
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 9
Fourier Transform

Lecturer: Oded Regev
Scribe: Gillat Kol

In this lecture we describe some basic facts of Fourier analysis that will be needed later. The first section
discusses the Fourier transform, and the second discusses the Fourier series. We start each section with the
more familiar case of one-dimensional functions and then extend it to the higher dimensional case. As a
general rule, we will not worry too much about issues of convergence, differentiability etc., as these will
always be satisfied in our applications.

1 Fourier Transform

1.1 The one-dimensional case

DEFINITION 1 We defineL1(R) as the set of functionsf : R→ C satisfying
∫∞
−∞ |f(x)|dx < ∞.

DEFINITION 2 For a functionf ∈ L1(R) define its Fourier transform as the function̂f : R→ C given by

f̂(y) =
∫ ∞

−∞
f(x)e−2πixydx

For example, the Fourier transform at point0 is f̂(0) =
∫∞
−∞ f(x)dx.

EXAMPLE 1 Define

f(x) =

{
1 if |x| < a

0 otherwise
.

Then,

f̂(y) =
∫ a

−a
e−2πixydx =

e−2πiay − e2πiay

−2πiy
=

sin(2πay)
yπ

.

a

1

a

Figure 1:f(x) andf̂(y)

EXAMPLE 2 Let f(x) = e−π(x
s
)2 for somes > 0. Then,

f̂(y) =
∫ ∞

−∞
e−π(x

s
)2e−2πixydx =

∫ ∞

−∞
e−π(x2

s2
+2ixy)dx

=
∫ ∞

−∞
e−π(x

s
+iys)2e−π(ys)2dx = e−π(ys)2

∫ ∞

−∞
e−π(x

s
+iys)2dx.

We now perform a (complex) change of variablez = x
s + iys (which is possible by Cauchy’s theorem), and

see that the above is equal to

s · e−π(ys)2
∫ ∞

−∞
e−πz2

dz = s · e−π(ys)2 .

Notice that fors = 1 we get thatf(x) = e−πx2
satisfiesf̂ = f .
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Figure 2:f(x) andf̂(y)

The following theorem lists some of the most important properties of the Fourier transform. The first
property shows that the Fourier transform is linear. The third and fourth properties show that under the
Fourier transform, translation becomes multiplication by phase and vice versa. The sixth property shows
that scaling a function by someλ > 0 scales its Fourier transform by1/λ (together with the appropriate
normalization). The seventh property shows that under the Fourier transform, convolution becomes multipli-
cations and vice versa, where we define the convolution of two functions asf ∗ g(y) =

∫
R f(x)g(y− x)dx.

The last property shows that the Fourier transform of the derivative of a function can be obtained by simply
multiplying the Fourier transform of the function by2πiy.

THEOREM 1 For allf, g ∈ L1(R), x, y, z ∈ R, the following holds:

1. f̂ + g = f̂ + ĝ and for allα ∈ C, (̂αf) = αf̂

2. if f̄ is the complex conjugate off then(̂f̄)(y) = f̂(−y)

3. if h(x) := f(x + z) thenĥ(y) = f̂(y) · e2πizy

4. if h(x) := e2πizxf(x) thenĥ(y) = f̂(y − z)

5. |f̂(y)| ≤ ∫∞
−∞ |f(x)|dx

6. ∀λ > 0, defineh(x) := λf(λx) thenĥ(y) = f̂( y
λ)

7. f̂ ∗ g = f̂ · ĝ andf̂ · g = f̂ ∗ ĝ

8. if h(x) = f ′(x) ∈ L1(R) thenĥ(y) = 2πiyf̂(y)

PROOF: Most items are easy to verify. We only include a proof of two of them.

3.

ĥ(y) =
∫ ∞

−∞
f(x + z) · e−2πixydx =

∫ ∞

−∞
f(x)e−2πi(x−z)ydx = e2πizyf̂(y)

8. Sincef ′ ∈ L1(R), limx→∞ f(x) = f(0) +
∫∞
0 f ′(x)dx exists, and sincef ∈ L1(R) this limit must

be zero. Similarlylimx→−∞ f(x) = 0. Hence, using integration by parts
∫ ∞

−∞
f ′(x)e−2πixydx = −

∫ ∞

−∞
(−2πiy)f(x)e−2πixydx = 2πiyf̂(y)
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The following theorem, known as the inversion formula, shows that a function can be recovered from its
Fourier transform. The proof is omitted.

THEOREM 2 If both f, f̂ ∈ L1(R) andf is continuous thenf(x) =
∫∞
−∞ f̂(y)e2πixydy

1.2 Then-dimensional case

We now extend the Fourier transform to functions onRn. DefineL1(Rn) as the set of functionsf : Rn → C
satisfying

∫
Rn |f(x)|dx < ∞. We also define, forx, y ∈ Rn, 〈x, y〉 =

∑n
i=1 xiyi and‖x‖ =

√
〈x, x〉. We

now define then-dimensional Fourier transform.

DEFINITION 3 For f ∈ L1(Rn) definef̂ : Rn → C by

f̂(y) =
∫

Rn

f(x)e−2πi〈x,y〉dx

As shown below, all properties listed in Theorem 1 can be extended to then-dimensional case. The
proof is essentially the same as that in the one-dimensional case. The only new property is the last one: it
says that if ann-dimensional function can be factored as the product ofn one-dimensional functions, then
its Fourier transform is the product of the individual Fourier transforms. The proof of this is left to the
reader.

THEOREM 3 For allf, g ∈ L1(Rn), x, y, z ∈ Rn, the following holds:

1. f̂ + g = f̂ + ĝ and for allα ∈ C, (̂αf) = αf̂

2. if f̄ is the complex conjugate off then(̂f̄)(y) = f̂(−y)

3. if h(x) := f(x + z), ĥ(y) = e2πi〈y,z〉f̂(y)

4. if h(x) := e2πi〈x,z〉f(x) thenĥ(y) = f̂(y − z)

5. |f̂(y)| ≤ ∫
Rn |f(x)|dx

6. for λ > 0, h(x) := λnf(λx) thenĥ(y) = f̂( y
λ)

7. f̂ ∗ g = f̂ · ĝ andf̂ · g = f̂ ∗ ĝ

8. if ∂f
∂xj

exists then
(̂

∂f
∂xj

)
(y) = 2πiyj f̂(y)

9. if f(x) = f1(x1) · · · fn(xn) thenf̂(y) = f̂1(y1) · · · f̂n(yn)

The following example will be used in future lectures.

EXAMPLE 3 Considerρ(x) := e−π‖x‖2 . Then

ρ(x) = e−π(x2
1+···+x2

n) = e−πx2
1 · · · e−πx2

n

hence we obtain that̂ρ(y) = ρ(y). More generally, forρs(x) := e−π‖x
s
‖2 , ρ̂s(y) = snρ 1

s
(y).

We also have the following extension of the inversion formula (we omit the exact smoothness conditions
required fromf ).

THEOREM 4 Forf, f̂ ∈ L1(Rn), f(x) =
∫
Rn f̂(y)e2πi〈x,y〉dy
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2 The Fourier Series

2.1 The one-dimensional case

In this subsection, we consider functions onR with period1, i.e., functionsf that satisfy thatf(x + y) =
f(x) for anyx ∈ R, y ∈ Z.

DEFINITION 4 For a functionf : R → C with period 1 we define1 its Fourier series as the function
f̂ : Z→ C given by

f̂(k) =
∫ 1

0
f(x)e−2πikxdx.

The valuef̂(k) is sometimes called thekth Fourier coefficient.

Notice that unlike the Fourier transform, the Fourier series is only defined on a discrete set of points,
namelyZ. The intuitive reason for this is that in a1-periodic function, only integer frequencies appear.
Moreover, it is interesting to note that the Fourier coefficients can be seen as the limit of the Fourier transform
in the following sense. Consider a periodic function onR and restrict it to[−R,R]. Then, roughly speaking,
asR goes to∞, its Fourier transform converges to0 on non-integer points and to the Fourier coefficients on
integer points.

Most of the properties of the Fourier transform given in Theorem 1 also hold for the Fourier series. We
mention some below.

THEOREM 5 For any two functionsf, g with period1 we have

1. f̂ + g = f̂ + ĝ and for anyα ∈ C, α̂f = αf̂

2. if h(x) := f(x + r) for somer ∈ R, thenĥ(k) = f̂(k) · e2πikr

3. if h(x) := e2πijxf(x) for somej ∈ Z thenĥ(k) = f̂(k − j)

The following is the inversion formula for the Fourier series (also known as the Fourier convergence
theorem). Notice that in the case thatf is continuous, the right hand side is simplyf(x).

THEOREM 6 For any piecewise smoothf with period1 we have

∞∑

k=−∞
f̂(k)e2πikx =

1
2

(f(x+) + f(x−)) .

The following theorem is known as thePoisson summation formula. Its proof is based on a connection
between the Fourier transform and the Fourier series.

THEOREM 7 (PSF1) For a nice enoughf ∈ L1(R),

∞∑

j=−∞
f(j) =

∞∑

j=−∞
f̂(j).

Equivalently,f(Z) = f̂(Z).

1To be precise, we should assume that
∫ 1

0
|f(x)|dx exists. From now on, we ignore such issues of convergence.
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PROOF: Given a functionf , defineϕ(t) =
∑∞

j=−∞ f(t + j). Notice thatϕ has period1, and we can
therefore consider its Fourier series,

ϕ̂(k) =
∫ 1

0
ϕ(t)e−2πiktdt =

∞∑

j=−∞

∫ 1

0
f(t + j)e−2πiktdt

=
∞∑

j=−∞

∫ 1

0
f(t + j)e−2πik(t+j)dt

=
∫ ∞

−∞
f(t)e−2πiktdt = f̂(k).

So, we see that̂ϕ is the restriction off̂ to the integers. Using the inversion formula we have

ϕ(0) =
∞∑

j=−∞
ϕ̂(j),

and the theorem follows.2

In the rest of this subsection, we extend our definition of the Fourier series to functions whose period
is not necessarily1. It should be noted that this extension is not strictly necessary in the sense that any
functionf with periodλ can be transformed into a function with period1 by simply definingg(x) := f(λx).
Nevertheless, it serves as a good introduction to Fourier series on lattices since what we are doing here is
essentially defining the Fourier series of functions that are periodic on an arbitrary one-dimensional lattice
λZ (whereas so far we only dealt with the latticeZ).

For a functionf : R→ C with some periodλ > 0 we define its Fourier series aŝf : 1
λZ→ C by

f̂(y) =
1
λ

∫ λ

0
f(x)e−2πixydx.

The inversion formula becomes the following.

THEOREM 8
f(x) =

∑

y∈ 1
λ
Z
f̂(y)e2πixy

We now obtain the following extension of the Poisson summation formula (we remark that this extension
can also be derived directly from Theorem 7).

LEMMA 9 (PSF2) For anyλ > 0 and any nice enough functionf ,

∑

x∈λZ
f(x) =

1
λ

∑

y∈Z/λ

f̂(y).

Equivalently,f(λZ) = 1
λ f̂( 1

λZ).
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PROOF: Defineϕ(x) =
∑∞

j=−∞ f(x + λj). Thenϕ has periodλ and fory ∈ 1
λZ,

ϕ̂(y) =
1
λ

∫ λ

0
ϕ(x)e−2πixydx

=
1
λ

∞∑

j=−∞

∫ λ

0
f(x + λj)e−2πixydx

=
1
λ

∫ ∞

−∞
f(x)e−2πixydx

=
1
λ

f̂(y).

By the inversion formula, we have
ϕ(0) =

∑

y∈ 1
λ
Z
ϕ̂(y).

2

EXAMPLE 4 Forf(x) = e−π‖x‖2 , we obtain that for anyλ > 0,

∞∑

j=−∞
e−π‖λj‖2 =

1
λ

∞∑

j=−∞
e−π‖ j

λ
‖2 .

2.2 Then-dimensional case

In this subsection, we extend the definition of the Fourier series to then-dimensional case. We start by
considering the Fourier series of functions onRn that areZn-periodic, that is, functionsf : Rn → C such
thatf(x + y) = f(x) for anyx ∈ Rn, y ∈ Zn.

DEFINITION 5 For aZn-periodic functionf define its Fourier serieŝf : Zn → C as

f̂(y) =
∫

[0,1)n

f(x)e−2πi〈x,y〉dx

THEOREM 10 For a nice enoughf we have that for allx

f(x) =
∑

y∈Zn

f̂(y)e2πi〈x,y〉

LEMMA 11 (PSF3) For a nice enoughf we havef(Zn) = f̂(Zn)

We would now like to extend the above to functions that areΛ-periodic for some full-rank latticeΛ.
Notice that we already did a similar thing in the previous subsection for one-dimensional lattices. Indeed,
we started withZ-periodic functions and then extended our discussion toΛ-periodic functions for any one-
dimensional latticeΛ. The Fourier series ofλZ-periodic functions was defined as a function on the dual
lattice 1

λZ. Moreover, in Lemma 9 we proved thatf(Λ) = det(Λ∗) · f̂(Λ∗) for any one-dimensional lattice
Λ.

Let B be a basis of some full-rank latticeΛ and letf be aΛ-periodic function, i.e., a functionf : Rn →
C such thatf(x + y) = f(x) for anyx ∈ Rn, y ∈ Λ. The Fourier series off is the functionf̂ : Λ∗ → C
given by

f̂(y) =
1

det(Λ)

∫

P(B)
f(x)e−2πi〈x,y〉dx.
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As the following exercise shows, this definition is independent of the choice of basisB, and is therefore
well-defined.

EXERCISE1 Show that ifg is aΛ-periodic function for some latticeΛ = L(B), then its integral onP(B)
is the same for any choice of basisB. (A possible approach is to show that the integral is invariant under the
basic operations and then use the fact that a basis can be transformed into any other basis using a sequence
of basic operations.) Deduce thatf̂ is well-defined.

The inversion formula is now of the following form.

THEOREM 12 For a nice enoughf we have that for allx

f(x) =
∑

z∈Λ∗
f̂(z)e2πi〈x,z〉

Finally, we have the following general formulation of the Poisson summation formula. This formulation
will be often used is future lectures.

LEMMA 13 (PSF4) For a nice enoughf and any full-rank latticeΛ, f(Λ) = det(Λ∗)f̂(Λ∗).

PROOF: The functionϕ(x) =
∑

z∈Λ f(x + z) is Λ-periodic and hence we can consider its Fourier series.
For anyy ∈ Λ∗ we have

ϕ̂(y) =
1

det(Λ)

∫

P(B)

∑

z∈Λ

f(x + z)e−2πi〈x,y〉dx

=
1

det(Λ)

∑

z∈Λ

∫

P(B)
f(x + z)e−2πi〈x,y〉dx

=
1

det(Λ)

∑

z∈Λ

∫

P(B)
f(x + z)e−2πi〈x+z,y〉dx

=
1

det(Λ)

∫

Rn

f(x)e−2πi〈x,y〉dx

= det(Λ∗)f̂(y),

where we used that〈z, y〉 ∈ Z. By the inversion formula,ϕ(0) =
∑

y∈Λ∗ ϕ̂(y). 2

Let us remark that it is possible to derive Lemma 13 directly from Lemma 11 by using the fact that if
f : Rn → C is aΛ-periodic function for some latticeΛ with basisB, then the functiong : Rn → C given
by g(x) = f(Bx) isZn-periodic.

EXAMPLE 5 Applying this to the functionρ defined in Example 3, we obtain thatρ(Λ) = det(Λ∗)ρ(Λ∗).
More generally, we obtainρs(Λ) = sn det(Λ∗)ρ1/s(Λ∗).
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