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1 Introduction

Let p be an unknown multivariate polynomial over a fixed field. Given random input/output pairs cho-
sen from some distributioD®, can a computationally bounded learner output a hypothesis which will
correctly approximatg with respect to future random examples chosen flMThis problem, known

as the multivariate polynomial learning problem, continues to be a fundamental area of research in
computational learning theory. If the learner is allowed to query the unknown polynomial at points of
his choosing (instead of receiving random examples) and is required to output the exact polynomial
then this problem is precisely the well-known polynomial interpolation problem. Both the learning and
the interpolation problem have received a great deal of attention from the theoretical computer science
community. In a learning context, multivariate polynomials are expressive structures for encoding in-
formation (sometimes referred to as the “algebraic” analogue of DNF formulae (seelp) gvlile
polynomial interpolation has been studied in numerous contexts and has important applications in com-
plexity theory, among other fieldg,[34].

Previous research on this problem has focused on giving algorithms whose running time is polyno-
mial in the number of terms or monomials of the unknown polynomial. This is a natural way to measure
the complexity of learning and interpolating polynomials when the unknown polynomial is viewed in
the usual “sum of monomials” representation. That is to say, given that the polynosaig]_, m is the
sum oft monomials, we may wish to output a list of these monomials (and their respective coefficients),
hence using at leasttime steps simply to write down the list of coefficients. Several researchers have
developed powerful interpolation and learning algorithms for a variety of contexts which achieve time
bounds polynomial in all the relevant parameters, includi(sge for example4] 11, 16, 20, 23, 31]).

1.1 Arithmetic circuits

In this paper we are concerned with learning succinct representations of polynomials via alternate al-
gebraic models of computation, most notablythmetic circuits An arithmetic circuit syntactically
represents a multivariate polynomial in the obvious way: a multiplication (addition) gate outputs the
product (sum) of the polynomials on its inputs. The input wires to the circuit correspond to the input
variables of the polynomial and thus the output of the circuit computes some polynomial of the input
variables. We measure the size of an arithmetic circuit as the number of gates. For example, the stan-
dard “sum of monomials” representation of a polynonpat z}:l 5%, - -+ X, (04 is an arbitrary field
element) corresponds precisely to a depth-2 arithmetic circuit with a single sum gate at the rbot and
product gates feeding into the sum gate (each product gate multiplies some subset of the input variables).
To rephrase previous results on learning and interpolating polynomials in terms of arithmetic circuits,
we could say that depth-2 arithmetic circuits with a sum gate at the root are learnable in time polynomial
in the size of the circuit.

Moving beyond the standard “sum of products” representation, we consider the complexity of learn-
ing higher depth arithmetic circuits. It is easy to see that there exist polynomial size depth-3 (or even
depth-2 with a product gate at the root) arithmetic circuits capable of computing polynomialexwith
ponentiallymany monomials. For example, It; j},1 <i, j < nbe a family ofn? distinct linear forms
overnvariables. Thery{.; [1iL, Li j is a polynomial size depth-3 arithmetic circuit but cannot be written
as a sum of polynomially many monomials. Although arithmetic circuits have received a great deal of
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attention in complexity theory and, more recently, derandomization, the best known result for learning
arithmetic circuits in a representation other than the depth-2 sum of products representation is due to
Beimel et al. i] who show that depth-2 arithmetic circuits with a product gate of fa@(logn) at

the root and addition gatesf unbounded fan-in in the bottom level are learnable in polynomial time,
and that circuits that compute polynomials of the fogpr]; pi j(X;) (pi,j is @ univariate polynomial of
polynomial degree) can be learned in polynomial tfne.

1.2 Our results

We learn various models of algebraic computation capable of encoding exponentially many monomials
in their input size. Our algorithms work with respect to any distribution and require membership query
access to the concept being learned. More specifically we show that any class of polynomial size arith-
metic circuits whose partial derivatives induce a vector space of dimension polynomial in the circuit
size is learnable in polynomial time. This characterization generalizes the work of Beimel&taald[

yields the following results:

e An algorithm for learning general depth-3 arithmetic circuits witlproduct gates each of fan in
at mostd in time polynomial inm, 29, andn, the number of variables.

e The first polynomial time algorithm for learning polynomial size honcommutative formulae com-
puting polynomials over a fixed partition of the variables (note there are no depth restrictions on
the size of the formula).

e The first polynomial time algorithm for learning polynomial size read once, oblivious algebraic
branching programs.

As an easy consequence of our results we observe a polynomial time algorithm for learning the
class of depth-3 set-multilinear circuits: polynomials= 3, 7, Li j (Xj) where each, ; is a linear
form and theX;’s are a partition of the input variables. We note that this result also follows as an easy
corollary from the work of §]. Finally we show that, with respect to known techniques, it is hard to
learn polynomial size depth-3 homogeneous arithmetic circuits in polynomiaPtifiés indicates that
our algebraic techniques give a fairly tight characterization of the learnability of arithmetic circuits with
respect to current algorithms.

1.3 Our techniques

We use as a starting point the work on multiplicity automata due to Beimel et]alAl multiplicity
automaton is a nondeterministic finite automaton where each transition edge has weight from the un-
derlying field (for a precise definition s€tection2). On inputx, f(X) is equal to the sum, over all
accepting paths of the automaton on inpuof the product of the edge weights on that accepting path.

1Beimel et al. actually allow addition gates to sum powers of the input variables, rather than just summing variables.

2The latter class of circuit can be viewed as a restricted version of depth-3 circuits where the addition gates at the bottom
can only sum powers of a certain variable.

3A depth-3 circuitp= 3™ | n?‘:l Li,j(X1,...,%n) is homogeneous if in eadh j the free term is zero.

THEORY OF COMPUTING, Volume 2 (2006), pp. 185-206 187


http://dx.doi.org/10.4086/toc

A. R. KLIVANS AND A. SHPILKA

In [7, 4], the authors, building on work due t@7], show that multiplicity automata can be learned in
polynomial time and that these multiplicity automata can compute polynomials in their standard sum
of products representation (actually, as mentioned earlier, they can learn any polyparhthke form

P = YiL1 M 1 pij(X;) wherepij(xj) is a univariate polynomial of polynomial degree). Their analysis
centers on the Hankel matrix of a multiplicity automaton (Seetion2 for a definition).

We give a new characterization of learnability in terms of partial derivatives. In particular we show
that any polynomial whose partial derivatives induce a low dimensional vector space has a low rank
Hankel matrix. We conclude that any arithmetic circuit or branching program whose partial derivatives
form a low dimensional vector space can be computed by polynomial size multiplicity automaton and
are amenable to the learning algorithms developed,if][ As such, we output a multiplicity automaton
as our learner’s hypothesis.

Our next task is to show which circuit classes have partial derivatives that induce low dimensional
vector spaces. At this point we build on work due to Nisa§] and Nisan and Wigdersor2§] (see
also [B3]) who analyzed the partial derivatives of certain arithmetic circuit classes in the context of prov-
ing lower bounds and show that a large class of algebraic models have “well-behaved” partial deriva-
tives. For example we show that the dimension of the vector space of partial derivatives induced by a
set-multilinear depth-3 arithmetic circuit is polynomial in the size of the circuit.

Our results suggest that partial derivatives are a powerful tool for learning multivariate polynomials,
as we are able to generalize all previous work in this area and give new results for learning interesting
algebraic models. Additionally, we can show there are depth-3 polynomial-size, homogeneous, arith-
metic circuits whose partial derivatives induce a vector space of superpolynomial dimension. We feel
this motivates the problem of learning depth-3 homogeneous, polynomial-size arithmetic circuits, as
such a result would require significantly new techniques. We are hopeful that our characterizations in-
volving partial derivatives will further inspire complexity theorists to use their techniques for developing
learning algorithms.

1.4 The relationship to lower bounds

In the case of learning Boolean functions, the ability to prove lower bounds against a class of Boolean
circuits usually coincides with the ability to give strong learning algorithms for those circuits. For
example the well known lower bounds ofistad 9] against constant depth Boolean circuits are used
heavily in the learning algorithm due to Linial, Mansour, and Niszd).[Jackson et al.Z1] have shown

that constant depth circuits with a majority gate, one of the strongest circuit classes for which we can
prove lower bounds (se8]), also admit nontrivial learning algorithms. Furthermore Jackson e2g|. [
show that we will not be able to learn more complicated Boolean circuits unless certain cryptographic
assumptions are false.

Our work furthers this relationship in the algebraic setting. The models of algebraic computation
we can learn correspond to a large subset of the models of algebraic computation for which strong
lower bounds are known. For example Nis@h][gives exponential lower bounds for noncommutative
formulae. Nisan and WigdersoBg] prove exponential lower bounds for depth-3 set-multilinear circuits.
Moreover, in both papers the authors prove lower bounds by considering the partial derivatives spanned
by the circuit and the function computed by it, a method similar to ours. Over finite fields there are
exponential lower bounds for depth 3 circuit$]17], however no exponential lower bounds are known
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for general depth-3 arithmetic circuits over infinite fields (s&#)[ As in the Boolean case, we exploit
many of the insights from the lower bound literature to prove the correctness of our learning algorithms.
A preliminary version of this paper appeared in COLT 2023 [

1.5 Organization

In Section2 we review relevant learning results for multiplicity automata as well as state some basic
facts from algebraic complexity. lBection3 we prove our main theorem, characterizing the learnability
of arithmetic circuits via their partial derivatives. In Sectiohss, and6 we state our main learning
results for various arithmetic circuits and algebraic branching programs.

2 Preliminaries

We denote withF the underlying field, and with ch@f) the characteristic of. When studying a
polynomial f we either assume that cli&) = O or that the degree of each variablefiis smaller than
charF).

2.1 The learning model

We will work in the model of exact learning from membership and equivalence queries, first introduced
by Angluin [1]. In this model a learner begins with some candidate hypothdeisan unknown concept

f and is allowed access to bothn@embership quergracle and arequivalence quergracle. The
membership query oracle takes as inguind outputsf (x). The equivalence query oracle takes as
input the learner’s current hypothegisand outputs a counterexample, namely an inpstich that

h(y) # f(y). We assume that making a membership or an equivalence query of letadis timek. If

no such counterexample exists then we say that the learner has exactly leaveday that a concept

f is exactly learnable in timeif there exists an exact learner férwhose running time is bounded by

t. A concept class is considered to be exactly learnable in polynomial time if for éviarthe concept
class there exists an exact learnerfaunning in time polynomial in the size of the smallest description
of f. Known transformations imply that if a concept class is exactly learnable in polynomial time then
it is also learnable in Valiant's PAC model in polynomial time with membership queries.

2.2 Multiplicity automata

A multiplicity automaton is a nondeterministic automaton where each transition edge is assigned a
weight, and the output of the automaton for any inpu$ the sum over all accepting paths obf
the products of the weights on each path.

Definition 2.1. Let Z be an alphabet. A multiplicity automata@xof sizer overZ consists of a vector

yeF (i.e.y=(n,...,%)) and a set of matricejis } 55, Where eaclhus is anr x r matrix overF. The
output of A on inputx = (x1,...,X,) € " is defined to be the inner product (f]i"_; i )1 andy where
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(M1 1% )1 equals the first row of the matfiY]i; uy . In other words the output is the first coordinate
of the vector([]i_; tx ) - V-

Intuitively each matrixus corresponds to the transition matrix of the automaton for syrabelz.
Iterative matrix multiplication keeps track of the weighted sum of paths from statstatej for all
i,j <r. The first row of the iterated product corresponds to transition values starting from the initial
state and/ determines the acceptance criteria.

Next we define the Hankel matix of a function:

Definition 2.2. Let % be an alphabet anfl: |Z|" — FF. Fix an ordering of all strings iz=". We construct
a matrixH whose rows and columns are indexed by stringsShin the following way. Fox € ¢ and

y e 34 for some 0< d < n, let the(x,y) entry ofH be equal tof (xoy). For any other pair of strings
(x,y) such thatix| + |y| # n let Hyp = 0. The resulting matrid is called the Hankel matrix of for
strings of lengtm. We defineHy to be thek-th “block” of H, i. e. Hi is the submatrix defined by all rows
of H indexed by strings of length exactkyand all columns oH indexed by strings of length exactly
n—Kk.

The following key fact relates the rank of the Hankel matrix of a function for strings of lengith
the size of multiplicity automaton computirfgon inputs of lengthn:

Theorem 2.3 ([L3, 14, 4]). Let f: X" — FF. Then the rank of the Hankel matrix of f (ov@ris equal to
the size of the smallest multiplicity automaton computing f on inputs of length n.

Previous learning results have computed the rank of the Hankel matrices of particular polynomials
yielding a bound on the size of their multiplicity automata. In fact, Beimel edglirhproving on R7],
learn functions computed by multiplicity automata by iteratively learning their corresponding Hankel
matrices:

Theorem 2.4 (H]). For f : " — T, let r be the rank of the Hankel matrix of f for strings of length

n. Then there exists an exact learning algorithm for f running in time polynomial in n, r,|&nd
Furthermore the final hypothesis output by the learning algorithm is a multiplicity automaton of size r
over alphabe®. Moreover, if for every variablejxhe degree of f as a polynomial in foverTF) is at

most d, then the running time of the learning algorithm is polynomial irand d.

Our main technical contribution is to show that the rank of a function’s Hankel matrix is bounded by
(and in most cases equal to) the dimension of the vector space of a function’s partial derivatives. Thus
we reduce the problem of learning a polynomial to bounding the dimension of the vector space of its
partial derivatives.

2.3 Set-multilinear polynomials

In this paper we will work primarily with polynomials that respect a fixed partition of the input variables:

4We denoteuy, - Lix, ;- - - Hx, With [T, ux..
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Definition 2.5. LetX = ULX; be a partition of the variables intbsets. A polynomial over the variables
X is called set-multilinear if every monomialis of the formy; -y, - - - yq where eacly; is some variable
from X;. Thus, any set-multilineaf is also homogeneous and multilinear of degitee

We will sometlme use the notatiof(Xy,...,Xq) to denote thaf is set-multilinear with respect to
the partitionX = U, 1%

Example 2.6. Let X = (%i,j)1<i,j<d be ad x d matrix. LetX = {X1,...,% 4} be thei-th row of X.

ClearlyX = UI 1X%i. Note that both the determinant and the permaneb(taxfe set-multilinear polyno-
mials with respect to this partition.

Another example is the class of depth-3 set-multilinear circuits, first defined by Nisan and Wigder-
son R6], that computes only set-multilinear polynomidlsio see this note that any polynomial com-
puted by a depth-3 set-multilinear circuits is of the fopm= 3, 111 Li j(Xj) where eacii; j is a
linear form and theX;’s are a partition of the input variables. In later sections we will show that certain
algebraic branching programs also compute set-multilinear polynomials and will therefore be amenable
to our learning techniques.

Another notation that we use is the following:

Definition 2.7. Let X = (J*_,X.. For any 1< k < d define
k
SMI[X1, ..., %] ={M|M = rlXi XeEX} .
=
ThusSM([X4, ..., X4| is the set of all set-multilinear monomials of degkee

2.4 Partial derivatives
In this subsection we introduce some notation for computing partial derivatives.

Definition 2.8. Let M([xy,...,X,] be the set of monomials in the variabbes. .., x,. Let My[Xq,...,Xn]
be the set of monomials of degree at mo&t Xy, ..., X,.

Example 2.9. Mip[x1, %] = {1, X1, X2, X2, X1 - X2, X3 }.

Definition 2.10. Letd = SX_; di. For a functionf (xy, ...,%,) and a monomiaM = [1¥_; x¢ let
a1
M ME I (%)

whereM! = %, (di!).

Recall that in case thétis finite we only consider polynomials in which the degree of each variable
is smaller than the characteristiclof In particular we will only consider partial derivatives with respect
to monomials in which each variable has degree smaller tharfithar

5In the original paper6] these circuits are called multilinear circuits, but in recent woB& 9, 30] they are referred to
as set-multilinear circuits.
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Example 2.11. Let f(Xg,%2,X3) = x%xz +x3z andM(xz,X2,X3) = X31X2. We have that

df

— =2, M =1 .
oM 1

Definition 2.12. For a functionf (xa,...,%,) andk < nlet

o(f)= { ot monomialsM € Mxq, ..., X] } .
M
Also define
rank () = dim (span(a(f))) -
Note that indk(f) we only consider partial derivatives with respect to the Kreariables.

Example 2.13. Let X = (X;,j)1<i,j<3 be a 3x 3 matrix. Letf(X) = Det(X) (the determinant oK).
Consider the following order of the variables < X j if i <i’ ori =1"andj < j’. Then

de(X) = {X2,2X3,3 —X2,3X32, X2,1X33 — X2,3X3,1, X2,1X32 — X2 2X3 1, X3 1, X32, X3,3} .
Thus, rank(f) = 6.

For set-multilinear polynomials we need a slightly different definition (although we use the same
notations).

Definition 2.14. Let X = Uf’:lxi. For a set-multilinear polynomidl(Xy, ..., Xq) andk < d let

()= { aa'\;monomialslvl € SM[Xy, ..., %] for1 <i < k} )

We defines-rank(f) = dim(spandk(f))).

Note that in particular we only consider partial derivatives with respect to monomials of the form
|‘|!‘/:1x; wherex; € X; andk’ < k. We will never consider partial derivative with respect to the monomial

X1 - X3 (again,x € X;).

Example 2.15. Let X be a 3x 3 matrix (as inExample2.6 with d = 3). Let f = Det(X) =
Det(Xy, X2,X3) be the determinant ok where whereX; = {x1,1,X1,2,X1,3}, X2 = {X2,1,X2.2, %23}, and
Xg = {X371,X372,X373}. Thenaz(f) = {X371,X372,X373}. Thus,s—ranlg(f) =3.

Note the difference fronExample2.13 where we ignored the fact that the determinant is a set-
multilinear polynomial.
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3 Characterizing learnability via partial derivatives

In this section, we present our main criterion for establishing the learnability of both arithmetic circuits
and algebraic branching programs. We prove that any polynomial whose partial derivatives form a low
degree vector space induce low rank Hankel matrices. To relate the rank of the Hankel matidxitsf

partial derivatives we will need the following multivariate version of Taylor’s theorem:

Fact3.1.LetX = {x1,...,X,} and letf (X) be a degred polynomial. Letp = (p10p2) be an assignment
to the variables, wherg; is an assignment to the firktvariables angb, as assignment to the last- k
variables. For a monomiall defineM(p) be value oM on assignmeng. Then

of -
f(p) = f(p1op2) = ; M(p1)- 517 (0op2) -
MeMy Xl,...,Xk]

Proof. Because of the linearity of the partial derivative operator it is enough to prove the claim for
the case thaf is a monomial. Letf(xs,...,X,) = ﬂ{‘:lx;di, wherey di < d. Consider a monomial

M € My[xq, ..., %] given byM = ﬂ!‘zlxﬁ, wherey g < d. Notice that if there is some 4 i <k with

g > di theng—,\‘;I = 0. Also notice that if for some ¥ i < k we have thag < d; then g—,\fﬂ(@opz) =0
because the assignmentéds zero. In particular the only contribution to the sum will come from the
partial derivative with respect g = [1<_; x% that givesaa—,\;0 =1 X% In particular

n

ANy M AN _r x;d di(py) = f
'm( op2) = o(Pl)'aTAO( OPz)—ﬂu (Pl)'i: +1X| (p2) =f(p) -

M(p1)

Now we can state the main technical theorem of the paper:

Theorem 3.2. Let f(x1,...,X,) be a degree d polynomial. Then for every k,
dim(Hk(f)) <rank(f) .
If f is multilinear then equality holds.

Proof. We will define two matrice¥y x andEy such that ranfEy) < rank(f) andHy = Vg k- Ex.

Construction of Ey (Evaluation Matrix): We index the rows & by the set of monomiaBsly[xy, ..., X]
(in lexicographical order) and the columns by element8"bK (in lexicographical order). ThéM, p)
entry ofEy is equal to

(Edm,p = m(aop) :

where0 is a lengthk vector andp is in F". This is equal to the value of the partial derivativefofith
respect taM at the poinf)op. Whenk = 0, the matrix has only one row (the partial derivative of order
zero is the polynomial itself), in which theth position is equal td (p). The following is a standard
fact from linear algebra:
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Claim 3.3. rank(Ex) < rank(f), and equality holds if f is multilinear.

Proof. Row M of Ei is the evaluation 0% on all inputs of the fornDo p, where0 is a lengthk vector
and p is of lengthn— k. Hence each vector corresponds to part of the “truth table” of a particular
partial derivative off in which the assignment to the firstvariables is zero. Clearly if a set of partial
derivatives is linearly dependent then so are the corresponding rows. ThyEgegkank(f). When

f is multilinear, all of the variables iM disappear from the resulting polynomial, and we actually get
that the rows oEg represent the entire truth table of the corresponding partial derivatif@oél hence
rank(Ex) = rank(f). O

Construction of Vy x (Generalized Vandermonde Matrix): The rowsWgk are indexed by elements of
K (in lexicographical order) and the columns are indexed by the set of mondwiis, ..., x| (again
in lexicographical order). Thép,M) entry of Vg is equal toM(p). Whenk = 0 the matrix contains
only one column, whose entries are equal to 1. We note that the column r&lsdiull (similarly to
the usual Vandermonde matrix).

Consider the matrix produdt - Ex. Notice that its(p; o p2) entry is equal to

of ~
(Vak Ex)prop, = ; M(p1) oM (Oop2)
MeMg[X1,...,X]

which byFact3.1equalsf (p1 0 p2). ThusVyk - Ex = Hk. In particular rankHy) < rank(Ex) < rank(f).
When f is multilinear we have that, as before, rédBk) = rank( f), and as the column rank ¥f is full
it follows that ranKHy) = rank(Ex) = rank(f). O

By summing over all values dfwe obtain

Corollary 3.4. Let f(x1,...,Xn) be a polynomial. Then
n
dim(H(f)) < ZranK((f) :
k=0

If f is multilinear then
n

dim(H(f)) = k;ranlq((f) :

Now we consider set-multilinear polynomials. We must be careful here to take into account partial
derivatives with respect to monomidis that are not irSM[X, ..., X;] for anyi. Below, we show that
rows inEy corresponding to sudM'’s are zero.

Let f(Xg,...,Xq) be a set-multilinear polynomial with respectXo= UX. We order the variables of
X as follows: first we seX; < Xo < ... < Xyq, then we order the variables in ea$hn some linear order.
Consider thegM, p) entry inEy. Notice that ifM & (J; SM[Xy,...,X] then g—,\fﬂ(aop) = 0. Indeed,
assume that the firgtvariables cover the se}§, ..., X, as well as some of the variables in the Xgt.
Since we substitute 0 to the fidstvariables we see thil must contain a variable from eaf, ..., X
(as otherwise, becaudds set-multilinear, the entirll-th row of Ey is zero). We also note théd can't
contain two variables from the sk} (as again this would imply that thd-th row is zero). In particular,
in order for theM-th row to be non zero we must have théte SM[X, ..., X] for thati. As a corollary
we get
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Corollary 3.5. Let f be a set-multilinear polynomial with an ordering of the variables as above. For
eachl < k < nlet ik be defined by
ik+1

X

ik
UX ‘ <k<
i=1
Thenrank(Ey) < s-rank, (f).

This corollary implies the following version @orollary 3.4 for set-multilinear polynomials.

Theorem 3.6. Let X = Uid:lxi, with |X| = n. Let f(Xy,...,Xq) be a set-multilinear polynomial. Then

o

dim(H(f)) <ny s-rank(f) .
K=0

Proof. According toTheorem3.2we have that diftH (f)) = S_yrank(Ex). By Corollary 3.5we get
that ranKEy) < s-rank, (f), whereiy is such that

ik+l

Ux| k< U]

In particular we get that
n (x) d d
dm(H(f)) =Y rankEx) < Y [Xi;1|-s-rank(f) <ny s-rank(f) ,
kZO i; ! i;

where inequality(x) follows from the observation that for evekysuch thafl|_; X;| < k < |UL1 X,
it holds thatix = i, and so there argX; 1| suchk’s.

4 Learning depth-3 arithmetic circuits

In this section we learn depth-3 arithmetic circuits. The results that we obtain also follow from the works
of [6, 4], however we reprove them in order to demonstrate the usefulness of our techniques. We begin
by defining the model:

Definition 4.1. A depth 3 arithmetic circuit is a layered graph with 3 levels and unbounded fan-in. At
the top we have either a sum gate or a product gate. A depth 3 arithmetic €isgitit a sum (product)
gate at the top is called&1Z (MXM) circuit and has the following structure:

C= iiﬂLi’j(X)

where eachy; j is a linear function in the input variablés= xq, ..., X, andmis the number of multipli-
cation gates. The size of the circuit is the number of gates, in this®fasd).
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A ZIMZ circuit is a homogeneous circuit if all the linear forms are homogeneous linear forms (i. e.
the free term is zero) and all the product gates have the same fan in (or degree). In other words every
gate of the circuit computes a homogeneous polynomial. We will also be interested in set-multilinear
depth 3 circuits. To define this sub-model we need to impose a partition on the variables:

Definition 4.2. A ZINZ circuitis called set-multilinear with respectXo= Ui":m if every linear function
computed at the bottom is a homogeneous linear form in one of thi;sarsd each multiplication gate
multipliesd homogeneous linear forms,...,Ly where evenyl; is over a distinct set of variables.
That is to say a depth-3 set-multilinear circ@lihas the following structure:

e:iiﬁl'i’j(xj)

wherelL,; j is an homogeneous linear form.

We now give an algorithm for learning set-multilinear depth-3 circuits. The algorithm is based on
the following lemma that characterizes the dimension of a set-multilinear circuit’s partial derivatives:

Lemma 4.3. If a polynomial f is computed by a set-multilinear depth 3 circuit with m product gates
then for evenyll <k <d,

s-rank(f) <km .

Proof. First notice that for every product gate
d
P=]Li(x)
I

we have s-rankP) < k. Indeed, let < r < k. then for any monomiall € SM([Xy, ..., X;] we have that

oP d
EIV] =0m- rl Li (%)

i=r+1

for some constantyy depending oM andP. Thus, as we vary over allbetween 1 an#t we obtain
only k distinct partial derivatives. The proof of the lemma now follows from the linearity of the partial
derivative operator. O

Applying Lemmad4.3, Theorem3.6, andTheorem?2.4 we obtain the following learning result:

Theorem 4.4. Let € be a set-multilinear depth-3 circuit with m product gates over n variables with
coefficients from a fieldl. ThenC is learnable in time polynomial in m and n.

We note that this result also follows immediately from the result$ o]
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4.1 Learning general depth 3 circuits

We now give our learning algorithm for general depth-3 arithmetic circuits. Unlike the algorithm in the
set-multilinear case, this algorithm runs in time exponential in the degree of the circuit (and polynomial
in the other parameters). Thus we can learn in subexponential time any depth-3 circuit of sublinear
degree. The running time of the algorithm is determined by the following lemma:

Lemma 4.5. Let f: F" — F be a polynomial over a variable set X of size n computed by a depth-3
circuit with m product gates each of degree at most d. Then for eiverik < d,

rank(f) < m-ii <?> .

Proof. The proof is similar to the case of set-multilinear depth-3 circuits. Notice that for every product
gate

d
P=[]L(X)
-
we have rankP) < 5¥ ; (%). Indeed, for any monomiah of degreer we have that

5'5' € span{ i|;[ Li(X)

Since there are at mostproduct gates we obtain the claimed bound. O

Tc[d], |T|:d—r} .

Applying the above lemma witlhheoren3.2andTheoren2.4we get the following learning result (that
was also obtained ir6]):

Theorem 4.6. Let f: F" — IF be computed by a depth-3 arithmetic circuit with m product gates each of
fan in at most d. Then f is learnable in time polynomial ir’$,and m.

4.2 Discussion

The fact that the rank of was bounded by the number of product gates is unique to set-multilinear
depth-3 circuits. For example consider the following depffi2circuit:

n

f(z,X1, ..., Xn) :_|'l(z+xi) :

For every ordering of the variables, the dimension of the span of the partial derivatitdamd hence

the rank of the Hankel matrix of) is exponential inn; this follows from the observation that the
coefficient of is then — d symmetric polynomial whose partial derivatives have dimensfdi2)

(see B3]). Thus it is no surprise that Beimel et al][only considered depth-P1Z circuits where

the product gate at the root has fan in at nf@dbgn); fan in larger tharO(logn) would correspond to
Hankel matrices of superpolynomial dimension and thus would not be learnable by multiplicity automata
techniques.
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To show the limits of current learning techniques we point out that the following homogeneous

depth-3 arithmetic circuit
n n

Cc'= _El(z+ )+ _u(v+ u)

is both irreducible and has exponentially many linearly independent partial derivatives. As its degree is
n we can only learn it in time exponential m We leave open the problem of learning homogeneous
depth-3 arithmetic circuits (as well as the more difficult problem of learning general depth-3 arithmetic
circuits) of superlogarithmic degree.

5 Learning classes of algebraic branching programs

Algebraic and Boolean branching programs have been intensely studied by complexity theorists and
have been particularly fruitful for proving lower bounds. Considerably less is known in the learning
scenario — Bshouty et all1P] and Bergadano et al5] have shown some partial progress for learning
restricted width Boolean branching programs. In this section we will show how to learn any polynomial
size algebraic branching program that is both read once and oblivious. As such we will be able to
show that multiplicity automata are essentially equivalent to read once, oblivious algebraic branching
programs, a characterization that may be of independent interest. We begin with a general definition of
algebraic branching programs:

Definition 5.1. An algebraic branching program (ABP), first defined by Nis2j,[is a directed acyclic

graph with one vertex of in-degree zero, which is cakkedirce and one vertex of out-degree zero,
which is called thesink The vertices of the graph are partitioned into levels numberedd Edges

are labeled with a homogeneous linear form in the input variables and may only connect vertices from
leveli to vertices from levei+ 1. The source is the only vertex at level 0 and the sink is the only vertex
at the leveld. Finally the size of the ABP is the number of vertices in the graph.

The polynomial that is computed by an ABP is the sum over all directed paths from the source to
the sink of the product of linear functions that labeled the edges of the path. It is clear that an ABP with
d+ 1 levels computes a homogeneous polynomial of dedree

In this section we will show how to learn a natural restriction of an algebraic branching program as
mentioned above: the read once, oblivious algebraic branching program or ROAB.

Definition 5.2. Let X = Uid:lxi be a partition of the input variables intbdisjoint sets. An ABP is
oblivious if for every leveli only one set of variableX; appears. A function is a ROAB, a read once,
oblivious algebraic branching program, if it is an oblivious ABP and every set of varizbkgspears in
at most one level.

We are interested in learning ROABs with respect to the partiXoa Uflzlxi in which the vari-
ables inX; appear on edges from levieto leveli + 1. In this section we measure the complexity of a
polynomial in terms of its smallest ROAB:
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Definition 5.3. For a polynomialf we defineB(f) to be the size of the smallesBP for f. For a
set-multilinear polynomiaf we denoteéDB( ) to be the size of the smallest ROAB fér

The main theorem of this section shows that for set-multilinear polynomials, the size of its smallest
ROAB is equal to the dimension of the vector space induced by its partial derivatives:

Theorem 5.4. For a set-multilinear polynomial Xy, ..., X4) we have that

% s-rank(f) = OB(f) .
k=1

To proveTheoremb.4we will need the following theorem which is implicit in Nisagd]:

Theorem 5.5 (R5]). Let f(Xi,...,Xq) be a set-multilinear polynomial. For each< k < d define a
matrix M( ) as follows:

e Each row is labeled with a monomialiM: SM([Xy, ..., X].

e Each column is labeled with a monomiabM SM([X 1, ..., Xq]-

If k=0then M, = 1and if k=d then M, = 1. The(M1, M,) entry ofM(f) is equal to the coefficient
of the monomial M- M, in f. We have that

d
OB(f) = ZJrank(Mk(f)) .

k=
Proof of Theorenb.4. We will show that rankMy(f)) = s-rank(f) which, combined withTheo-
rem 5.5 completes the proof. Consider a row dfi(f) corresponding to some monomil €
SM[X1,...,X]. Sincef is a set-multilinear polynomial it follows thag% is equal toy; otM; where
eachq; is an element of the field and; € SM[X¢.1,...,Xq], for all t. Notice, however, that rowl
of My(f) is precisely equal to the row vectéa, ..., 0t). Hence romM of My(f) is equal to the co-
efficients of the partial derivative of viewed as a set-multilinear polynomial ¥x.1,...,Xq4. Itis a
standard fact from linear algebra that the dimension of a vector space spanned by a set of polynomials
is equal to the rank of the matrix of their coefficients.

O

CombiningTheorenb.4andTheoren.6we see that any polynomial-size ROAB obeying the above
partition is computed by a polynomial-size multiplicity automata. Applying the learning algorithm of
Beimel et al. fi] we obtain

Theorem 5.6. Let X = Uidzlxi. Let f(Xy,...,Xq) be a set-multilinear polynomial that is computed by a
ROAB of size m. Then f is learnable in time polynomial in m, |xid

Notice that ROABs can be thought of as the arithmetic generalization of OBDDs (Ordered Binary
Decision Diagrams, which are also known as oblivious read once branching programs), a model for
which Bergadano et al5] gave a learning algorithm based on multiplicity automata.
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5.1 Equivalence of ROABs and multiplicity automata

We can now prove that ROABs are essentially equivalent to multiplicity automata. Since our learning
algorithm outputs as a hypothesis a multiplicity automafdmeorem5.6 implies that every ROAB of
sizemin nvariables is computed by a multiplicity automaton of size polynomiah emdn. We cannot

show that every multiplicity automaton is computed by a ROAB, but we can show that every multiplicity
automaton is computed by a ROAB which computes higher degree polynomials at each edge.

Definition 5.7. Define a ROAB of degreéto be a ROAB where every edge is labelled with a polynomial
of degred.

Lemma5.8. Let f be any polynomial over n variables computed by an algebraic multiplicity automaton
of size r. Assume also the the degree of each variable in f is bounded by d. Then f can be computed by
a ROAB with nt+ 2 levels of size n# 2 and degree d.

Proof. LetSC X be a subset of the alphabet of siz¢ 1. Let f be computed by a multiplicity automaton
A of sizer consisting of the set of matricdgis; } s> and the vectof € Z'. Construct a matriX where
thei, j entry of T is a degreel univariate polynomialT; j, interpolating thei, j) entry of us for every
o €S Thatis,T (o) is the(i, j) entry of us (for o € §). Consider a ROAB witm + 2 levels each
of sizer where every level K i < n has a copy of the states ofA (in particular we enumerate the
vertices in each level witfil,...,r}). Connect every vertex at leviel for 1 <k < n—1, to every vertex
at levelk+ 1. For thej-th vertex in levelk and thei-th vertex in levelk+ 1 we label edgéj,i) with
the polynomial in thei, j) entry of T, havingx as its variable (i. e. the label & j(xc)). Connect every
vertex in leveln to the sink and label edde, sink) with the polynomial in thely ;(x,) (recall the output
of a multiplicity automata is the inner product pfvith the first row of the product of thg,;’s). Also
connect the source to every one of theertices in the first level and label the edge to veitexth

. Itis clear that this ROAB computes a polynomial of degree at rdasteach variable, and that for
every input fromS" the output of the ROAB agrees with Therefore, by the following version of the
Schwartz Zippel lemmaBR, 36] we get that this ROAB computesas required.

Lemma 5.9 (32, 36]). Let f,g: F" — FF be two n-variate polynomials ov@. Assume that the degree
of each variable in f and g is at most d. LeCSF be a set of size ¢ 1. If for every xc S" we have that
f(x) = g(x) then f=g.

O]

6 Learning noncommutative formulae

In this section we show how to learn another type of arithmetic circuits: polynomial size noncommu-
tative formulae. A noncommutative formula is an arithmetic formula where multiplication does not
necessarily commute; i.e. different orderings of inputs to a product gate result in different outputs. Intu-
itively this restriction makes it difficult for a formula to use the power of cancellation. This may seem to
be a strange restriction, but it is very natural in the context of function computation where an ordering
is enforced on groups of variables. For example, the produktrotricesMy, ..., Mk where matrix

M; uses variables from a skt can be viewed as a set-multilinear noncommutative polynomial over an
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ordering of the variableX = U>q (changing the order of the matrices will result in a different output).

In addition, many of the known algorithms for computing polynomials are non-commutative by nature.
For example, the well known algorithm for the above mentioned iterated matrix multiplication can be
viewed as a non-commutative set-multilinear circuit. Similarly, Ryser’s algorithm for computing the
permanent (see, e. g4]) can be viewed as a non-commutative set-multilinear formula.

Nisan proved the first lower bounds for noncommutative formulag&sh pere we will give the first
learning algorithm for set-multilinear polynomials computed by noncommutative formulae. Previously
only algorithms for learning read-once arithmetic formulae were known (see E,dLQ, 9, 8]). We
begin with a general definition for arithmetic formulae:

Definition 6.1. An arithmetic formula is a tree whose edges are directed towards the root. The leaves
of the tree are labeled with input variables. Every inner vertex is labeled with one of the arithmetic
operations{+, x }. Every edge is labeled with a constant from the field in which we are working. The
size of the formula is defined to be the number of vertices.

An arithmetic formula computes a polynomial in the obvious manner. We now define non-
commutative formulae. Roughly, a formula is noncommutative if for any two input variablasd
Xj, XiXj — X% # 0. More formally, letF{xy,...,x,} be the polynomial ring over the field in the
non-commuting variables, ..., X,. Thatis, inF{xs,...,x,} the formal expressions, - X, - ...- X, and
Xj; - Xj, - ...~ Xj, are equal if and only ik = | andvm i, = jm (Whereas in the commutative ring of polyno-
mials we have that any monomial remains the same even if we permute its variables; @ g. X2 - X1).
A non-commutative arithmetic formula is an arithmetic formula where multiplications are done in the
rngF{xs,...,Xxn}. As two polynomials in this ring do not necessarily commute, we have to distinguish in
every multiplication gate between the left son and the right son. For a polyndratk (f) be the size
of the smallest noncommutative formula computihgWhen considering non-commutative formulae
we are interested igyntacticcomputations, e. g. given the polynonikal x, we want the formula to out-
put this exact polynomial and not the polynomial x1, even though they are semantically equal when
considering assignments from a field. In particular the fornixia- x) - (x1 + x2) does not compute the
polynomialx? — x2.

Note that every polynomial can be computed by a hon-commutative formula, and that given a non-
commutative formula we can evaluate it over a commutative domain.

In [25] Nisan proved exponential lower bounds on the size of noncommutative formula computing
the permanent and the determinant. An important ingredient of Nisan’s result is the following lemma
relating noncommutative formula size to algebraic branching program size:

Lemma 6.2 (25]). Let f(Xy,...,Xq) be a set-multilinear polynomial. Then
B(f) <d(F(f)+1) .
Using this we can give the following relationship between noncommutative formulae and ROABSs:

Theorem 6.3.Let f(Xy,...,Xq) be a set-multilinear polynomial computed by a noncommutative formula
of size m, then f is computed by a ROAB of siza-d1).
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Proof. Applying Lemma6.2 we see thaff is computed by an algebraic branching progfarof size
d(m+1). We will show thatB is also computed by a ROAB of sitkm+ 1), by constructing a ROAB
with d + 1 levels, in which the variables X label the edges that go from leue}- 1 to levelk.

Consider the set of edgesBfrom leveli — 1 toi. Assume that two different sets of variables appear
from leveli — 1 to leveli sayX; andX;. Then the output oB will contain a monomial of the form and
Y xZ wherex; € Xj, Y is a set of variables appearing in levels less tharl in B, andZ is the set of
variables appearing in levels greater than B. Note however thaf is a set-multilinear polynomial,
in particular in each monomial df the variables fronX; appear as thg-th multiplicand. In particular
no monomial of the fornY x;Z appear inf. Thus, the coefficient of any monomiélk;Z must be zero.
As such, we can substitute the constant O for all of the variagklegpearing on these edges and obtain
an oblivious branching progra®f computing the same polynomial Bs B’ can be made read-once in
a similar fashion. At the end we get a ROAB widht 1 levels in which the variables frod§ label the
edges from level— 1 to leveli. O

CombiningTheorem6.3with Theoremb.6 we obtain

Theorem 6.4. Let f(Xy,...,Xq) be a set-multilinear polynomial, over X% Uid:lxi, that is computable
by a noncommutative formula of size m with coefficients from aTiel@hen f is learnable in time
polynomial in|X| and m.
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