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Abstract: We extend Aaronson and Shi's quantum lower bound for tteeone collision
problem. Anr-to-one function is one where every element of the image has exactly
preimages. The-to-one collision problem is to distinguish between one-to-one functions
andr-to-one functions over an-element domain.

Recently, Aaronson and Shi proved a lower boun@¢fn/r)/3) quantum queries for
ther-to-one collision problem. Their bound is tight, but their proof applies only when the
range has size at least/2. We give a modified version of their argument that removes this
restriction.
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1 Introduction

How many quantum queries does it take to find a collision@olision in a function is a pair of inputs
that map to the same value. We consider the problem of finding a collisionriticaone function; i.e.,
a function where every element of the image has exagihieimages. (We require thabe a divisor of
n, the size of the input space.) The difficulty of this problem for a quantum computer has attracted much
interest [L, 2, 4, 3, 6, 10].

In some cases, explicit information about a function may make it easier to find collisions. For
example, if we know a function is periodic, we can find a collision using Shor’s algoritiiin Rather
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than use such explicit information, we focus oblack-boxmodel: our only access to the function is
as a quantum oracle. Brassard, Hgyer, and Téppde Grover's search?] to find a collision in arr-
to-one function ir0((n/r)%3) quantum queries, an improvement over @gn/r)%?) classical queries
needed. In this note, we are concerned with the matching lower bound.

For a lower bound, it is easier to consider a decision problem: the input function is guaranteed to
be either one-to-one arto-one, and our task is to distinguish between these two cases. Aardijson |
proved the first significant lower boun((n/r)/%) queries.

More recently, Shi10] proved a lower bound d®((n/r)/3), given the additional condition that the
size of the range of the function is at least/3. (In the case where the range is on|yShi provides a
lower bound ofQ((n/r)¥/4)). The proof is a novel application of the methods of Nisan and Sze@dy |
and Paturi 9] to the case where one cannot fully symmetrize the multivariate polynomials.

Our main result is a new version of this theorem, but without the additional constraint on the size of
the range:

Theorem 1.1. Let n> 0 and r > 2 be integers with it n, and let a function fronin| to [n] be given
as an oracle with the promise that it is either one-to-one or r-to-one. Then any quantum algorithm for
distinguishing these two cases must evaluate the funﬁti@rm/r)l/:*) times.

The argument is very similar to that of Aaronson and Shi. (2géf a combined version of]]
and [LO].) As stated above, we remove the requirement that the range be atmgast@ur proof is
conceptually simpler for other reasons:

1. The natural automorphism group on the set of functions fiigrto [N] is S, x Sy. Our argument
symmetrizes with respect to the entire group.

2. For technical reasons, Shi introduces an additional decision problem called-téatfne, where
one must distinguish betweetto-one functions and functions that aréo-one on half the domain
and one-to-one on the other half. We avoid using this lHat-one problem.

An independent approach

Independent of this work, Ambainig][gave an alternate proof dtheorem 1.1 His approach is more
general: he shows that, given any lower bound for a symmetric function property with a restriction on
the size of the range, we can remove that restriction.

Ambainis’s work, together with Shi's paper, impliggeorem 1.1 It is worth noting another con-
sequence of those two papers: Aaronson and Shi prove that, given a black-box funatieninputs
whose range has sif&(n?), it takesQ(n?3) queries to determine if is one-to-oneTheorem 1.im-
plies a similar result; the constant hidden in (b@?) term improves, but the dependencenxioes not.
Neither Aaronson and She] nor this paper gives a lower bound for element distinctness with small
range.

However, Ambainis’s work gives a lower bound@{n?3) without any range restriction. Ambainis
has also given a matching upper bouBf [
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2 Preliminaries

2.1 Functions as quantum oracles

Letn,N > 0 be integers. Lef(n,N) be the set of functions frorm| to [N].
A function is given to us as a quantum oracle. We can perform a transforn@tionhich applies
f to the contents of some of the quantum state:

Ofli,j,2 =i, fi)+] (modN),2) .

Herezis a placeholder for the unaffected portion of the quantum state.

The query complexity of a quantum algorithm is the number of times it €allsWe think of our
algorithm as alternating betwe@n- 1 unitary operators antl applications oy .

Letd (f) be 1 whenf (i) = j and O otherwise. Then, aft@rqueries, the amplitude of each quantum
base state is a degr@epolynomial in these; ;(f). Hence, the acceptance probabilRyf) is a poly-
nomial overd; j of degree at most2 The connection between quantum complexity and polynomial
degree is due to Beals, et &];[the application to functions using variablgg is due to Aaronsoni].

Note that this polynomiaP( f) is constrained to be in the interv@l 1] whenever the; ; correspond
to a valid input; i.e.,

vi,j,  &;€{01},
Vi,  Yo;=1. 2.1)
J

The connection between polynomial degree and query complexity was first made by Nisan and
Szegedy §]. In their applications, they symmetrize over all permutations of the variables, reducing the
multivariate polynomial to a univariate polynomial. They then apply results from approximation theory
to prove a lower bound on the degree of the polynomial. Beals, €f]dbl[ow the same approach.

A nice, general version of the approximation theory results was shown by Pgtufo]lowing Shi
[10], we use a slight modification of Paturi’s theorem:

Theorem 2.1 (Paturi). Let @) € R[] be a polynomial of degree d. Let a and b be integers; Ia,
and let§ € [a,b] be a real number. If

1. |q(i)| < c; for all integers i< [a,b], and
2. |q(TE1) —q(&)| > c, for some constant,c> 0,

then

d=Q(V(-a+1)(b-&+1)) ,

where the hidden constant depends ¢maied G.

Note that, if the conditions of the theorem are met for §nyve haved = Q(v/b—a). If they are
met for somé ~ (a+b)/2, thend = Q(b—a).
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In our setting, the automorphism group for the varialigsis S, x Sy. If we symmetrize with
respect to this group, we do not immediately obtain a univariate polynomial. Hence, we will have to
work harder to applyrheorem 2.1

Foro € S, 7 € &\, we defind ¢ : F(n,N) — F(n,N) by

ré(f)=tofoo .

LetP(f) be an acceptance polynomial as above. We can Ridtea suny sCsls( f), whereSranges
over subsets dh] x [N] and
Is= |_| 5”' .
(i.jes
By (2.1), we may assume that each p@irj) € Shas a distinct value af we thus write
t
Is= O s (2.2)
IDlie ‘

where the set§; are disjoint. The degree of the monomialig|S|.

2.2 Some special functions

We now define a collection of functions which ar¢o-one on part of the domain, ateto-one on the
rest of the domain. (These will enable us to interpolate between one-to-omet@te functions.)

Fix N > n> 0. We say that a triplém, a,b) of integers isvalid if 0 <m<n,a|m, andb | (n—m).
For any such valid triple, we have a functibfa, € F(n,N), given by

; ~JTi/a] 1<i<m,
M TAIN- |(n—i)/b] m<i<n.

So fmap is a-to-one onm points, ando-to-one on the remaining — m points. (SinceN > n, the two
parts of the range do not overlap.)

Note that ourfm 5 plays the same role as Aaronson and Sfyg, with a= g andb = 2.

We now examine the behavior f 5, after we symmetrize by all d, x Sy.

Lemma 2.2. Let P(f) be a degree-d polynomial i§ ;. For a valid triple (m,a,b), define Qm, a, b) by

Q(mv a, b) = EG,‘C [P(rg(fm,a,b))] .
Then Q is a degree-d polynomial in ayb.

The key new step in this paper lies in the proofLeimma 2.2 To show that the expected value
Q(m,a,b) is a polynomial, we break dow&, into a union of disjoint eventd, . We then writeQ(m, a, b)
as a sum over all, and we show that each term in the sum is a polynomiai,ia, andb.

Definition 2.3. For integers, ¢, let /X denote the falling powef(¢ — 1) --- (£ —k+1).
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Proof ofLemma 2.2 It suffices to prove the lemma in the case whgis a monomials. We writelsin
the form @.2); thend = |§. We writes, = |S|.

For each subset C [t], let Ay be the following event: for eacke U, r‘l(jk) < m/a; for each
kU, 7 (jk) >N—(n—m)/b+1.

Clearly the eventgy, are disjoint. Ifls(F(fmap)) is nonzero, then every 1(jx) must lie in the
range offy ap, SO some everiy must occur. Hence, we write

Q(m,a,b) = Pr(Ay)Qu(m,a,b) ,
UClt

where

Qu(ma,b) =Es ¢ [Is(T'7 (fmap)) [ Au] -
Choose som¥, and letu= |U|. Then PfAy) is given by

m\Y /n—m\t=u
Pr(Au): (5) (Ntb )

9

which is a rational function im, a, b. The numerator has degrgeand the denominator a'b! Y.
Also,

1
Qu(mab)= = []ax[]b* .

This is a polynomial ira, b of degreed; furthermoreQy is divisible byab! Y.
Hence, for eacld, Pr(Ay)Qu is a degreet polynomial inm,a,b. ThereforeQ(m,a,b) is itself a
degreed polynomial. This concludes the lemma. O

3 Main Proof

We are now ready to provEheorem 1.1

Proof of Theorem 1.1 Let A be an algorithm which distinguishes one-to-one fretn-one inT queries,
and letP(f) be the corresponding acceptance probabifty) is a polynomial in; j of degree at most
2T. LetQ(m,a,b) be formed fronP as inLemma 2.2and letd = degQ; we haved < 2T.

For anyo, 7, we know thatl ¢ (fynap) is @ valid function. Ifa= b, this function isa-to-one. We
conclude the following:

1. 0< Q(m,a,b) <1 wheneveKm,a,b) is a valid triple.
2. 0<Q(m,1,1) <1/3 for anym.

3. 2/3<Q(m,r,r) <1 foranymsuch that | m.
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The remainder of the proof consists of proving that Qeg Q ((n/r)1/3). We will takeM ~ m/2,
and we will examine either the univariate polynom@M, 1,rx) or Q(M,rx,r) (depending on the value
of Q(M,1,r)). If this polynomial remains bounded for large valuesxpfve can applyTheorem 2.1
Otherwise, we can useheorem 2.1Jon the first argument tQ. Either way, we get a lower bound ohn

For simplicity of exposition, we begin with the case- 2. LetM =2|n/4]. We ask: iQ(M,1,2) >
1/2? In other words: does our algorithm accept (at least half the time) an input which is one-to-one on
half the domain, and two-to-one on the other half?

Case I:Q(M,1,2) > 1/2. Letg(x) = Q(M,1,2x), and letk be the least positive integer for which
lg(k)| > 2. Then we have(x) between-2 and 2 for all positive integess< k, andg(1) —g(1/2) > 1/6
by assumption. Let = 2k. By Theorem 2.1we have

d=0Q(vk) =Q(C) . (3.1)

Now, we consider the polynomilli)

= Q(n—ci,1,c). For any integer in the range &< i < |n/c],
the triple(n—ci, 1,c) is valid, so 0< h(i) < 1.

But

(") = lem. .01 = a1 > 2

We conclude, byrheorem 2.1that
d=Q(n/c) . (3.2)

Case 11:Q(M,1,2) < 1/2. Now, letg(x) = Q(M, 2x,2). Letk be the least positive integer for which
|g(k)| > 2, and lec = 2k. We haveg(1) —g(1/2) > 1/6; as in Case |, we obtaiB (1) usingTheorem 2.1

Next, we consideh(i) = Q(ci,c,2). For any integer in the range &< i < |n/c]|, the triple(ci,c,2)
is valid (bothn andc are even), so & h(i) < 1. But|h(M/c)| = |g(k)| > 2. Again, as in Case |, we
obtain 3.2 usingTheorem 2.1

In either case, we us8.() and @.2) to obtaind = Q(n1/3). We could divide into cases (depending
on whetherc > n?/3), or we could simply square(1) and multiply by 8.2) to obtaind® = Q(n).

For generat, the setup is almost identical: we Mt=r L%J and split into cases based on whether
Q(M,1,r)>1/2.

Case IQ(M,1,r) >1/2. Letg(x) = Q(M, 1,rx), letk be the least positive integer for whignk)| >
2, and letc = rk. We haveg(1) —g(1/r) > 1/6, soTheorem 2.Jields

d=0Q(Wk =Q(/c/r) . (3.3)

Next, we leth(i) = Q(n—ci,1,c). As in ther = 2 analysis above, we conclude?).

Case I:Q(M,1,r) <1/2. Now, letg(x) = Q(M,rx,r), letk be the least integer for whid(k)| > 2,
and letc = rk. We haveg(1) — g(1/r) > 1/6; as in Case |, we obtai(3) usingTheorem 2.1

Next, we takeh(i) = Q(ci,c,r). For any integer in the range X i < |n/c|, the triple(ci,c,r) is
valid; note thain — ci must be a multiple of. But |h(M/c)| = |g(k)| > 2. So, as in the = 2 analysis,
we get 8.2).

In either case, we squarg.8) and multiply by 8.2) to obtaind® = Q(n/r) as desired. O
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