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The model of classical communication complexity was defined by Yao in 1979 [5] and is still a very
active area of research in computer science. In addition to many applications in communication protocols,
this model also has some important applications in circuit complexity. In the basic model, we have two
parties, Alice and Bob, who want to compute a functionf : X × Y → {0, 1}, where typicallyX = Y =
{0, 1}n. Initially, Alice is givenx ∈ X and Bob is giveny ∈ Y . They are then allowed to send bits to each
other, and at the end of the protocol, Bob should output a guess forf(x, y) which is correct with probability
at least, say,2/3. We define thecommunication complexityof a functionf as the minimum number of bits
needed to compute it, and denote it byR(f). It is important to remember that there are no computational
restrictions on the parties, so we can think of them as being all-powerful.

Clearly, the communication complexity of anyf is at mostn, since there always exists the trivial pro-
tocol in which Alice sends her entire input to Bob, who can then computef(x, y) by himself. However, in
many interesting cases, considerably less communication suffices.

In this lecture we will consider the model ofquantumcommunication complexity. This model was intro-
duced in 1993, again by Yao [6]. Here, we allow the parties to transfer qubits instead of bits, and as before,
there are no computational limitations imposed on the parties. We define the quantum communication com-
plexity of a functionf as before, and denote it byQ(f). Clearly, the quantum model is not weaker than the
classic one, as any classical communication protocol with communicationc is in particular a quantum com-
munication protocol with communicationc. In other words, we haveQ(f) ≤ R(f) for any functionf . In
fact, quantum protocols are sometimes highly superior to classical ones: there are certain (partial) functions
f that require exponentially more communication in the classical model than in the quantum model.

There are several variants of the basic communication model described above. In one such variant,
we allow the parties to share an arbitrarily long random bit-string. A potentially more powerful variant is
obtained when we allow the parties to share an unlimited number of EPR pairs. Although these variants are
very interesting, in this lecture we will mostly focus on the basic model where no shared randomness nor
entanglement is allowed.

To get a feel for the model, let us say a few words on the equality function:EQ(x, y) = 1 iff x = y. If
one insists on a protocol with no error, the trivial protocol needsn bits of communication, and this is optimal.
For the more interesting case where a small error probability is allowed, there are much better protocols: let
Alice and Bob use their shared randomness to choose a random stringz ∈ {0, 1}n. Alice then sends Bob
the inner product〈x, z〉. Bob compares the received bit to〈y, z〉 and outputs1 iff the bits are equal. It is
easy to see that ifx = y Bob always outputs1, whereas ifx 6= y, Bob outputs0 with probability1/2. One
can amplify the probability of success by using, say, two stringsz1, z2 instead of one. So only a constant
number of bits is required if Alice and Bob have shared randomness. Moreover, by a theorem of Newman,
one can avoid the use of shared randomness while increasing the communication by onlyO(log n). So we
have thatR(EQ) = O(log n) (this result can also be derived directly, without using Newman’s theorem, by
using error correcting codes). Clearly, this also impliesQ(EQ) = O(log n). Both results are essentially
tight.

Our focus in this lecture will be on another two important functions: the inner product function (IP) and
the disjointness function (DISJ). The former is defined as

IP(x, y) = 1 ⇔
n∑

i=1

(xi ∧ yi) ≡ 1 (mod2),

i.e., it is one iff the number of places where both strings are1 is odd. It is known thatR(IP) = Θ(n),
hence randomized protocols cannot do much better than the trivialn. In this lecture we will show that
even quantum protocols cannot help:Q(IP) = Θ(n). The second function we consider is the disjointness
function, defined as

DISJ(x, y) = 1 ⇔ ∀i : xi = 0 ∨ yi = 0.
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If we think of x and y as subsets of{1, . . . , n}, then the disjointness function indicates if the two sets
are disjoint. Here, the situation is more interesting: A tight classical bound ofR(DISJ) = Θ(n) was
shown in 1992 [3], so classical protocols cannot do much better than the trivial protocol. In the quantum
model, Buhrman, Cleve, and Wigderson [2] showed how to convert Grover’s algorithm into a communica-
tion protocol with communicationO(

√
n log n). This has since been improved toO(

√
n) by Aaronson and

Ambianis [1], matching the lower bound ofΩ(
√

n) found by Razborov [4]. So to conclude, we have that
Q(DISJ) = Θ(

√
n) whereasR(DISJ) = Θ(n). This quadratic gap between the classical and the quantum

communication complexity is currently the best known gap for atotal function (i.e., functions defined on
the entire setX × Y ). Before going on, let us quickly recall the elegant protocol of Buhrman et al.

THEOREM 1 Q(DISJ) = O(
√

n log n).

PROOF: Our goal is to design a communication protocol that allows Alice and Bob to decide if there exists
ani such thatxi = yi = 1, or equivalently,xi ∧ yi = 1. Recall that Grover’s algorithm finds an indexi such
thatzi = 1 usingO(

√
n) oracle calls, assuming such ani exists. In the following, we will show how to use

Grover’s algorithm to solve theDISJ problem.
The idea of the protocol is to let Alice simulate Grover’s algorithm with the oracle given byzi = xi∧yi.

Recall that Grover’s algorithm consists of a sequence of unitary operations, interleaved with oracle calls.
Alice can perform the unitary operations herself. The thing that needs to be shown is how to implement an
oracle call, i.e., the unitary transformation that acts by

|i, b〉 7→ |i, b⊕ (xi ∧ yi)〉.

This is done in three steps. In the first step, Alice performs the mapping

|i, b〉 7→ |i, b, xi〉.

She then sends this register to Bob, who performs the mapping

|i, b, xi〉 7→ |i, b⊕ (xi ∧ yi), xi〉.

Finally, he returns this register to Alice, who erases the third register by XORingxi into it,

|i, b⊕ (xi ∧ yi), xi〉 7→ |i, b⊕ (xi ∧ yi)〉.

The total communication complexity isO(
√

n log n), since we haveO(
√

n) oracle calls, each involving a
communication ofO(log n) qubits between Alice and Bob.¤

1 The Model

We now give a more formal definition of the quantum communication complexity model. A quantum com-
munication protocol is composed of a sequence of arbitrary unitary transformationU1, U2, . . . , Uq applied
alternatively by Alice and Bob (see Figure1). These transformations act on the Hilbert spaceHA⊗C2⊗HB.
The initial state is|0, x〉A ⊗ |0〉 ⊗ |0, y〉B corresponding to Alice’s state, which contains a possibly large
number of ancillas in addition to her input, the communication qubit and Bob’s state. The amount of com-
munication is defined asq. The output is written in the communication qubit in the last stage of the protocol.
We remark that one can also define a model where the channel contains more than one qubit, but the two
models are essentially equivalent.
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U1 U3

U2
Uq

|0, x〉A

|0, y〉B

|0〉

Figure 1:A communication protocol

2 Matrix Norms

We first introduce several mathematical tools that will help us afterwards in the analysis.

THEOREM 2 (SINGULAR VALUE DECOMPOSITION) Any matrix A can be written asA = UDV for uni-
tary matricesU, V and a positive diagonal matrixD. The values on the diagonal ofD are known as the
singular valuesof A. Equivalently,

A =
rank∑

i=1

si|φi〉〈ψi|

where{|φi〉} and{|ψi〉} are sets of orthonormal vectors (corresponding to the columns ofU and ofV
respectively), andsi > 0 are the singular values ofA.

Based on the vector of singular values, we can define some natural norms on matrices. We will be
interested in three norms, corresponding to the`1, `2, and`∞ norms,

‖A‖tr :=
∑

si

‖A‖F :=
√∑

s2
i = (tr(A†A))1/2 =

(∑

i,j

|aij |2
)1/2

‖A‖ := max si = max
x:‖x‖=1

‖Ax‖,

where the identities follow easily from the singular value decomposition, and in the third line the vector
norm is thè 2 norm. These norms are known as thetrace norm, theFrobenius norm, and theoperator norm.
An important property common to all three norms is that they are invariant under (both left and right) unitary
operations, i.e.,|||UAV ||| = |||A||| where||| · ||| is any of these norms. This property follows immediately
from the uniqueness (up to permutation) of the vector of singular values.

In addition, we define the inner product of two (not necessarily square) matrices of the same dimensions:

〈A,B〉 =
∑

ij

a∗ijbij = tr(A†B),

which is also invariant under unitary transformations

〈UAV, UBV 〉 = tr(V †A†U †UBV ) = tr(A†B) = 〈A, B〉.

Notice that〈A,A〉 = ‖A‖2
F . We will need the following inequality (for diagonal matrices, this inequality is

essentially an easy inequality on vectors).
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LEMMA 3 |〈A,B〉| ≤ ‖A‖tr · ‖B‖

PROOF: Write A =
∑

si|φi〉〈ψi| in its singular value decomposition. Using the triangle inequality, we have

|〈A,B〉| = |tr(A†B)| ≤
∑

si

∣∣tr(|φi〉〈ψi|B)
∣∣ =

∑
si

∣∣tr(〈ψi|B|φi〉)
∣∣

=
∑

si

∣∣〈ψi|B|φi〉
∣∣ ≤

∑
si

∥∥B|φi〉
∥∥ ≤

∑
si‖B‖

= ‖A‖tr · ‖B‖.

where|〈ψi|B|φi〉| ≤ ‖B|φi〉‖ since|ψi〉 is a unit vector and‖B|φi〉‖ ≤ ‖B‖ follows from the definition of
the operator norm.¤

3 The Yao-Kremer Decomposition

A main tool in our analysis of quantum communication protocols is a theorem by Yao and Kremer. It
essentially says that the state at the end of a quantum protocol with little communication has a ‘simple’
structure. For instance, if no communication takes place at all, the state of the system is clearly in a tensor
state. If only a few qubits are transferred, the system is likely no longer in a tensor state, but can be written
as the linear combination of a few tensor states.

THEOREM 4 The final state of a communication protocol withq qubits of communication can be written as
∑

m∈{0,1}q

|αx,m〉|mq〉|βy,m〉,

where|αx,m〉 and|βy,m〉 are vectors of norm at most1 and|mq〉 denotes the last bit ofm (either0 or 1).

PROOF: The proof is by induction onq. Forq = 0, the claim is obvious since the initial state of the system
is a tensor product state. So assume the statement is true forq and let us prove it forq + 1. Assume it is
Alice’s turn (the proof for Bob’s turn is similar). Then the state after Alice appliesUq+1 is

∑

m∈{0,1}q

Uq+1(|αx,m〉|mq〉)|βy,m〉.

Define|αx,m0〉 = TrCΠ0Uq+1(|αx,m〉|mq〉), whereΠ0 is the projection on|0〉 of the communication qubit,
andTrC indicates that we trace out the communication qubit (which is|0〉). We similarly define|αx,m1〉 =
TrCΠ1Uq+1(|αx,m〉|mq〉), whereΠ1 is the projection on|1〉 of the communication qubit. Then by definition,
|αx,m0〉|0〉 + |αx,m1〉|1〉 = Uq+1(|αx,m〉|mq〉). Hence, by defining|βy,m0〉 = |βy,m1〉 = |βy,m〉, we can
write the state as ∑

m∈{0,1}q+1

|αx,m〉|mq+1〉|βy,m〉,

as required.¤

COROLLARY 5 For anyq-qubit protocol there exist numbersax,k, for 1 ≤ k ≤ 22q−2, x ∈ X, and similarly
by,k for 1 ≤ k ≤ 22q−2, y ∈ Y , with |ax,k| ≤ 1,|bx,k| ≤ 1 such that the acceptance probability of the input
(x, y) is given by

22q−2∑

k=1

ax,k · by,k.
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PROOF: By the previous theorem, we can write the acceptance probability as




∑

m∈{0,1}q

mq=1

〈αx,m|〈βy,m|







∑

m′∈{0,1}q

m′
q=1

|αx,m′〉|βy,m′〉


 =

∑

m,m′∈{0,1}q

mq=m′
q=1

〈αx,m|αx,m′〉〈βy,m|βy,m′〉

which is a sum over22q−2 terms. The claim follows.¤

COROLLARY 6 Let P be the|X| × |Y | matrix of acceptance probabilities of aq-qubit communication
protocol. Then‖P‖tr ≤ 22q−2

√
|X| · |Y |, and hence

q ≥ 1
2

log
‖P‖tr√
|X| · |Y | .

PROOF: Define an|X|-dimensional vector|ak〉 = (a1k, a2k, . . . , a|X|k) and a|Y |-dimensional vector
|bk〉 = (b∗1k, b

∗
2k, . . . , b

∗
|Y |k). Then by the previous corollary,

P =
22q−2∑

k=1

|ak〉〈bk|.

Hence,

‖P‖tr ≤
22q−2∑

k=1

∥∥|ak〉〈bk|
∥∥

tr
=

22q−2∑

k=1

∥∥|ak〉
∥∥∥∥|bk〉

∥∥ ≤ 22q−2
√
|X| · |Y |

where we used that the coordinates of|ak〉,|bk〉 are at most1 in absolute value.¤

4 Lower Bound on Inner Product

We now use the technique developed in the previous section to prove a lower bound on the quantum
communication complexity ofIP. Recall that in this problemX = Y = {0, 1}n and we shall denote
N := |X| = |Y | = 2n. Define

M =
(

1 1
1 −1

)⊗n

the matrix of inner products in±1 notation (instead of{0, 1}). For example, forn = 2 the matrix is




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




so, say, the bottom-right entry corresponds toIP(11, 11) = 0. An important and easy to prove property that
we shall use later is that allN = 2n singular values ofM are equal to2n/2. From the following lemma and
Corollary6 it follows that

Q(IP) ≥ 1
2

log
‖P‖tr√
2n · 2n

= n/4−O(1).
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LEMMA 7 Any N × N matrix P whose entries are greater than2/3 wheneverIP(x, y) = 0 and less than
1/3 otherwise, has trace norm‖P‖tr ≥ 21.5n−1/3.

PROOF: Consider the inner product〈P, M〉 =
∑

x,y Pxy Mxy. On the one hand, we know thatPxy ≥ 2/3
wheneverMxy = 1 andPxy ≤ 1/3 wheneverMxy = −1. So〈P, M〉 ≥ 22n−1/3. On the other hand, we
have shown that〈P,M〉 ≤ ‖P‖tr · ‖M‖ = 2n/2‖P‖tr. Therefore,‖P‖tr ≥ 21.5n−1/3. ¤

We remark that the best known lower bound is roughlyn, and that it is essentially tight by the trivial
protocol where Alice sends her entire input to Bob (see the homework for one result in this direction). In the
model where shared entanglement between the parties is allowed, the best known lower bound is roughly
n/2, and is again essentially tight because of super-dense coding.

5 Razborov’s Lower Bound on Disjointness

A crucial component in the proof of the previous section was that the singular values ofM are all very small.
This, together with the fact that〈P,M〉 is large, allowed us to conclude that‖P‖tr must be large. However,
in the matrixM corresponding toDISJ, the singular values are no longer all very small. Our proof below
is therefore slightly more sophisticated. In particular, instead of considering just one inner product〈P,M〉,
we will consider several inner products〈P, µ0〉, 〈P, µ1〉, . . . , 〈P, µn/8〉.

Let X = Y ⊆ {0, 1}n contain all strings of Hamming weightn/4. SoN := |X| = |Y | =
(

n
n/4

)
. For

s = 0, 1, . . . , n/4, let µs be theN ×N (symmetric) matrix corresponding to the uniform distribution over
{(x, y) ∈ X × Y : |x ∩ y| = s}. In other words, the(x, y) entry inµs is nonzero iff|x ∩ y| = s, and all
nonzero entries are equal to the reciprocal of

(
n

n/4

)(
n/4
s

)(
n− n/4
n/4− s

)

(which is the number of nonzero entries). Now assume that there exists a quantum communication protocol
for DISJ with q qubits of communication, and letP be its acceptance probability matrix on inputs from
X × Y . The inner product〈P, µs〉 gives the average acceptance probability of the protocol on input two
random sets with intersections. Hence, by the correctness of the protocol, we must have that〈P, µ0〉 ∈
[2/3, 1] and that〈P, µs〉 ∈ [0, 1/3] for s = 1, . . . , n/4. The main part of the proof is in proving the
following lemma.

LEMMA 8 For everyd ≤ n/4 there exists a degreed polynomialp such that for all0 ≤ s ≤ n/8,

∣∣p(s)− 〈P, µs〉
∣∣ ≤ ‖P‖tr

N · 2d/4
.

Let us see how to complete the proof using this lemma. Choosed = 8q + 100. By Corollary6, the
right hand side of the above inequality is at most22qN/(N2d/4) ≤ 0.01. Therefore, we obtain a degreed
polynomial satisfying thatp(0) ∈ [−0.01, 0.35] and thatp(s) ∈ [0.65, 1.01] for s = 1, . . . , n/8. A theorem
by Paturi (which is also used in the lower bound on Grover’s problem) says that such a polynomial must be
of degreeΩ(

√
n); so we obtainq = Ω(

√
n) as required. It remains to prove the lemma.

PROOF: The matricesµs are known as combinatorial matrices, and it is known that they all share the same
eigenspacesE0, E1, . . . , En/4 (we will not prove this fact here). Hence there exists an orthogonal matrixU
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that simultaneously diagonalizes all theµs. In other words, fors = 0, . . . , n/4 we have

UµsU
T =




λs,0

...
λs,0

λs,1

...
λs,1

...
λs,n/4

...
λs,n/4




where the blocks correspond to the subspacesE0, . . . , En/4. Another known fact is thatλs,t (which is the
eigenvalue ofµs in the subspaceEt) is a degreet polynomial ins and that

|λs,t| ≤ 1
N · 2t/4

for s ≤ n/8. See Figures2 and3 for an example.

i

k

jjjjjjjjjjjjjjjjjjjjj

0.00006450 0.00006450 0.00006450 0.00006450 0.00006450 0.00006450
-0.00002150 -0.00000430 0.00001290 0.00003010 0.00004730 0.00006450
0.00000614 -0.00000319 -0.00000203 0.00000964 0.00003182 0.00006450
-0.00000142 0.00000164 -0.00000180 -0.00000018 0.00001806 0.00006450
0.00000024 -0.00000041 0.00000088 -0.00000233 0.00000602 0.00006450
-0.00000002 0.00000005 -0.00000014 0.00000061 -0.00000430 0.00006450

y

{

zzzzzzzzzzzzzzzzzzzzz

Figure 2: The valuesλs,t for n = 20, with rows corresponding tot = 0, . . . , n/4 and columns tos =
0, . . . , n/4. Notice the fast decay in the left columns.

2 3 4 5 6

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

2 3 4 5 6

-0.00002

0.00002

0.00004

0.00006

2 3 4 5 6

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

Figure 3:Plots showing the first three rows of the matrix from Figure2.

Let us now considerP in the same basis. The resulting matrixUPUT need not be diagonal. Still, for
t = 0, . . . , n/4, let us defineat as the trace of the diagonal block inUPUT corresponding to the subspace
Et. Pictorially, it can be described as follows:




a0 ← tr
a1 ← tr

...
an/4 ← tr




.
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By definition, we have

〈P, µs〉 = 〈UPUT , UµsU
T 〉 =

n/4∑

t=0

λs,t · at

which is a degreen/4 polynomial ins. We now define a degreed polynomial by ‘chopping’ the above
polynomial,

p(s) :=
d∑

t=0

λs,t · at.

Since theλs,t decay exponentially witht (as long ass is not too big), we can show thatp is a good approxi-
mation to the original polynomial. More precisely, fors = 0, . . . , n/8,

|p(s)− 〈P, µs〉| =
∣∣∣

n/4∑

t=d+1

λs,t · at

∣∣∣ ≤ 1
N · 2d/4

n/4∑

t=d+1

|at| ≤ 1
N · 2d/4

n/4∑

t=0

|at|.

The sum
∑n/4

t=0 |at| can be seen as the inner product ofUPUT with a diagonal matrix with±1 on the
diagonal. By Lemma3, this sum is at most‖P‖tr, and the proof is complete.¤
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