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The model of classical communication complexity was defined by Yao in 15]78n[d is still a very
active area of research in computer science. In addition to many applications in communication protocols,
this model also has some important applications in circuit complexity. In the basic model, we have two
parties, Alice and Bob, who want to compute a functjfon X x Y — {0, 1}, where typicallyX =Y =
{0,1}™. Initially, Alice is givenz € X and Bob is givery € Y. They are then allowed to send bits to each
other, and at the end of the protocol, Bob should output a guegg£oy) which is correct with probability
at least, say2/3. We define theommunication complexitf a functionf as the minimum number of bits
needed to compute it, and denote it Byf). It is important to remember that there are no computational
restrictions on the parties, so we can think of them as being all-powerful.

Clearly, the communication complexity of arfyis at mostn, since there always exists the trivial pro-
tocol in which Alice sends her entire input to Bob, who can then computey) by himself. However, in
many interesting cases, considerably less communication suffices.

In this lecture we will consider the model gfiantumcommunication complexity. This model was intro-
duced in 1993, again by Ya®]} Here, we allow the parties to transfer qubits instead of bits, and as before,
there are no computational limitations imposed on the parties. We define the quantum communication com-
plexity of a functionf as before, and denote it I6y( ). Clearly, the quantum model is not weaker than the
classic one, as any classical communication protocol with communicaigan particular a quantum com-
munication protocol with communicatian In other words, we hav@(f) < R(f) for any functionf. In
fact, quantum protocols are sometimes highly superior to classical ones: there are certain (partial) functions
f that require exponentially more communication in the classical model than in the quantum model.

There are several variants of the basic communication model described above. In one such variant,
we allow the parties to share an arbitrarily long random bit-string. A potentially more powerful variant is
obtained when we allow the parties to share an unlimited number of EPR pairs. Although these variants are
very interesting, in this lecture we will mostly focus on the basic model where no shared randomness nor
entanglement is allowed.

To get a feel for the model, let us say a few words on the equality fundi@iz,y) = 1iff x = y. If
one insists on a protocol with no error, the trivial protocol neetdgs of communication, and this is optimal.

For the more interesting case where a small error probability is allowed, there are much better protocols: let
Alice and Bob use their shared randomness to choose a random:stir{@, 1}". Alice then sends Bob

the inner productz, z). Bob compares the received bit tg, z) and outputdl iff the bits are equal. It is

easy to see that if = y Bob always outputs, whereas ifr # y, Bob outputg) with probability1/2. One

can amplify the probability of success by using, say, two strings, instead of one. So only a constant
number of bits is required if Alice and Bob have shared randomness. Moreover, by a theorem of Newman,
one can avoid the use of shared randomness while increasing the communication bylogly). So we

have that?(EQ) = O(logn) (this result can also be derived directly, without using Newman'’s theorem, by
using error correcting codes). Clearly, this also impliE5&EQ) = O(logn). Both results are essentially

tight.

Our focus in this lecture will be on another two important functions: the inner product funt®par(d
the disjointness functiori(ISJ). The former is defined as

IP(z,y) =1« i(:ﬁZ Ayi) =1 (mod2),
i=1

i.e., it is one iff the number of places where both stringslare odd. It is known that?(IP) = ©(n),
hence randomized protocols cannot do much better than the trvidh this lecture we will show that
even guantum protocols cannot he{®({IP) = ©(n). The second function we consider is the disjointness
function, defined as

DISJ(z,y)=1<Vi:z; =0Vy; =0.



If we think of z andy as subsets of1,...,n}, then the disjointness function indicates if the two sets
are disjoint. Here, the situation is more interesting: A tight classical boungl(BiSJ) = ©(n) was
shown in 1992(3], so classical protocols cannot do much better than the trivial protocol. In the quantum
model, Buhrman, Cleve, and Wigders@j §howed how to convert Grover’s algorithm into a communica-
tion protocol with communicatio® (y/n logn). This has since been improved®g./n) by Aaronson and
Ambianis [1], matching the lower bound d(./n) found by Razborov4]. So to conclude, we have that
Q(DISJ) = ©(y/n) whereasR(DISJ) = ©(n). This quadratic gap between the classical and the quantum
communication complexity is currently the best known gap footal function (i.e., functions defined on

the entire seX x Y. Befare going on, let us quickly recall the elegant protocol of Buhrman et al.

THEOREM1 Q(DISJ) = O(y/nlogn).

PrRoOF. Our goal is to design a communication protocol that allows Alice and Bob to decide if there exists
ani such thatz; = y; = 1, or equivalentlyx; Ay; = 1. Recall that Grover’s algorithm finds an indeguch
thatz; = 1 usingO(y/n) oracle calls, assuming such aaxists. In the following, we will show how to use
Grover’s algorithm to solve thBISJ problem.

The idea of the protocol is to let Alice simulate Grover’s algorithm with the oracle given byx; A y;.
Recall that Grover’s algorithm consists of a sequence of unitary operations, interleaved with oracle calls.
Alice can perform the unitary operations herself. The thing that needs to be shown is how to implement an
oracle call, i.e., the unitary transformation that acts by

|3,b) = [i,b® (z; A yi))-
This is done in three steps. In the first step, Alice performs the mapping
|i,b) — |3, b, x;).
She then sends this register to Bob, who performs the mapping
i, b, ;) — |i,b0® (z; A yi), x4).
Finally, he returns this register to Alice, who erases the third register by XQRimgo it,
li,0® (i Ayi),xi) — 5,08 (2 A y;)).

The total communication complexity 8(/nlogn), since we have(/n) oracle calls, each involving a
communication of(log n) qubits between Alice and Bobl

1 The Model

We now give a more formal definition of the quantum communication complexity model. A quantum com-
munication protocol is composed of a sequence of arbitrary unitary transfornéatién, . . ., U, applied
alternatively by Alice and Bob (see Figlie These transformations act on the Hilbert spicen C2QH 5.

The initial state i50,z) , ® |0) ® |0,y) z corresponding to Alice’s state, which contains a possibly large
number of ancillas in addition to her input, the communication qubit and Bob’s state. The amount of com-
munication is defined ag The output is written in the communication qubit in the last stage of the protocol.

We remark that one can also define a model where the channel contains more than one qubit, but the two
models are essentially equivalent.
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Figure 1:A communication protocol

2 Matrix Norms

We first introduce several mathematical tools that will help us afterwards in the analysis.

THEOREM 2 (SINGULAR VALUE DECOMPOSITION Any matrix A can be written agl = U DV for uni-
tary matricedJ,V and a positive diagonal matri. The values on the diagonal &f are known as the
singular value®f A. Equivalently,

rank

A=) silon) (vl
i=1

where{|¢;)} and{|y;)} are sets of orthonormal vectors (corresponding to the columms afd of V/
respectively), and; > 0 are the singular values d¥.

Based on the vector of singular values, we can define some natural norms on matrices. We will be
interested in three norms, corresponding todhe-, and/., norms,

Al =3 s
Al = /3 7 = (a4 /2 = (X lal?)

|Al| := maxs; = max ||Az],
z:||z||=1
where the identities follow easily from the singular value decomposition, and in the third line the vector
norm is thed; norm. These norms are known as tteece norm theFrobenius normand theoperator norm
An important property common to all three norms is that they are invariant under (both left and right) unitary
operations, i.e|||[UAV||| = |||A||| where]|| - ||| is any of these norms. This property follows immediately
from the uniqueness (up to permutation) of the vector of singular values.
In addition, we define the inner product of two (not necessarily square) matrices of the same dimensions:

(A,B) = ajbi; = tr(A'B),
]
which is also invariant under unitary transformations

(UAV,UBV) = tr(VTATUTUBV) = tr(ATB) = (A, B).

Notice that(A, A) = || A||%. We will need the following inequality (for diagonal matrices, this inequality is
essentially an easy inequality on vectors).



LEMMA 3 [(A,B)| < ||Allw - || B

PROOF. Write A = > s;|¢;) (] in its singular value decomposition. Using the triangle inequality, we have

(A, B)| = |tr(ATB)| < Zsi‘tr(’¢i><wi’B)‘ = Zsi‘tf(wz"B\@m
= " silwilBlow| <3 si||Blod || < sl Bl

= [[Alle - 1B]-

where|(1;|B|¢:)| < ||Bl¢q)|| sincely;) is a unit vector and| B|¢;)|| < || B|| follows from the definition of
the operator norniJ

3 The Yao-Kremer Decomposition

A main tool in our analysis of quantum communication protocols is a theorem by Yao and Kremer. It
essentially says that the state at the end of a quantum protocol with little communication has a ‘simple’
structure. For instance, if no communication takes place at all, the state of the system is clearly in a tensor
state. If only a few qubits are transferred, the system is likely no longer in a tensor state, but can be written
as the linear combination of a few tensor states.

THEOREM4 The final state of a communication protocol witlqubits of communication can be written as

Z |tz M) | By,m)

me{0,1}4

where|a, ) and|f3, ) are vectors of norm at mostand|m,) denotes the last bit of, (either0 or1).

PROOF. The proof is by induction og. Forg = 0, the claim is obvious since the initial state of the system
is a tensor product state. So assume the statement is tryeafat let us prove it foy + 1. Assume it is
Alice’s turn (the proof for Bob’s turn is similar). Then the state after Alice apgligs, is

Z Ug1(laz,m)mqg))|Bym)-

me{0,1}4

Define|ay mo) = TrelloUgt1 (Jow,m)|myg) ), wherelly is the projection on0) of the communication quibit,
andTrc indicates that we trace out the communication qubit (whidh)s We similarly definga, 1) =
TreIl1Ug1 (|ow,m) myg) ), Wherelly is the projection ofil) of the communication qubit. Then by definition,
|tz m0)[0) + [awm1)[1) = Ugti(low,m)|mg)). Hence, by definings, .0) = [8y,m1) = [Bym), we can

write the state as
E |O‘z,m>|mq+1>’5y,m>a
me{0,1}a+1

as required

COROLLARY 5 For anyg-qubit protocol there exist numbers, for1 < k < 22972 x € X, and similarly
by forl <k < 224=2 y €Y, with lag k| < 1,b4.1| < 1 such that the acceptance probability of the input
(x,y) is given by

22(1—2

Z Qg - by k-
k=1



PROOF. By the previous theorem, we can write the acceptance probability as

Z <aa:,m ’ <ﬁy,m‘ Z ‘ax,m’> ’By,m’> = Z <ax,m ’Oém,m’> <ﬁy,m‘ﬁy,m’>

me{0,1}¢ m/e{0,1}4 m,m’€{0,1}9
mg=1 mi=1 mg=mj=1

which is a sum ove22?—2 terms. The claim follows

COROLLARY 6 Let P be the|X| x |Y| matrix of acceptance probabilities ofgaqubit communication
protocol. Ther|P|,, < 22¢-2,/1X| - |Y|, and hence

1 P
s> Liog NPl
2 [ X]-1Y]
PRooOF. Define an|X|-dimensional vectofay) = (aix,az,---,ax,) and a|Y|-dimensional vector
|bk) = (b1, 03, - - - by;,). Then by the previous corollary,

22q—2

P =" |ax) (bl
h=1

Hence,

22q—2 22(1—2

1Pl < Y [lladelll, = > Masd [[[16)]| < 22721 XT - Y]
k=1 k=1

where we used that the coordinatesqf),|b;) are at most in absolute valuel]

4 Lower Bound on Inner Product

We now use the technique developed in the previous section to prove a lower bound on the quantum
communication complexity ofP. Recall that in this problenX = Y = {0,1}" and we shall denote

N :=|X|=1|Y]| = 2". Define
1 1\*"
=)

the matrix of inner products it 1 notation (instead of0, 1}). For example, fon = 2 the matrix is

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

so, say, the bottom-right entry correspond#l1, 11) = 0. An important and easy to prove property that
we shall use later is that aN = 2" singular values of\/ are equal t®"/2. From the following lemma and
Corollary6 it follows that

1Pl e

Ty = n/4—0O(1).

log



LEMMA 7 Any N x N matrix P whose entries are greater thaf8 whenevetP(x,y) = 0 and less than
1/3 otherwise, has trace nofiP ||, > 2157~1/3,

PROOF: Consider the inner produ¢f, M) = 5", Py M,,. On the one hand, we know th&t, > 2/3
wheneverM,, = 1 andP,, < 1/3 wheneverM,, = —1. So(P, M) > 2**~1/3. On the other hand, we
have shown thatP, M) < || P|s, - | M|| = 2"/2||P||s. Therefore||P||y, > 2%-°7~1/3. 0

We remark that the best known lower bound is roughlyand that it is essentially tight by the trivial
protocol where Alice sends her entire input to Bob (see the homework for one result in this direction). In the
model where shared entanglement between the parties is allowed, the best known lower bound is roughly
n/2, and is again essentially tight because of super-dense coding.

5 Razborov’s Lower Bound on Disjointness

A crucial component in the proof of the previous section was that the singular valié s all very small.
This, together with the fact thaP, M) is large, allowed us to conclude tha®||;, must be large. However,

in the matrix M/ corresponding t®ISJ, the singular values are no longer all very small. Our proof below
is therefore slightly more sophisticated. In particular, instead of considering just one inner pBduct,

we will consider several inner produdt®, ju), (P, p1), - - -, (P fin/s)-
Let X =Y C {0,1}" contain all strings of Hamming weight/4. SON := |X| = |Y| = (,],). For
s=0,1,...,n/4, let us be theN x N (symmetric) matrix corresponding to the uniform distribution over

{(z,y) € X xY : |xNy| = s}. Inother words, thézx, y) entry inu, is nonzero iffz N y| = s, and all
nonzero entries are equal to the reciprocal of

n n/4\ (n—n/4

(i) () ™)
(which is the number of nonzero entries). Now assume that there exists a quantum communication protocol
for DISJ with ¢ qubits of communication, and Iét be its acceptance probability matrix on inputs from
X x Y. The inner productP, i) gives the average acceptance probability of the protocol on input two
random sets with intersection Hence, by the correctness of the protocol, we must have(that)) €
[2/3,1] and that(P, us) € [0,1/3] for s = 1,...,n/4. The main part of the proof is in proving the
following lemma.

LEMMA 8 For everyd < n/4 there exists a degreepolynomialp such that for alh) < s <n/8,

[ P]]¢r
N - 2d/i°

‘p(s) - <P7 MS)‘ <

Let us see how to complete the proof using this lemma. Chdose8q + 100. By Corollary6, the
right hand side of the above inequality is at m%tN/(N2%/4) < 0.01. Therefore, we obtain a degrée
polynomial satisfying thah(0) € [—0.01,0.35] and thaip(s) € [0.65,1.01] for s = 1,...,n/8. Atheorem
by Paturi (which is also used in the lower bound on Grover’s problem) says that such a polynomial must be
of degree2(,/n); so we obtainy = Q(/n) as required. It remains to prove the lemma.
PROOF. The matriceg:; are known as combinatorial matrices, and it is known that they all share the same
eigenspacegy, £, . . ., E,, /4 (we will not prove this fact here). Hence there exists an orthogonal niatrix



that simultaneously diagonalizes all the In other words, fos = 0, ...,n/4 we have

UpUT =

)‘s,n/4

A&n/4

where the blocks correspond to the subspdggs. ., £, /4. Another known fact is thak; ; (which is the
eigenvalue ofu, in the subspacé;) is a degree polynomial ins and that

1
Aot] < ———
| 5,t| — N'Zt/4
for s < n/8. See Figure® and3 for an example.
0. 00006450 0. 00006450 0. 00006450 0. 00006450 0. 00006450 0. 00006450
-0. 00002150 -0.00000430 0. 00001290 0. 00003010 0. 00004730 0. 00006450
0.00000614 -0.00000319 -0.00000203  0.00000964  0.00003182 0. 00006450
-0.00000142 0. 00000164 -0.00000180 -0.00000018 0. 00001806 0. 00006450
0.00000024 -0.00000041  0.00000088 -0.00000233  0.00000602  0.00006450
-0. 00000002 0. 00000005 -0.00000014 0. 00000061 -0.00000430 0. 00006450
Figure 2: The values\,; for n = 20, with rows corresponding t6 = 0,...,n/4 and columns te =

0,...,n/4. Notice the fast decay in the left columns.

0. 00012
0. 0001
0. 00008

. 00006
. 00005

0. 00006 0
0
0. 00004
0
0
0

0. 00004

0. 00006 0. 00002 . 00003
0. 00004 . 00002
00001

0. 00002 L////z/ 3 4 5 6 .
5 3 7 5 3 -0. 00002 3 ~—73 4 5 6

Figure 3:Plots showing the first three rows of the matrix from Fig@re

Let us now consideP in the same basis. The resulting matti’U” need not be diagonal. Still, for
t =0,...,n/4, let us definey; as the trace of the diagonal blockihPU” corresponding to the subspace
E;. Pictorially, it can be described as follows:

ag «— tr

ap < tr



By definition, we have
n/4

(Pps) = (UPUT, UpUT) = Ao - ar
t=0

which is a degree/4 polynomial ins. We now define a degreé polynomial by ‘chopping’ the above
polynomial,

d
p(s) = Z >\s,t - ag.
t=0

Since the\, ; decay exponentially with (as long as; is not too big), we can show thatis a good approxi-

mation to the original polynomial. More precisely, foe= 0,...,n/8,
n/4 1 n/4 1 n/4
[p(s) = (P, ps)| = ’ Z Asyt * at‘ < N 2d/i Z |ag| < WZ\%"
t=d+1 t=d+1 t=0

The sumZ?:/é la;| can be seen as the inner productteéPU? with a diagonal matrix with+-1 on the
diagonal. By Lemm#, this sum is at mostP||;;, and the proof is completé]
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