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Abstract: We extend Aaronson and Shi’s quantum lower bound for ther-to-one collision
problem. Anr-to-one function is one where every element of the image has exactlyr
preimages. Ther-to-one collision problem is to distinguish between one-to-one functions
andr-to-one functions over ann-element domain.

Recently, Aaronson and Shi proved a lower bound ofΩ((n/r)1/3) quantum queries for
the r-to-one collision problem. Their bound is tight, but their proof applies only when the
range has size at least 3n/2. We give a modified version of their argument that removes this
restriction.
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1 Introduction

How many quantum queries does it take to find a collision? Acollision in a function is a pair of inputs
that map to the same value. We consider the problem of finding a collision in anr-to-one function; i.e.,
a function where every element of the image has exactlyr preimages. (We require thatr be a divisor of
n, the size of the input space.) The difficulty of this problem for a quantum computer has attracted much
interest [1, 2, 4, 3, 6, 10].

In some cases, explicit information about a function may make it easier to find collisions. For
example, if we know a function is periodic, we can find a collision using Shor’s algorithm [11]. Rather
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than use such explicit information, we focus on ablack-boxmodel: our only access to the function is
as a quantum oracle. Brassard, Høyer, and Tapp [6] use Grover’s search [7] to find a collision in anr-
to-one function inO((n/r)1/3) quantum queries, an improvement over theΘ((n/r)1/2) classical queries
needed. In this note, we are concerned with the matching lower bound.

For a lower bound, it is easier to consider a decision problem: the input function is guaranteed to
be either one-to-one orr-to-one, and our task is to distinguish between these two cases. Aaronson [1]
proved the first significant lower bound:Ω((n/r)1/5) queries.

More recently, Shi [10] proved a lower bound ofΩ((n/r)1/3), given the additional condition that the
size of the range of the function is at least 3n/2. (In the case where the range is onlyn, Shi provides a
lower bound ofΩ((n/r)1/4)). The proof is a novel application of the methods of Nisan and Szegedy [8]
and Paturi [9] to the case where one cannot fully symmetrize the multivariate polynomials.

Our main result is a new version of this theorem, but without the additional constraint on the size of
the range:

Theorem 1.1. Let n> 0 and r≥ 2 be integers with r| n, and let a function from[n] to [n] be given
as an oracle with the promise that it is either one-to-one or r-to-one. Then any quantum algorithm for
distinguishing these two cases must evaluate the functionΩ

(
(n/r)1/3

)
times.

The argument is very similar to that of Aaronson and Shi. (See [2] for a combined version of [1]
and [10].) As stated above, we remove the requirement that the range be at least 3n/2. Our proof is
conceptually simpler for other reasons:

1. The natural automorphism group on the set of functions from[n] to [N] is Sn×SN. Our argument
symmetrizes with respect to the entire group.

2. For technical reasons, Shi introduces an additional decision problem called Half-r-to-one, where
one must distinguish betweenr-to-one functions and functions that arer-to-one on half the domain
and one-to-one on the other half. We avoid using this Half-r-to-one problem.

An independent approach

Independent of this work, Ambainis [4] gave an alternate proof ofTheorem 1.1. His approach is more
general: he shows that, given any lower bound for a symmetric function property with a restriction on
the size of the range, we can remove that restriction.

Ambainis’s work, together with Shi’s paper, impliesTheorem 1.1. It is worth noting another con-
sequence of those two papers: Aaronson and Shi prove that, given a black-box functionf on n inputs
whose range has sizeΩ(n2), it takesΩ(n2/3) queries to determine iff is one-to-one.Theorem 1.1im-
plies a similar result; the constant hidden in theΩ(n2) term improves, but the dependence onn does not.
Neither Aaronson and Shi [2] nor this paper gives a lower bound for element distinctness with small
range.

However, Ambainis’s work gives a lower bound ofΩ(n2/3) without any range restriction. Ambainis
has also given a matching upper bound [3].
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2 Preliminaries

2.1 Functions as quantum oracles

Let n,N > 0 be integers. LetF(n,N) be the set of functions from[n] to [N].
A function is given to us as a quantum oracle. We can perform a transformationOf , which applies

f to the contents of some of the quantum state:

Of |i, j,z〉= |i, f (i)+ j (mod N),z〉 .

Herez is a placeholder for the unaffected portion of the quantum state.
The query complexity of a quantum algorithm is the number of times it callsOf . We think of our

algorithm as alternating betweenT +1 unitary operators andT applications ofOf .
Let δi, j( f ) be 1 whenf (i) = j and 0 otherwise. Then, afterT queries, the amplitude of each quantum

base state is a degree-T polynomial in theseδi, j( f ). Hence, the acceptance probabilityP( f ) is a poly-
nomial overδi, j of degree at most 2T. The connection between quantum complexity and polynomial
degree is due to Beals, et al. [5]; the application to functions using variablesδi, j is due to Aaronson [1].

Note that this polynomialP( f ) is constrained to be in the interval[0,1] whenever theδi, j correspond
to a valid input; i.e.,

∀i, j, δi, j ∈ {0,1} ,

∀i, ∑
j

δi, j = 1 . (2.1)

The connection between polynomial degree and query complexity was first made by Nisan and
Szegedy [8]. In their applications, they symmetrize over all permutations of the variables, reducing the
multivariate polynomial to a univariate polynomial. They then apply results from approximation theory
to prove a lower bound on the degree of the polynomial. Beals, et al. [5] follow the same approach.

A nice, general version of the approximation theory results was shown by Paturi [9]. Following Shi
[10], we use a slight modification of Paturi’s theorem:

Theorem 2.1 (Paturi). Let q(α) ∈ R[α] be a polynomial of degree d. Let a and b be integers, a< b,
and letξ ∈ [a,b] be a real number. If

1. |q(i)| ≤ c1 for all integers i∈ [a,b], and

2. |q(dξe)−q(ξ )| ≥ c2 for some constant c2 > 0,

then
d = Ω(

√
(ξ −a+1)(b−ξ +1)) ,

where the hidden constant depends on c1 and c2.

Note that, if the conditions of the theorem are met for anyξ , we haved = Ω(
√

b−a). If they are
met for someξ ≈ (a+b)/2, thend = Ω(b−a).
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In our setting, the automorphism group for the variablesδi, j is Sn×SN. If we symmetrize with
respect to this group, we do not immediately obtain a univariate polynomial. Hence, we will have to
work harder to applyTheorem 2.1.

For σ ∈ Sn, τ ∈ SN, we defineΓσ
τ : F(n,N)→ F(n,N) by

Γσ
τ ( f ) = τ ◦ f ◦σ .

Let P( f ) be an acceptance polynomial as above. We can writeP as a sum∑SCSIS( f ), whereSranges
over subsets of[n]× [N] and

IS = ∏
(i, j)∈S

δi, j .

By (2.1), we may assume that each pair(i, j) ∈ Shas a distinct value ofi; we thus write

IS =
t

∏
k=1

∏
i∈Sk

δi, jk , (2.2)

where the setsSk are disjoint. The degree of the monomial is∑k |Sk|.

2.2 Some special functions

We now define a collection of functions which area-to-one on part of the domain, andb-to-one on the
rest of the domain. (These will enable us to interpolate between one-to-one andr-to-one functions.)

Fix N ≥ n > 0. We say that a triple(m,a,b) of integers isvalid if 0 ≤ m≤ n, a | m, andb | (n−m).
For any such valid triple, we have a functionfm,a,b ∈ F(n,N), given by

fm,a,b =

{
di/ae 1≤ i ≤ m ,

N−b(n− i)/bc m< i ≤ n .

So fm,a,b is a-to-one onm points, andb-to-one on the remainingn−m points. (SinceN ≥ n, the two
parts of the range do not overlap.)

Note that ourfm,a,b plays the same role as Aaronson and Shi’sfm,g, with a = g andb = 2.
We now examine the behavior offm,a,b after we symmetrize by all ofSn×SN.

Lemma 2.2. Let P( f ) be a degree-d polynomial inδi, j . For a valid triple(m,a,b), define Q(m,a,b) by

Q(m,a,b) = Eσ ,τ [P(Γσ
τ ( fm,a,b))] .

Then Q is a degree-d polynomial in m,a,b.

The key new step in this paper lies in the proof ofLemma 2.2. To show that the expected value
Q(m,a,b) is a polynomial, we break downSN into a union of disjoint eventsAU . We then writeQ(m,a,b)
as a sum over allU , and we show that each term in the sum is a polynomial inm, a, andb.

Definition 2.3. For integersk, `, let `k denote the falling power̀(`−1) · · ·(`−k+1).
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Proof ofLemma 2.2. It suffices to prove the lemma in the case whereP is a monomialIS. We writeIS in
the form (2.2); thend = |S|. We writesk = |Sk|.

For each subsetU ⊆ [t], let AU be the following event: for eachk ∈U , τ−1( jk) ≤ m/a; for each
k /∈U , τ−1( jk)≥ N− (n−m)/b+1.

Clearly the eventsAU are disjoint. IfIS(Γσ
τ ( fm,a,b)) is nonzero, then everyτ−1( jk) must lie in the

range offm,a,b, so some eventAU must occur. Hence, we write

Q(m,a,b) = ∑
U⊆[t]

Pr(AU)QU(m,a,b) ,

where

QU(m,a,b) = Eσ ,τ [IS(Γσ
τ ( fm,a,b)) | AU ] .

Choose someU , and letu = |U |. Then Pr(AU) is given by

Pr(AU) =

(
m
a

)u(
n−m

b

)t−u

Nt ,

which is a rational function inm,a,b. The numerator has degreet, and the denominator isaubt−u.
Also,

QU(m,a,b) =
1
nd ∏

k∈U

ask ∏
k/∈U

bsk .

This is a polynomial ina,b of degreed; furthermoreQU is divisible byaubt−u.
Hence, for eachU , Pr(AU)QU is a degree-d polynomial inm,a,b. ThereforeQ(m,a,b) is itself a

degree-d polynomial. This concludes the lemma.

3 Main Proof

We are now ready to proveTheorem 1.1.

Proof ofTheorem 1.1. LetA be an algorithm which distinguishes one-to-one fromr-to-one inT queries,
and letP( f ) be the corresponding acceptance probability.P( f ) is a polynomial inδi, j of degree at most
2T. Let Q(m,a,b) be formed fromP as inLemma 2.2, and letd = degQ; we haved≤ 2T.

For anyσ ,τ, we know thatΓσ
τ ( fm,a,b) is a valid function. Ifa = b, this function isa-to-one. We

conclude the following:

1. 0≤ Q(m,a,b)≤ 1 whenever(m,a,b) is a valid triple.

2. 0≤ Q(m,1,1)≤ 1/3 for anym.

3. 2/3≤ Q(m, r, r)≤ 1 for anym such thatr | m.
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The remainder of the proof consists of proving that degQ = Ω
(
(n/r)1/3

)
. We will takeM ≈ m/2,

and we will examine either the univariate polynomialQ(M,1, rx) or Q(M, rx, r) (depending on the value
of Q(M,1, r)). If this polynomial remains bounded for large values ofx, we can applyTheorem 2.1.
Otherwise, we can useTheorem 2.1on the first argument toQ. Either way, we get a lower bound ond.

For simplicity of exposition, we begin with the caser = 2. LetM = 2bn/4c. We ask: isQ(M,1,2)≥
1/2? In other words: does our algorithm accept (at least half the time) an input which is one-to-one on
half the domain, and two-to-one on the other half?

Case I:Q(M,1,2) ≥ 1/2. Let g(x) = Q(M,1,2x), and letk be the least positive integer for which
|g(k)| ≥ 2. Then we haveg(x) between−2 and 2 for all positive integersx< k, andg(1)−g(1/2)≥ 1/6
by assumption. Letc = 2k. By Theorem 2.1, we have

d = Ω(
√

k) = Ω(
√

c) . (3.1)

Now, we consider the polynomialh(i) = Q(n−ci,1,c). For any integeri in the range 0≤ i ≤ bn/cc,
the triple(n−ci,1,c) is valid, so 0≤ h(i)≤ 1. But∣∣∣∣h(

n−M
c

)∣∣∣∣ = |Q(M,1,c)|= |g(k)| ≥ 2 .

We conclude, byTheorem 2.1, that
d = Ω(n/c) . (3.2)

Case II:Q(M,1,2) < 1/2. Now, letg(x) = Q(M,2x,2). Let k be the least positive integer for which
|g(k)| ≥ 2, and letc= 2k. We haveg(1)−g(1/2)≥ 1/6; as in Case I, we obtain (3.1) usingTheorem 2.1.

Next, we considerh(i) = Q(ci,c,2). For any integeri in the range 0≤ i ≤ bn/cc, the triple(ci,c,2)
is valid (bothn andc are even), so 0≤ h(i) ≤ 1. But |h(M/c)| = |g(k)| ≥ 2. Again, as in Case I, we
obtain (3.2) usingTheorem 2.1.

In either case, we use (3.1) and (3.2) to obtaind = Ω(n1/3). We could divide into cases (depending
on whetherc≥ n2/3), or we could simply square (3.1) and multiply by (3.2) to obtaind3 = Ω(n).

For generalr, the setup is almost identical: we letM = r
⌊

n
2r

⌋
and split into cases based on whether

Q(M,1, r)≥ 1/2.
Case I:Q(M,1, r)≥ 1/2. Letg(x) = Q(M,1, rx), letk be the least positive integer for which|g(k)| ≥

2, and letc = rk. We haveg(1)−g(1/r)≥ 1/6, soTheorem 2.1yields

d = Ω(
√

k) = Ω(
√

c/r) . (3.3)

Next, we leth(i) = Q(n−ci,1,c). As in ther = 2 analysis above, we conclude (3.2).
Case II:Q(M,1, r) < 1/2. Now, letg(x) = Q(M, rx, r), let k be the least integer for which|g(k)| ≥ 2,

and letc = rk. We haveg(1)−g(1/r)≥ 1/6; as in Case I, we obtain (3.3) usingTheorem 2.1.
Next, we takeh(i) = Q(ci,c, r). For any integeri in the range 0≤ i ≤ bn/cc, the triple(ci,c, r) is

valid; note thatn−ci must be a multiple ofr. But |h(M/c)| = |g(k)| ≥ 2. So, as in ther = 2 analysis,
we get (3.2).

In either case, we square (3.3) and multiply by (3.2) to obtaind3 = Ω(n/r) as desired.
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