1. Show how to encode two classical bits into one qubit such that any one bit can be recovered correctly with probability greater than 85%.

2. We have seen in class that Toffoli gates are universal for classical reversible computation. Prove that no set of two-bit and one-bit gates is universal for classical reversible computation.

3. Let \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \), \(g : \{0, 1\}^m \rightarrow \{0, 1\}^n \) be such that \(g \) is a left-inverse of \(f \) (i.e., \(g(f(x)) = x \) for all \(x \in \{0, 1\}^n \)). Assume that both functions can be computed by a polynomial size classical circuit. Show that there exists a polynomial size classical reversible circuit (and hence also quantum circuit) that maps \(|x, 0\rangle \) to \(|f(x), 0\rangle \). Would you expect this to be possible without the assumption that \(g \) has a polynomial size circuit?

4. Describe a quantum algorithm that solves the following problem. Given a function \(f : \mathbb{Z}_2^n \rightarrow \{0, 1\}^m \) that satisfies \(f(x) = f(y) \Leftrightarrow x - y \in H \) for some subgroup \(H \) of \(\mathbb{Z}_2^n \), find \(H \).

5. For any function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) we define \(U_f \) as the unitary transformation mapping \(|x, y\rangle \) to \(|x, y + f(x)\rangle \) for each \(x \in \{0, 1\}^n \) and \(y \in \{0, 1\} \). Also define \(S_f \) as the unitary transformation mapping \(|x\rangle \) to \((-1)^{f(x)}|x\rangle \) for each \(x \in \{0, 1\}^n \). Show how to obtain \(S_f \) from \(U_f \) (using an auxiliary qubit). Can you obtain \(U_f \) from \(S_f \)?

6. (a) Let \(|u\rangle, |v\rangle \) be two states on \(n \) qubits each. Consider the circuit below, which uses a controlled swap gate. Find the probability of measuring \(|0\rangle \) as a function of \(|\langle u|v\rangle| \). What does this quantity correspond to?

![Figure 1: The swap test](image)

(b) Now assume there exists a quantum circuit \(U \) that transforms \(|0\rangle \) to \(|u\rangle \) and a quantum circuit \(V \) that transforms \(|0\rangle \) to \(|v\rangle \). Show how to generate the state \((|0\rangle|u\rangle + |1\rangle|v\rangle) / \sqrt{2} \) using \(U \) and \(V \). Then, assume we apply \(H \) on the first qubit and measure it. Find the probability of measuring \(|0\rangle \) as a function of \(|\langle u|v\rangle| \).

7. Here we develop parts of the very useful phase estimation technique, due to Kitaev. Let \(U \) be a unitary transformation on \(n \) qubits and let \(|v\rangle \) be an eigenvector of \(U \) with eigenvalue \(\lambda \).

(a) Show that \(|\lambda| = 1 \), i.e., there exists some \(\theta \in [0, 2\pi) \) such that \(\lambda = e^{i\theta} \).

(b) Based on the circuit shown in Figure 2, describe how to estimate \(\theta \) to within some additive error \(\varepsilon \) (with confidence, say, 90%). You can assume that you have a way to generate the state \(|v\rangle \). How many operations are needed (roughly) as a function of \(\varepsilon \)?
(c) Show that you can do the same even if you are given only one copy of $|v\rangle$ (and you are unable to generate more yourself).

\[|0\rangle \xrightarrow{H} \xrightarrow{H} |\rangle \]
\[|v\rangle \xrightarrow{U} \]

Figure 2: Phase estimation

8. (a) For $b \in \{0, 1\}$ define $|\psi_b\rangle$ as the two-qubit state $\frac{1}{\sqrt{2}}(|00\rangle + (-1)^b|11\rangle)$. Alice and Bob share the state $|\psi_b\rangle$ for some unknown b. Their goal is to determine b. Unfortunately, they are unable to communicate with each other. Convince yourself that Alice (or Bob) cannot determine b alone (no rigorous proof of this is required). Now, assume each of them is allowed to send one classical envelope to a common friend Charlie. Find a protocol that allows Charlie to determine b from the two envelopes he receives.

(b) For each $k, l \in \{0, 1\}^{2n}, k \neq l, b \in \{0, 1\}$, define $|\psi_{k,l,b}\rangle$ as the state $\frac{1}{\sqrt{2}}(|k\rangle + (-1)^b|l\rangle)$ on $2n$ qubits. Alice and Bob share the state $|\psi_{k,l,b}\rangle$ for some unknown k, l, b (i.e., each has n qubits). Each of them can send one classical envelope to Charlie, who happens to know k and l but not b. Upon receiving the two envelopes, Charlie is asked to determine the bit b. Find a protocol that allows them to achieve this goal.