In the last two lectures we have seen the concept of a dual lattice and Fourier analysis on lattices. In this lecture we will prove an interesting theorem about the connection between a lattice and its dual. In the process, we will develop tools that will prove valuable in the next lecture.

In 1993, Banaszczyk proved the following theorem:

Theorem 1 (Banaszczyk ’93 [2]) For any rank-n lattice Λ it holds that

$$1 \leq \lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \leq n.$$

The lower bound $\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \geq 1$ follows from the definition of a dual lattice and was already proven in a previous lecture. Hence, in this lecture we concentrate on the upper bound.

Remark 1

- Recall that from Minkowski’s bound we can obtain that $\lambda_1(\Lambda) \cdot \lambda_1(\Lambda^*) \leq n$. Theorem 1 is a considerable strengthening of this bound.

- Considerably weaker bounds were known prior to the work of Banaszczyk. This includes an upper bound of $(n!)^2$ given by Mahler in 1939 [5], an upper bound of $n!$ given by Cassels in 1959 [3], and an upper bound of n^2 given by Lagarias, Lenstra and Schnorr in 1990 [4].

- The upper bound given in Theorem 1 is tight up to a constant. This follows immediately from the fact that there exist self-dual lattices (i.e., lattices that are equal to their own dual) that satisfy $\lambda_1(\Lambda) = \Theta(\sqrt{n})$. Indeed, for such a lattice

$$\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \geq \lambda_1(\Lambda) \cdot \lambda_1(\Lambda^*) = \Omega(n).$$

The fact that such lattices exist is not trivial and was shown by Conway and Thompson.

- In [2], Banaszczyk proves some other transference theorems, such as the bound $1 \leq \lambda_i(\Lambda) \cdot \lambda_{n-i+1}(\Lambda^*) \leq n$ that holds for any $1 \leq i \leq n$. He also notes that by following the same proofs, one can improve the upper bound to roughly $n/(2\pi)$.

One application of Theorem 1 is the following.

Corollary 1 GapSVP$_n \in \text{coNP}$

Proof: Recall that the input to GapSVP$_n$ consists of a lattice Λ and a number d. It is a yes instance if $\lambda_1(\Lambda) \leq d$ and a no instance if $\lambda_1(\Lambda) > nd$. In order to show containment in coNP, we need to show a verifier such that when $\lambda_1(\Lambda) > nd$ there exists a witness that makes the verifier accept, and when $\lambda_1(\Lambda) \leq d$ no witness makes the verifier accept.

Our verifier expects as a witness a set of n vectors. It checks that the given vectors are contained in Λ^*, that they are linearly independent, and that they are all of length less than $1/d$. If all three conditions hold then it accepts, otherwise it rejects. It is easy to see that this can be done in polynomial time.

It remains to prove that such a witness exists in the case of a no instance, and does not exist in the case of a yes instance. So first consider the case $\lambda_1(\Lambda) > nd$. By Theorem 1 $\lambda_n(\Lambda^*) < 1/d$, so there are indeed n such vectors. Now assume that $\lambda_1(\Lambda) \leq d$. By Theorem 1 $\lambda_n(\Lambda^*) \geq 1/d$, so there are no n such vectors.

□

Using a different transference theorem [2], one can also prove GapCVP$_n \in \text{coNP}$. Let us mention that both these results have since been improved, and it is now known that GapSVP$_{\sqrt{n}}$ and GapCVP$_{\sqrt{n}}$ are in coNP [1]. Interestingly, the proof of these containments, while not directly based on transference theorems, uses techniques similar to those applied in the proof of Theorem 1.
1 The Covering Radius

DEFINITION 2 For a full-rank lattice Λ, define the covering radius of Λ as

$$\mu(\Lambda) = \max_{x \in \mathbb{R}^n} \text{dist}(x, \Lambda).$$

In other words, the covering radius of a lattice is the minimal r such that any point in space is within distance at most r from the lattice.

EXAMPLE 1 $\mu(\mathbb{Z}^n) = \sqrt{n}$, and this is realized by the point $(\frac{1}{2}, \ldots, \frac{1}{2})$.

CLAIM 3 $\mu(\Lambda) \geq \frac{1}{2} \lambda_n(\Lambda)$

PROOF: By the definition of λ_n, all lattice points inside the open ball $B(0, \lambda_n)$ are contained in some $(n - 1)$-dimensional hyperplane. Now take a point x of distance λ_n^2 from the origin perpendicular to this hyperplane. Then, as illustrated in Fig. 1, x must be at distance at least λ_n^2 from any lattice point inside the ball, as well as from any lattice point outside the ball. We thus obtain $\mu \geq \frac{1}{2} \lambda_n$, as required.

![Figure 1: $\mu(\Lambda) \geq \frac{1}{2} \lambda_n(\Lambda)$](image)

Hence, to prove Theorem 1 it suffices to show $\lambda_1(\Lambda) \cdot \mu(\Lambda^*) \leq \frac{n}{2}$. In this lecture we prove something slightly weaker:

THEOREM 4 $\lambda_1(\Lambda) \cdot \mu(\Lambda^*) \leq n$.

2 Proof of Theorem 4

First, let us recall some of the things we saw in the previous lecture. For any $s > 0$ we define $\rho_s(x) = e^{-\pi \|x/s\|^2}$ and for the special case $s = 1$ we denote $\rho \equiv \rho_1$. As we saw in the previous class, the Fourier transform of ρ_s is given by $\hat{\rho}_s(x) = s^n \rho_{1/s}(x)$. Moreover, by a property of the Fourier transform, the Fourier transform of the function mapping x to $\rho_s(x + u)$ is $s^n \rho_{1/s}(x) \cdot e^{2\pi i (u, x)}$. Hence, from the Poisson summation formula we get

$$\rho_s(A) = \det(A^*) \cdot s^n \cdot \rho_{1/s}(A^*) \quad (1)$$

$$\rho_s(A + u) = \det(A^*) \cdot s^n \cdot \sum_{y \in A^*} \rho_{1/s}(y) \cdot e^{2\pi i (y, u)}. \quad (2)$$

We next prove several useful lemmas. Our first lemma shows that ρ_s of a shifted lattice is upper bounded by ρ_s of the lattice itself.
Lemma 5. For any $s > 0$ and any $u \in \mathbb{R}^n$ it holds that

$$\rho_s(\Lambda + u) \leq \rho_s(\Lambda).$$

As an example, consider the one-dimensional lattice $\Lambda = k\mathbb{Z}$ for some $k > 0$ and define

$$f_k(u) = \sum_{x \in k\mathbb{Z}} e^{-\pi(x+u)^2}.$$

Using the lemma with $s = 1$ we obtain that f_k is maximized when $u = 0$. See Figure 2 for some illustrations.

![Figure 2](image-url)

Figure 2: $f_k(u)$ for $k = 0.5$ (top left), 0.75 (top right), 1.5 (bottom left), and 3 (bottom right).

Proof: Using Eq. (2) and Eq. (1),

$$\rho_s(\Lambda + u) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y) \cdot e^{2\pi i(y,u)}$$
$$\leq \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y)$$
$$= \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*)$$
$$= \rho_s(\Lambda)$$

where the inequality follows from the triangle inequality together with the fact that $\rho_{1/s}$ is a positive function.

Our second lemma upper bounds ρ_s (for $s \geq 1$) by ρ_1 times a multiplicative factor.

Lemma 6. For any $s \geq 1$ and any $u \in \mathbb{R}^n$ it holds that

$$\rho_s(\Lambda + u) \leq s^n \rho(\Lambda)$$

Before we present the proof, let us see two examples. Consider the lemma for the case $u = 0$ and take Λ to be a very sparse lattice, say, $M \cdot \mathbb{Z}^n$ for some large M. Then it can be seen that $\rho(\Lambda) \approx 1$ and also
\[\rho_s(\Lambda) \approx 1, \text{ since both sums are dominated by } 0 \in \Lambda. \] In this case the inequality holds, but is far from being tight. Next, let us take \(\Lambda \) to be a very dense lattice, say \(\varepsilon \cdot \mathbb{Z}^n \) for some small \(\varepsilon > 0 \). Then
\[
\rho(\Lambda) \approx \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} \rho(x) dx = \frac{1}{\varepsilon^n}
\]
while
\[
\rho_s(\Lambda) \approx \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} \rho_s(x) dx = \frac{s^n}{\varepsilon^n}.
\]
Hence, in this case the lemma is close to being tight.

Proof: By Lemma 5 we know that \(\rho_s(\Lambda + u) \leq \rho_s(\Lambda) \), so it is enough to prove that \(\rho_s(\Lambda) \leq s^n \rho(\Lambda) \). Using Eq. (1) we can write
\[
\rho_s(\Lambda) = \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y).
\]
It is easy to see that for any \(s \geq 1 \) and any \(y \) it holds that \(\rho_{1/s}(y) \leq \rho(y) \) and so we get
\[
\rho_s(\Lambda) \leq \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho(y) = s^n \rho(\Lambda)
\]
where we have used (1) again. \(\Box \)

Our third lemma states that for any lattice \(\Lambda \), almost all the contribution to \(\rho(\Lambda) \) comes from a ball of radius \(\sqrt{n} \) around the origin.

Lemma 7 For any \(u \in \mathbb{R}^n \) it holds that
\[
\rho((\Lambda + u) \setminus B(0, \sqrt{n})) \leq 2^{-n} \rho(\Lambda).
\]
As before, let us consider two examples. First, consider the case that \(u = 0 \) and \(\Lambda = M\mathbb{Z}^n \) for some very large \(M \). In this case, the left hand side is essentially 0 while \(\rho(\Lambda) \) is essentially 1 so the lemma holds. A more interesting example is when \(\Lambda \) is a dense lattice, say, \(\varepsilon \mathbb{Z}^n \) for some small \(\varepsilon > 0 \). Then,
\[
\rho(\Lambda) \approx \varepsilon^{-n} \int_{\mathbb{R}^n} e^{-\pi\|x\|^2} dx = \varepsilon^{-n}
\]
while
\[
\rho(\Lambda \setminus B(0, \sqrt{n})) \approx \varepsilon^{-n} \int_{\mathbb{R}^n \setminus B(0, \sqrt{n})} e^{-\pi\|x\|^2} dx.
\]
In this case, the lemma tells us that the latter integral is at most \(2^{-n} \). Let us verify this by computing the integral. Instead of computing it directly (which is not too difficult), we compute it by using a nice trick, which will later be used in the proof of Lemma 7. The idea is to consider the integral \(\int_{\mathbb{R}^n} e^{-\pi\|x/2\|^2} dx \). On one hand, by a change of variable, we see that
\[
\int_{\mathbb{R}^n} e^{-\pi\|x/2\|^2} dx = 2^n.
\]
On the other hand,
\[
\int_{\mathbb{R}^n} e^{-\pi\|x/2\|^2} \, dx \geq \int_{\mathbb{R}^n \setminus B(0, \sqrt{n})} e^{-\pi\|x/2\|^2} \, dx \\
= \int_{\mathbb{R}^n \setminus B(0, \sqrt{n})} e^{\frac{3}{4}\pi\|x\|^2} \cdot e^{-\pi\|x\|^2} \, dx \\
\geq e^{\frac{3}{4}\pi n} \cdot \int_{\mathbb{R}^n \setminus B(0, \sqrt{n})} e^{-\pi\|x\|^2} \, dx.
\]

We obtain the required bound by combining the two inequalities and using \(e^{\frac{3}{4}\pi} > 4\).

Proof: The proof idea is similar to that used in bounding the integral above. Namely, we notice that lattice points that are far from the origin contribute to \(\rho_2(\Lambda)\) much more than they contribute to \(\rho_1(\Lambda)\). But by Lemma 6, \(\rho_2(\Lambda)\) can only be larger than \(\rho_1(\Lambda)\) by \(2n\) and so we obtain a bound on the number of such points. More specifically, we consider the expression \(\rho_2(\Lambda + u)\). On one hand, using Lemma 6, we see that
\[
\rho_2(\Lambda + u) \leq 2n \rho(\Lambda).
\]
On the other hand,
\[
\rho_2(\Lambda + u) \geq \rho_2((\Lambda + u) \setminus B(0, \sqrt{n})) = \sum_{y \in \Lambda + u \text{ s.t. } \|y\| \geq \sqrt{n}} e^{-\pi\|y/2\|^2} = \sum_{y \in \Lambda + u \text{ s.t. } \|y\| \geq \sqrt{n}} e^{\frac{3}{4}\pi\|y\|^2} \cdot e^{-\pi\|y\|^2} \geq e^{\frac{3}{4}\pi n} \cdot \sum_{y \in \Lambda + u \text{ s.t. } \|y\| \geq \sqrt{n}} e^{-\pi\|y\|^2} = e^{\frac{3}{4}\pi n} \cdot \rho((\Lambda + u) \setminus B(0, \sqrt{n})).
\]
We complete the proof by noting that \(e^{\frac{3}{4}\pi} > 4\). \(\square\)

One useful corollary of Lemma 7 is the following.

Corollary 8 Let \(\Lambda\) be a lattice satisfying \(\lambda_1(\Lambda) > \sqrt{n}\). Then,
\[
\rho(\Lambda \setminus \{0\}) \leq 2^{-n} / (1 - 2^{-n}) \leq 2 \cdot 2^{-n}.
\]

Proof: By applying Lemma 7 with \(u = 0\) we obtain
\[
\rho(\Lambda \setminus B(0, \sqrt{n})) \leq 2^{-n} \rho(\Lambda).
\]
By our assumption, \(\Lambda \setminus B(0, \sqrt{n}) = \Lambda \setminus \{0\}\) so we obtain
\[
\rho(\Lambda \setminus \{0\}) \leq 2^{-n} \rho(\Lambda) = 2^{-n} (1 + \rho(\Lambda \setminus \{0\})).
\]
The corollary follows by rearranging terms. \(\square\)

Our last lemma says that if \(\lambda_1(\Lambda) > \sqrt{n}\), then \(\rho(\Lambda^* + u)\) is nearly constant as a function of \(u\). Intuitively, this happens because \(\Lambda^*\) is dense and so \(\rho(\Lambda^* + u)\) is not affected much by the shift \(u\). A similar behavior can be seen in Figure 2 where \(f_{0.5} \) is essentially constant.

Lemma 9 Let \(\Lambda\) be a lattice satisfying \(\lambda_1(\Lambda) > \sqrt{n}\). Then, for any \(u \in \mathbb{R}^n\),
\[
\rho(\Lambda^* + u) \in (1 \pm 2^{-\Omega(n)}) \det(\Lambda).
\]
PROOF: Using the Poisson summation formula (Eq. (2)) we can write
\[\rho(\Lambda^* + u) = \det(\Lambda) \cdot \sum_{y \in \Lambda} \rho(y) \cdot e^{2\pi i (y,u)}. \]
In the sum here, the point \(y = 0 \) contributes 1, and the contribution of all other points is at most \(\rho(\Lambda \setminus \{0\}) \) in absolute value. So we obtain that
\[\rho(\Lambda^* + u) \in \left(1 \pm \rho(\Lambda \setminus \{0\}) \right) \det(\Lambda). \]
But by Corollary \[8\] \(\rho(\Lambda \setminus \{0\}) \leq 2^{-\Omega(n)} \) so we are done. \(\square \)

We finally present the proof of Theorem \[4\]
\textbf{PROOF:} (of Theorem \[4\]) Assume by contradiction that there exists a lattice \(\Lambda \) for which \(\lambda_1(\Lambda) \cdot \mu(\Lambda^*) > n \).
By scaling \(\Lambda \), we can assume without loss of generality that both \(\lambda_1(\Lambda) > \sqrt{n} \) and \(\mu(\Lambda^*) > \sqrt{n} \).

On one hand, Lemma \[9\] together with the bound on \(\lambda_1(\Lambda) \), implies that \(\rho(\Lambda^* + u) \) is essentially constant as a function of \(u \). On the other hand, \(\mu(\Lambda^*) > \sqrt{n} \) implies that there exists a point \(v \in \mathbb{R}^n \) for which \(\text{dist}(v, \Lambda^*) > \sqrt{n} \). This is the same as saying that all points in \(\Lambda^* - v \) are at distance more than \(\sqrt{n} \) from the origin. Using Lemma \[7\]
\[\rho(\Lambda^* - v) = \rho((\Lambda^* - v) \setminus B(0, \sqrt{n})) < 2^{-n} \rho(\Lambda^*). \]
But this contradicts the fact that \(\rho(\Lambda^* + u) \) is almost constant as a function of \(u \). \(\square \)

\textbf{References}

