructor: Oded Regev

Homework is due by **7am of Nov 14**. Send by email to both “regev” (under the cs.nyu.edu domain) and “avt237@nyu.edu” with subject line “CSCI-GA 3210 Homework 7” and name the attachment “YOUR NAME HERE HW7.tex/pdf”. There is no need to print it. Start early!

Instructions. Solutions must be typeset in **\LaTeX** (a template for this homework is available on the course web page). Your work will be graded on correctness, clarity, and conciseness. You should only submit work that you believe to be correct; if you cannot solve a problem completely, you will get significantly more partial credit if you clearly identify the gap(s) in your solution. It is good practice to start any long solution with an informal (but accurate) “proof summary” that describes the main idea.

You are expected to read all the hints either before or after submission, but before the next class.

You may collaborate with others on this problem set and consult external sources. However, you must **write your own solutions**. You must also **list your collaborators/sources** for each problem.

1. **(3 points)** (Feistel.) Show that if we repeat the Feistel constructions any number of times **with the same function** \(f \), the result is not a PRP. (In contrast, in class we showed that if we use three functions \(f_1, f_2, f_3 \) independently chosen from a PRF family, the result is a PRP. [I need a hint! (ID 91716)]

2. **(Security definitions of SKE.\(^1\))**

 (a) **(1 point)** Multi-message non-adaptive security for a symmetric-key encryption scheme \((\text{Gen}, \text{Enc}, \text{Dec})\) says that for any \(q = \text{poly}(n) \) and any tuples \((m_1, \ldots, m_q), (m'_1, \ldots, m'_q) \in \mathcal{M}^q\), it should be the case that
 \[
 (\text{Enc}_k(m_1), \ldots, \text{Enc}_k(m_q)) \approx (\text{Enc}_k(m'_1), \ldots, \text{Enc}_k(m'_q)),
 \]
 where in both cases the distribution is over the choice of \(k \leftarrow \text{Gen} \) and the randomness in the encryption procedure. Show that the encryption procedure in multi-message non-adaptive secure scheme must be randomized (in contrast to that in single-message secure schemes).

 (b) **(3 points)** Show that multi-message non-adaptive security can be equivalently defined as saying that for any \(q = \text{poly}(n) \) and any \(m_1, \ldots, m_q, m_0, m'_0 \in \mathcal{M} \), it should be the case that
 \[
 (\text{Enc}_k(m_1), \ldots, \text{Enc}_k(m_q), \text{Enc}_k(m_0)) \approx (\text{Enc}_k(m_1), \ldots, \text{Enc}_k(m_q), \text{Enc}_k(m'_0)),
 \]
 where in both cases the distribution is over the choice of \(k \leftarrow \text{Gen} \) and the randomness in the encryption procedure. [I need a hint! (ID 17499)]

 (c) **(3 points)** A stronger definition of security is **adaptive** (or IND-CPA) security, defined as the oracle indistinguishability
 \[
 (\text{Enc}_k(\cdot), C^0_k(\cdot, \cdot)) \approx (\text{Enc}_k(\cdot), C^1_k(\cdot, \cdot)),
 \]
 where \(C^0_k(m_0, m_1) \) outputs \(\text{Enc}_k(m_b) \) on receiving the first query and then ignores all further queries (this represents the “challenge”), and \(k \leftarrow \text{Gen} \). Show that an equivalent definition is
 \[
 (\text{Enc}^0_k(\cdot, \cdot)) \approx (\text{Enc}^1_k(\cdot, \cdot)),
 \]
 where \(\text{Enc}^0_k(m_0, m_1) \) outputs \(\text{Enc}_k(m_0) \) and \(k \leftarrow \text{Gen} \). [I need a hint! (ID 17499)]

 (d) **(4 points)** Give a separation between the non-adaptive and the adaptive security definitions, i.e., construct a (possibly contrived) scheme and prove it secure according to the former definition (under some standard assumption), while showing that it is definitely insecure according to the latter definition. [I need a hint! (ID 17495)]

\(^1\)Based on a question from Peikert’s class.
(e) (2 points) (Extra credit) Consider the weakening of the definition of multi-message non-adaptive security in which we take q to be some fixed polynomial, say, $q = n^2$. Show a separation between this definition and the original one.

\footnote{A question asked in class by Konstantinos Vamvourellis}