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Abstract: Frieze, Kannan, and Vempala (JACM 2004) proved that a small sample of rows
of a given matrixA spans the rows of a low-rank approximatidnhat minimizeg|/A—D||g

within a small additive error, and the sampling can be done efficiently using just two passes
over the matrix. In this paper, we generalize this result in two ways. First, we prove
that the additive error drops exponentially by iterating the sampling in an adaptive manner
(adaptive sampling Using this result, we give a pass-efficient algorithm for computing a
low-rank approximation with reduced additive error. Our second result is that there exist
k rows of A whose span contains the rows of a multiplicatiket 1)-approximation to

the best rankk matrix; moreover, this subset can be found by samgtisgbsets of rows

from a natural distributionolume sampling Combiningvolume samplingvith adaptive
samplingyields the existence of a setf-k(k+ 1) /e rows whose span contains the rows

of a multiplicative(1+ €)-approximation. This leads to a PTAS for the following NP-hard
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projective clustering problem: Given a fetof points inRY, and integerg andk, find
subspaceBy, . .., Fj, each of dimension at mokt that minimizey ,.p min; d(p, F,)Z.

1 Introduction

1.1 Motivation

Let the rows of a matrix be points in a high-dimensional space. It is often of interest to find a low-
dimensional representation. The subspace spanned by tHeright singular vectors of the matrix

is a good choice for many applications. The problem of efficiently finding an approximation to this
subspace has received much attention in the past det@dty 1, 14, 16]. In this paper, we give new
algorithms for this problem and show existence of subspaces lying in the span of a small set of rows
with better additive approximation as well as multiplicative approximation. At the heart of our analysis
are generalizations of previous sampling scheri@ We apply these results to the general problem of
finding j subspaces, each of dimension at nkpsb as to minimize the sum of squared distances of each
point to its nearest subspace, a measure of the “error” incurred by this representation; as a result, we
obtain the first polynomial-time approximation scheme for fhiggective clusteringproblem b, 32, 6, 3]

whenj andk are fixed.

The case off = 1, i. e., finding a singld&-dimensional subspace, is an important problem in itself
and can be solved efficiently (fgr> 2, the problem is NP-har®(], even fork = 1 [15]). The optimal
projection is given by the rank-matrix A, = AY'Y" where the columns of are the togk right singular
vectors ofA and can be computed using the Singular Value Decomposition. Note that among &l rank-
matricesD, A is the one that minimizeA—D||2 = 5; ;(Ajj — Dij)2. The running time of this algorithm,
dominated by the SVD computation of amx n matrix, is O(min{mr?,nn?}). Although polynomial,
this is still too high for some applications.

For problems on data sets that are too large to store/process in their entirety, one can view the
data as a stream of data items arriving in arbitrary order, and the goal is to process a subset chosen
judiciously on the fly and then extrapolate from this subset. Motivated by the question of finding a faster
algorithm, Frieze et al.1[9] showed that any matriA hask/e rows whose span contains the rows of a
rankk approximation toA within additive errore||Al|2. In fact, the subset of rows can be obtained as
independent samples from a distribution that depends only on the norms of the rows. (In what follows,
Al denotes théth row of A.)

Theorem 1.1 ([L9]). Let S be a sample of s rows of ankn matrix A, each chosen independently from
the following distribution: row i is picked with probability
_ (A2
AT

If s > k/¢, thenspar{S) contains the rows of a matrif of rank at most k for which

Es(|/A—Acl?) < IA—AE +ellAlZ .
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This can be turned into an efficient algorithm based on sampliflg'[ The algorithm makes one
pass throughA to figure out the sampling distribution and another pass to sample and compute the
approximation. Its complexity i©(min{m,n}k?/&*). These results lead us to the following questions:
(1) Can the error be reduced significantly by using multiple passes through the data? (2) Can we get
multiplicative (1+ €)-approximations? (3) Do these sampling algorithms have any consequences for the
general projective clustering problem?

1.2 Our results

We begin with the observation that the additive error term dexp®nentiallywith the number of passes
when the sampling is done adaptively. Thus, low-rank approximation is a natural problem for which
multiple passes through the data are highly beneficial.

The idea behind the algorithm is quite simple. As an illustrative example, suppose the data consists
of points along a 1-dimensional subspacé&8fexcept for one point. The best rank-2 subspace has zero
error. However, one round of sampling will most likely miss the point far from the line. So we use a
two-round approach. In the first pass, we get a sample from the squared norm distribution. Then we
sample again, but adaptively—we sample with probability proportional to the squared distance to the
span of the first sample. We call this procedadaptive samplinglf the lone far-off point is missed
in the first pass, it will have a high probability of being chosen in the second pass. The span of the full
sample now contains the rows of a good rank-2 approximation. In the theorem below, f&af savs
of a matrixA, we denote byrs(A) the matrix whose rows are the projection of the rowaad the span
of S

Theorem 1.2. Let S= S U---US be a random sample of rows of anxm matrix A where, for j=
1,...,t, each set Sis a sample of s rows of A chosen independently from the following distribution: row
i is picked with probability
(2
Gy ME;l
' IE;I1E

where B = A, §j = A—75,..us._; (A). Then for s> k/¢, spar{S) contains the rows of a matrif of
rank at most k such that

" 1
Es(|A—AE) < 7= IA—AE +£lIAlE -

The proof ofTheoreml.2is given inSection2.1 The resulting algorithm, described S$ection2.2
uses 2 passes through the data. Although the sampling distribution is modlifiees, the matrix itself
is not changed. This is especially significant wiieis sparse as the sparsity of the matrix is maintained.
Theoreml.2raises the question of whether we can get a multiplicative approximation instead of an
additive approximation. To answer this question, we generalize the sampling approach. Fephkset
points inR", let A(S) denote th&k-dimensional simplex formed by them along with the origin. We pick
a randomk-subsetS of rows of A with probability proportional to v@iA(S))?. This procedure, which

LFrieze et al. 19] go further to show that there is anx s submatrix fors = poly(k/¢) from which the low-rank approxi-
mation can be computed in pgky1/¢) time in an implicit form.
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we callvolume samplingis a generalization of the earlier sampling approach which picks single rows
according to their squared norms.

Theorem 1.3. Let S be a random k-subset of rows of a given matrix A chosen with probability

C vol(A®S)?
5T ST 7=k VOI(A(T))?

ThenAy, the projection of A to the span of S, satisfies
Es(|A—AE) < (k+1)[[A-AE -

We prove this theorem iisection1.4. Moreover, the factor ok+ 1 is the best possible for a
k-subset Proposition3.3). By combining Theorem1.3 with the adaptive sampling idea froithe-
orem1.2, we show that there exi€(k?/¢) rows whose span contains the rows of a multiplicative
(1+ €)-approximation.

Theorem 1.4. For any mx n matrix A, there exist & k(k+ 1) /e rows whose span contains the rows of
a rank-k matrixAx such that
IA=AIE < (1+e) |A-AE -

The existence of a small number of rows containing a good multiplicative approximation is the key
ingredient in our last result—a polynomial-time approximation scheme (PTAS) for the general projec-
tive clustering problem. This result makes a connection between matrix approximation and projective
clustering. A key idea in the matrix approximation work @#] 15, 19] is that, for any matrix, there
is a small subset of its rows whose span contains a good approximation to the row space of the entire
matrix. This is similar to the idea of core-se§,[which have been studied in computing extent mea-
sures in computational geometry (and applied to a variant of the projective clustering pr@dlem [
Roughly speaking, a core-set is a subset of a point-set such that computing the extent measure on the
core-set provides an approximation to the extent measure on the entire point set. An extent measure is
just a statistic on the point set (for example, the diameter of a point set, or the radius of the minimum
enclosing cylinder); typically, it measures the size of the point set or the minimum size of an object that
encloses the point se2][

We state the projective clustering problem using the notation from computational geometry: Let
d(p,F) be the orthogonal distance of a pojnto a subspacg. Given a seP of n points inRY, find j
subspaceb;, .. ., Fj, each of dimensiok, such that

C(Fy,...,Fj) =S mind(p,F)? (1.1)
1 j pgp i

is minimized. When subspaces are replaced by flats, thekcas®ecorresponds to thej*means prob-
lem” in computational geometry.

Theoreml.4 suggests an enumerative algorithm. The optimal sétdimensional subspaces in-
duces a partitioP, U - -- U P} of the given point set. Each sBt contains a subset of siz@(k?/¢) in
whose span lies a multiplicativ& + €)-approximation to the optim&-dimensional subspace fBr. So
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we consider all possible combinations jofubsets each of siZ@(k?/¢), and ad-net ofk-dimensional
subspaces in the span of each subset. d-het depends on the points in each subset and is not just a
grid, as is often the case. Each possible combination of subspaces induces a partition and we output the
best of these. Since the subset size is bounded (and so is the size of the net), this gives a PTAS for the
problem (se&ectiond) whenj andk are taken to be fixed constants.

Theorem 1.5. Given n points irRY and parameters B ang, in time

O(jk3/e)
a(z)
€

we can find a solution to the projective clustering problem which is of cost at (hest)B provided
there is a solution of cost B.

1.3 Related work

The work of Frieze et al.]9] and Drineas et al.15] introduced matrix sampling for fast low-rank ap-
proximation. Subsequently, an alternative sampling-based algorithm was given by Achlioptas and Mc-
Sherry [l]. That algorithm achieves somewhat different bounds (e[ a detailed comparison) using
only one pass. It does not seem amenable to the multipass improvements presented here. B&}-Yossef [
has shown that the bounds of these algorithms for one or two passes are optimal up to polynomial factors
inl/e.
These algorithms can also be viewed in #ieeamingmodel of computationd5]. In this model,
we do not have random access to data; the data comes as a stream of data items in arbitrary order and
we are allowed one or a few sequential passes over the data. Algorithms for the streaming model have
been designed for computing frequency momenmi}sHistograms 22], etc. and have mainly focused
on what can be done in one pass. There has been some recent work on what can be done in multiple
passes 14, 18]. The “pass-efficient” model of computation was introduced2B]] Our multipass
algorithms fit this model and relate the quality of approximation to the number of passes. Feigenbaum et
al. [18] show such a relationship for computing the maximum unweighted matching in bipartite graphs.
The Lanczos method is an iterative algorithm that is used in practice to compute the Singular Value
Decomposition 20, 26]. An exponential decrease in an additive error term has also been proven for
the Lanczos method under a different notion of additive err@®, (R6]). However, the exponential
decrease in error depends on the gap between singular values. In particular, the following is known for
the Lanczos method: aft&iterations, each approximate singular valfeobeys:

62 > 62 —cC (1.2)

whereg; is theith singular value. Both constant®ndC depend on the gap between singular values; in
particular,c is proportional to(c2 — 67) /(262 — 62 — 6?) andC = 62 — 6. The guaranteel(?) can
be transformed into an inequality:

IA—AE < [A—AE +cC (1.3)

very similar toTheoremi.2, but without the multiplicative error term fofA — A¢||2. However, note that
whenc? = 62, successive rounds of the Lanczos method fail to convergg.tin the Lanczos method,

THEORY OF COMPUTING, Volume 2 (2006), pp. 225-247 229


http://dx.doi.org/10.4086/toc

A. DESHPANDE L. RADEMACHER, S. VEMPALA, G. WANG

each iteration can be implemented in one pass Aye@rhereas our algorithm requires two passes over
Ain each iteration. Kuczyski and Waniakowski 7] prove that the Lanczos method, with a randomly
chosen starting vector, outputs a vectowith Ay = Zspagy) (A) such that]|A¢||2 > (1— €)||Aql[2 in
log(n)/+/€ iterations. However, this does not imply a multiplicatide+ €) error to||A— Ay ||2.

While the idea of volume sampling appears to be new?2i [t is proved that, using the rows
and columns that correspond to thex k submatrix of maximal volume, one can compute a rink-
approximation to the original matrix which differs in each entry by at nflgt1)oy. 1 (leading to much
weaker,/mnapproximations for the Frobenius norm).

The results of our paper connect two previously separate fields: low-rank approximation and pro-
jective clustering. Algorithms and systems based on projective clustering have been applied to facial
recognition, data-mining, and synthetic dak 32, 6], motivated by the observation that no single
subspace performs as well as a few different subspaces. It should be noted that the advantage of a low-
dimensional representation is not merely in the computational savings, but also the improved quality of
retrieval. In B], Agarwal and Mustafa consider the same problem as in this paper, and propose a variant
of the j-means algorithm for it. Their paper has promising experimental results but does not provide any
theoretical guarantees. There are theoretical results for special cases of projective clustering, especially
the j-means problem (fingl points). Drineas et al1f] gave a 2-approximation tpmeans using SVD.
Subsequently, Ostrovsky and RabaBi][ gave the first randomized polynomial time approximation
schemes folj-means (and also themedian problem). Mataek R9 and Effros and Schulmariy]
both gave deterministic PTAS’s fgkmeans. Fernandez de la Vega et &l [describe a randomized
algorithm with a running time afi(logn)°Y). Using the idea of core-sets, Har-Peled and Mazun®8ir |
showed a multiplicativél+ ¢)-approximation algorithm that runs in linear time for fixgd. Kumar et
al. [28] give a linear-time PTAS that uses random sampling. There is a PTASHdr (lines) as well 4].

Other objective functions have also been studied, e. g. sum of distgreesd{an wherk = 0, [31, 23))

and maximum distancg{center wherk = 0, [10]). For generak, Har-Peled and Varadaraja?/] give

a multiplicative (1+ €)-approximation algorithm for the maximum distance objective function. Their
algorithm runs in timelnP(k°loa(1/€)/¢%) and is based on core-sets (SBEfdr a survey).

1.4 Previous versions of this paper

This paper is a journal version of the paper by the same set of authors presented at the 17th Annual
Symposium on Discrete Algorithms (SODA 200&p]. This paper contains the same major results, but
additionally provides more intuition and more complete proofs. A previous ver3ig§rof this paper

by a subset of three of the authors (L. Rademacher, S. Vempala, G. Wang) appeared as an MIT CSAIL
technical report. That version contained a subset of the results in this paper. In particular, the notion of
volume sampling and related results did not appear in the technical report.

1.5 Notation and preliminaries

Any m x n real matrixA has a singular value decomposition, that is, it can be written in the form
r . . T
A= Zl(yiu(l)v(l)
i=
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wherer is the rank ofA andoy > 6> > --- > o; > 0 are called the singular value{su(l), e, u(”} eR™
(v, ... vD} € R" are sets of orthonormal vectors, called the left and right singular vectors, respec-
tively. It follows thatATul) = g;v() andAW) = giul) for 1 <i <r.

The Frobenius norm of a matrixe R™" having elements$a;; ) is denoted|Al|r and is given by

m n
INE= 3 & -
i=1j=

It satisfies|A|2 = 5!_; 62.
For a subspacé C R", let y «(A) denote the best rarkapproximation (under the Frobenius norm)
of A with its rows inV. Let

k . .
Tk(A) = o k(A) = un(l)V(I)T
i=

be the best rank-approximation ofA. Also my (A) = myn(A) is the orthogonal projection @ ontoV.
When we say “a set (or sample) of rowsAffwe mean a set of indices of rows, rather than the actual
rows. For a seS of rows of A, let spariS) C R" be the subspace generated by those rows; we use the
simplified notationts(A) for ZTspays) (A) andzsk(A) for Tspags) k(A)-

For subspaceg, W C R", their sum is denoted +W and is given by

V4+W={x+yeR": xeV,yeW} .
The following elementary properties of the operatgrwill be used:
e 7y is linear, that ismy (AA+B) = A oy (A) + v (B) for anyA € R and matrice®\, B € R™™".

e If VW e R" are orthogonal linear subspaces, thenw(A) = my (A) + mw(A), for any matrix
AecR™",

For arandom vector, its expectation, denotéf{v), is the vector having as components the expected
values of the components of

2 Improved approximation via adaptive sampling

2.1 Proof that adaptive sampling works

We will prove Theoreml.2in this section. It will be convenient to formulate an intermediate theorem
as follows, whose proof is quite similar to one 8].

Theorem 2.1. Let Ac R™", and VC R" be a vector subspace. LetEA— 7y (A) and let S be a

random sample of s rows of A from a distribution D such that row i is chosen with probability

_IEW)?
IE[IZ

(2.2)
Then, for any nonnegative integer k,

k
Es(IA— vy sparis k(A1) < A~ m(A) || + gIIEIIE :
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Proof. We define vectora/V) ... w € V + spar{S) such thawv = sparfw¥, ..., w¥'} and show that
W is a good approximation to span®), ..., v} in the sense that

k
Es(|A—mw(A) ) < [A—m(A)[IE + §||E||% : (2.2)
Recall thatri(A) = Tgparvn, . yioy (A, i. €., spafivit),... v} is the optimal subspace upon which to

project. Proving2.2) proves the theorem, sindé CV + spanS).
To this end, define(,(” to be a random variable such thatfet 1,...,mandl =1,...,s,

xW = u‘?E(U — u‘?(A(i) — mv(AY)) with probabilityR, .
1 1
Note that)(| is a linear function of a row oA sampled from the distributioD. Let X()) = 5 lgs 1><|
and note thaEg(X(1)) = ETu(l),
For 1< j <Kk, define: _ _ _
w) =y (A)Tu) 4 X0 (2.3)

Then we have thaEs(wl)) = o;vll). We seek to bound the second central momenw/f, i.e.,
Es(|lwt) — o;v)||2). We have that

wii) — ij(i) =X Ty |
which gives us

QX0 — [T o4

We evaluate the first term ir2 (4),

Es(|X1]2) = Es(

22X

1 2 () ()
5 Y Es(X V13 + Es(X,”-X,”)
SZ |Z\ )<| Sz 1<li<l<s )(Il >(|2
13 s—1 -
5 > Es(IXV]2) + == |ETu |2 (2.5)
sZIZ s
In (2.5 we used tha)(i(lj) andxi(zj) are independent. Fron2.d) and @.5) we have that
Es([[wt)) - Z (I%7112) HETU“)HZ- (2.6)
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The definition ofR gives us
P”u Ul < ez 2.7
Es([|x” =3P IE|I2 @2.7)

Thus, we have obtained a bound on the second central momefit of
. ) 1
Es(lw!) — oV P?) < JJEJE - (2.8)

With this bound in hand, we can complete the proof. y&t=w{l) /g; for 1 < j <k, and consider
the matrixk = A5¥ , vi)y®" The row space df is contained it = sparw(¥), ..., wK}. Therefore,
|A— 7w (A)||2 < |A—F||Z. We will useF to bound the erroffA— mw (A)||2.

By decomposingh — F along the left singular vectors?), ..., u"), we can use the inequalit?.©)
to bound||A—F||2:

Es(|A—mw(A)[?) < Es(|A-F|) = zEs(II(A— F)Tu (i)

k N
= ZlEs(IIGiV(I> W)+ Y of

Kk
=< gHEH%HIA—ﬂk(A)H?: : (2.9)

We can now provd heoreml.2inductively usingTheorem?2.1

Proof of Theoreml.2. We will prove the inequality by induction on Theoreml.1 gives us the base
casd = 1.

For the inductive step, |& = A— ms,u..us_,(A). By means ofTheorem2.1with s> k/e we have
that

Es(|A— 75,005 k(A)E) < [A-m(A)|[E + el E[IE -
Combining this inequality with the fact thAE ||2 < [|A— 7s,u..us_, k(A) |2 we get
Es (|A— 75,005 k(A)E) < [|A— k(A |E + €llA— 5005 k(AR - (2.10)

Taking the expectation ové, ..., S 1, and using the induction hypothesis for 1 gives the result:

Es(lA— 750 o (AIR) < A~ T(AIE +eEs,. 5, (1A~ 75005 (IR (21D
1 _
<la-mal+e (Lo IA-m@IR e AR) (212
1
= A TR AR 213
O
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2.2 Algorithm

In this section, we present the multipass algorithm for low-rank approximation. We first describe it at a
conceptual level and then give the details of the implementation.

Informally, the algorithm will find an approximation to the best rdnkubspace (the span of
vib ... V) by first choosing a samplE of srandom rows with probabilities proportional to the squared
norms of the rows (as ifheoreml.1). Then we focus on the space orthogonal to the span of the chosen
rows, that is, we consider the matiix= A — 1 (A), which represents the error of our current approx-
imation, and we sampls additional rows with probabilities proportional to the squared norms of the
rows of E. We consider the union of this sample with our previous sample, and we continue adding
samples in this way, up to the number of passes that we have chidssrreml.2 gives a bound on the
error of this procedure.

Fast Approximate SVD

Input: A€ R™" integers k< m, t, error parameter € > 0.
Output: A set of k vectors in R".

1. Let S=0, s=k/e.
2. Repeat t times:

(a) Compute the probabilities B = [|[E™||2/||E||2 for i = 1,...,m. (One pass.)

(b) Let T be a sample of s rows of A according to the distribution that assigns probability
R to row i. (Another pass.)

(c) Let S=SUT.

3. Let hy,...,hg be the top K right singular vectors of mwg(A).

In what follows, letM be the number of non-zeros Af

Theorem 2.2.1n 2t passes over the data, where in each pass the entries of the matrix arrive in arbitrary
order, the algorithm finds vectors h..,h € R" such that with probability at leas?/4 their span V

satisfies
4e

A-my(A)JE < (1
A= < (1412,

V1A= m(AIE +4eIATE 214)
The running time is (éM% +(m+ n)%) .

Proof. For the correctness, observe thig(A) is a random variable with the same distributionag(A)

as defined imheoreml.2. Also, ||A— rsk(A)||2 — |A— mk(A)||2 is a nonnegative random variable and

Theoreml.2 gives a bound on its expectation:

£
Es(A—msk(A)[E — A m(A)[E) < T IA- m(A) I+ AlE (2.15)
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Markov’s inequality applied to this variable gives that with probability at legdt 3

1A= 7y (A)|[E — |A—m(A)[|} < 1i||A Tk (A)IE +4e'|AlIE (2.16)
which implies inequality Z.14).

We will now bound the running time. We maintain a basis of the rows index&l loyeach iteration,
we extend this basis orthogonally with a new eatf vectors, so that it spans the new sanipleThe
residual squared norm of each rof&(" |2, as well as the total|E |2, are computed by subtracting
the contribution ofry (A) from the values that they had during the previous iteration. In each iteration,
the projection ontdr needed for computing this contribution takes ti@&Ms). In iterationi, the
computation of the orthonormal bas¥stakes timeO(ns?i) (Gram-Schmidt orthonormalization af
vectors inR" with reference to an orthonormal basis of size at nsgst- 1)). Thus, the total time
in iterationi is O(Ms+ ng’i); with t iterations, this iSO(Mst+ ns’t?). At the end ofStep2 we have
ms(A) in terms of our basis (am x st matrix). Finding the togk singular vectors irStep3 takes time
O(mst?). Bringing them back to the original basis takes tid@kst). Thus, the total running time is
O(Mst+ ngt? + met? + nkst) or, in other wordsQ (Mkt/e + (m+n)k?t?/e?). O

3 Volume sampling and multiplicative approximation

We begin with a proof offheoreml.3, namely that volume sampling leads to a multiplicatiie- 1)-
approximation (in expectation).

Proof of Theorem.3. For everySC {1,...,m}, letAs be the simplex formed byA") : i € S} and the
origin. We wish to bounds(||A— Ac||2) which can be written as follows:

~ 1
Es(|A—A|2) = Vol(As)?||A— ms( : 3.1
SA-AID = 5 o 2, OO 1A= ms AR 3.1
For any(k+1)-subseS= {iy,...,ik1} of rows of A, we can express vipl1 (As)? in terms of vok(At)?
for T = {is,..., ik}, along with the squared distance fraki:*) to Hy, whereHy is the linear subspace
spanned byfAl) : ieT}:
1 .
2 _ 24 (Alik+1) 2
V0|k+1(Ag) (k+1)2 V0|k(AT) d(A ,HT) . (3.2)
Summing over all subsegof sizek+ 1:
volkH(AS)Z:i 5 1 5 Vol (A1) d(AD) Hr)?
S[S=k+1 k+1T,\T|:kJ: (k+1)
_ 1 voly(Ar)? 3 d(AD) Hy)?
(k+1)3TIT|:k =
1
= volg(AT)?||[A—mr (A2 (3.3)
(k+1)° 1 &y
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where in the last step we noted thf ; d(Al), Hr)? = || A— 71 (A)[|2. By substituting this equality in
(3.2) and applying-.emma3.1 (proved next) twice, we have:

1 3 2
57 T|—k VOl (AT )2 ((k+1) kHVOIkH(AS))

2 2
Ot " Oty
1<t < <tk+1<n

k+1 2 2« 2
< voI a7 thn‘ctk_; oj (3.4)
2T,T|=k k(A7) 1<t1< <ty <r j=k+1

Es(|A—AlE) =

k+1

ZT = kV0|k (A7)?

r
k+1 V0|k AT 2 sz
" 31 m—kVol(Br)? T|T| k =]
= (k+1)[|A-AIE -
O
Lemma 3.1. L
Vol (As)? = v thcé th
S|9=k ( ) 1<t <tr< <t <r
wherecy, 067, ,0; > 0= 0711 = --- = Oy are the singular values of A.
Proof. Let As be the sub-matrix of formed by the rowgAl) : i € S}. Then we know that the volume
of thek-simplex formed by these rows is given by M@ds) = k, \/detAsAL). Therefore,
1
volg(8s)? = =7 def AAL) = —— det(B) . (3.5)
S|S=k (k) S|S=k ( ) B: principal

k-minor of AAT

Let de{AAT — A1) = (=1)™A™+ ¢y 1AM 1 4. 4o be the characteristic polynomial 8AT. From
basic linear algebra we know that the roots of this polynomial are precisely the eigenval/es ofe.,
62,62,...,06% and 0 with multiplicity(m—r). Moreover the coefficierty, x can be expressed in terms
of these roots as:
Cmk = (—1)™* OGOG - OF - (3.6)
1<ty <ty <<ty <r

But we also know that,,_y is the coefficient o™ ¥ in det AAT — A1), which means

Cmk = (—1)™ K >  detB) (3.7)
B: principal
k-minor of AAT
(see e. g.,]; we prove it next a®roposition3.2). This gives us our desired result. O
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Proposition 3.2. Let the characteristic polynomial of M R™™ be
detM —Alp) =A™+ craA™ 4+ 4o .

Then
Cmk = (—1)™K Z detB) forl<k<m.

B: principal
k-minor of AA

Proof. First, it is clear thaty = detM). Next, letM’ =M — 41, andS;, be the set of permutations of
{1,2,...,m}. The sign of a permutation s@r), for T € Pern{[m]), is equal to 1 if it is a product of an
even number of transpositions and. otherwise. For a subs&tof rows, we denote the submatrix of
entries(Miﬁj )i,jES by Ms.

de(M —Alm) =detM’) = % sgr(t)M] ;)M ;5 - Mpp o) - (3.8)
tePern([m])

The termcy,  A™ X is the sum over which fix some seB C [m] of size (m—k), and the elements
MiesMi; contribute(—1)™*A™ K and the coefficient comes from the constant term in

sgn(7) [ M ) -
tePern([m]—9) 1¢S

Each term in this sum is th® term of a principal minor oM and so the sum is equal to

detMpm_s) -
SEE

Hence
k= (D" 5 detMy9)=(-1)™ 5 detB) . (3.9)

S|9=m-k B: principal
k-minor of AAT

The bound proved imheoreml.3is in fact asymptotically tight:

Proposition 3.3. Given anye > 0, there exists @k + 1) x (k+ 1) matrix A such that for any k-subset S
of rows of A,
IA—nsk(A)|E > (1—e) (k+1) [A-AE

Proof. The tight example consists of a matrix wikh+ 1 rows which are the vertices of a regular
dimensional simplex lying on the affine hyperplafdé 1 = «} in R“t1. Let AW, A@ Ak+D
be the vertices with the point = (0,0,...,0,c¢) as their centroid. Forr small enough, the best
dimensional subspace for these points is givef Xy, = 0} and

IA—AIE = (k+1)o? . (3.10)
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Consider ank-subset of rows from these, s&y= {A), A@) .. A1 and letHs be the linear subspace
spanning them. Then,
1A= 7sk(A)[|E = d(A“Y He)? (3.11)

We claim that for any > 0, a can be chosen small enough so that
d(AKY He) > \/(1—¢)(k+1a . (3.12)
Choosex small enough so that(p,Hs) > /(1—€)a. Now

d(AkD Hg)  d(AkY convA) ... AK))

= =k+1 3.13
dipHs)  d(p,conMAD, . AR)) " 519
since the points form a simplex amds their centroid. The claim follows. Hence,
IA—7sk(A)|E = d(A*Y He)? > (1—e) (k+ 1) o = (L—¢) (k+1) [A-AJE . (3.14)
O

Next, we proveTheoreml.4. This theorem follows by interpretinfheoreml.3 as an existence
theorem and applyingheorenm2.1

Proof of Theoreml.4. By Theoreml.3, there exists &-subsetS; of rows of A such that
IA— 75 (A)]IE < (K+DIA-AE (3.15)

Now, applyingTheorem2.1with V = spar{S;) ands = k(k+ 1) /e we get that a random sampg of
the rows ofA (according to the specified distribution) satisfies

Es, (A~ 7y ¢ sparisy) k(A)[IE) < (1+€)[|A— A (3.16)
so there exists a subset of the rows achieving the expectation. \binspanS;) = spanfS US,), and
|SIUS| = k+k(k+ 1) /€, we have the desired result. O

4 Application: Projective clustering

In this section, we give a polynomial-time approximation scheme for the projective clustering problem
described inSection1.2 We note that a simple multiplicativk 4+ 1)-approximation follows from
Theoreml.3with running timeO(dn’). LetVy,...,V; be the optimal subspaces partitioning the point
set intoP U ---UPj, whereR is the subset of points closest¥h Theoreml.3tells us that eacl
contains a subs& of k points whose spayt’ is a(k+ 1)-approximation, i.e.,

d(p,V)?2< (k+1) S d(p,Vi)? .
(V)= <( )p; (p,Vh)

peR

We can find the§'’s by simply enumerating all possible subsetkgfoints, considering of them at a
time, and taking the best of these. This leads to the complexityisf
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Getting a PTAS will be a bit more complicate@iheorem1.4 implies that there exists a sgtC P
of sizek+ k(k+ 1) /e in whose span lies an approximately optirkalimensional subspadl. We can
enumerate over all combinations psubsets, each of size+ k(k+ 1)/e to find theR,, but we cannot
enumerate the infinitely marksdimensional subspaces lying in the spaofOne natural approach to
solve this problem would be to put a finite grid down in a unit ball in the spd#. dfhe hope would be
that there aré grid points whose spa@ is “close” toW, since each basis vector ¢ is close to a grid
point. However, this will not work; consider a poiptvery far from the origin. Although the distance
between a basis vector and a grid point might be small, the error induced by projpaiittg a grid
point is proportional to its distance to the origin, which could be too large.

The problem described above suggests that a grid construction must be dependent on theFhoint set
Our grid construction considers grid points in the spaR pbut instead of a uniform grid in a unit ball,
we consider grid points at bounded distance from qaemspamp (R), i.e., the points iR projected
to the span of. This avoids the problem of points far from the origin, since there are grid points
around each point. Note that we only put grid points around projected points. This is because we seek
a subspace “close” to, which itself lies in the span d¥; W and any subspace lying in the sparfpf
incur the same error for the component of a point orthogonal to the sganlaf_Lemma4.1, we show
that there exists a subspace spannel pgints in our grid that is not much worse thdh The lemma
is stated for a general point set, but we apply it to the projected poiffisénreml.5.

The algorithm is given below.

Algorithm Cluster

Input: P C RY, error parameter 0 < £ < 1, and upper bound B on the optimal cost.
Output: A set {Fy,...,Fj} of j k-dimensional subspaces.

_ eVB
1. Set 6 = TTNGEAL R=,/(1+5)B+26k.

2. For each subset T of P of size j(k+2k(k+1)/¢):

(a) For each equipartition T =Ty U---UTj:

i. For each i, construct a 6-net Dj with radius R for the projection of P to the span
of Tj.

ii. For each way of choosing j subspaces Fi,...,Fj, where F is the span of k points
from Dj, compute the cost C(Fy,...,Fj).

3. Report the subspaces Fi,...,Fj of minimum cost C(Fy,...,Fj).

In Step2(a)i, we construct @-netD;. A 6-netD with radiusR for Sis a set such that for any point
g for which d(g, p) <R, for somep € S, there exists @ € D such thad(q,g) < 6. The size of a-net
is exponential in the dimension &f This is why it is crucial that we construct tldenet for P projected
to the span off;. By doing so, we reduce the dimension frahio O(k?/¢). The correctness of the
algorithm relies crucially on the next lemma.
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Lemma4.1. Let$ > 0. Let P be a point set, witlP| = n and W be a subspace of dimension k. Let D
be ad-net with radius R for P, satisfying

R> d(p,W)2 + 25k .
V&

Then there exists a subspace F spanned by k points in D such that:

d(p,F)?< S d(p,W)2+4k?n52+4ks S d(p,W) . (4.1)

Proof. We construct the subspaEein k steps. Lefy =W. Inductively, in stefd, we choose a poin
and rotatds_1 so that it includes a grid poigf aroundp;. The subspace resulting from the last rotation,
Fx, is the subspacE with the bound promised by the lemma. To prove tiat)(holds, we prove the
following inequality for any poinp € P going fromF_; to K

d(p,R) <d(p,F-1)+26 . (4.2)

Summing over thé steps, squaring, and summing owgroints, we have the desired result.

LetGy = {6}. G; will be the span of the grid point, 02, ...,0i—1}. We describe how to construct
the rotationR;. Let pj € P maximize||ns. (7 ,(pi))| and letg; € D minimized(xg_,(pi),0). The
point p; is chosen as the furthest point from the origin in the subspakge pbrthogonal td5;. The grid
pointg; is the point closest tg; in F_1. Consider the plang defined by

7 (9), T (Tr 4 (i), andO .

Let 6 be the angle betwee;nGiL(gi) and JrGil(m:,_l(pi)). Let R be the rotation in the plang by the
angle6, and definds = RF_1. SetGi;1 = G; +spar{gi}. By choosing the rotation dependent pn
we ensure that no point moves more thignThis allows us to prove4(2) for all pointsp.

Now we prove inequality4.2). We do so by proving the following inequality by induction ofor
any pointp:

d(nﬁfl(p% R nFl—l(p)) <26 . (4.3)

Note that this provesi(2) by applying the triangle inequality, since:
d(p,R) <d(p,R_1)+d(mr_,(p),7r (p)) (4.4)
<d(p,F-1) +d(7e ,(p),R7r_,(P) - (4.5)

The base case of the inequality: 1, is trivial. Consider the inductive case; here, we are bounding the
distance betweenr, ,(p) andR zg,_,(p). It suffices to bound the distance between these two points in
the subspace orthogonal ®, since the rotatiof® is chosen orthogonal G;. That is,

d(me_, (P).R 76, (p) < d(mg: (75, ()R 7. (7., (D)) - (4.6)

Now, consider the distance between a paiait(nﬁfl(p)) and its rotationR, ﬂ'GiL(ﬂ'FFl(p)). This dis-
tance is maximized WhemnGiL(m:,fl(p))H is maximized, so we have, by construction, that the maxi-
mum value is achieved by;:

d(76. (76, (P).R i (T, (P))) < d(Tgy (r, 4 (P)). Ry (T, (R)) - (47)
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By the triangle inequality we have:

d(7: (7r_, (P1), R g (7R, (1)) < d(7rg (77, (P1)), T (61)) + A (76 (91), R i (7R, (P1))) -
To bound the first terrrd(nGiL(yrplfl(pi)), Tl (gi)), note that

d(7g: (7R, (Pi)), Te (6) < d(7R_,(Pi).Gi) -
We show thatrg,_, (p;) is within a ball of radiusR aroundp;; this implies

d(me_,(pi),6i) < 6 (4.8)

by construction of thé-net aroundp;. We have:
i—2

d(pi, 7R, (Pi) < d(pi,Fo) + S d(mr;(pi), ., (Pi))
=1

i—2
< \/W+ 3 Al ()R, ()
< \/W+26k§ R
pe

The third line uses the induction hypothesis.

Now we bound the second tera,zs. (0i), R mg (7r ,(pi))). Note thatR 7z (7r ,(pi)) is just a
rescaling ofr. (gi) and that]| nG;(nplfl(lp*))H = HR’Ii g (e, (pY))]l, since rotation preserves norms.
The bound on the first term impllies thGil (o)l >l ngﬁ(m:,fl(p*))u -6, s0

d(7g:(9), R e (TR, (i) <6 (4.9)
Combining é.8) and @.9), we have proved4.3). O
Now, we are ready to proveEheoreml.5, which includes the correctness of the algorithm.

Proof of Theoreml.5. Assume that the optimal solution is of value at mBstLet Vy,...,V; be the
optimal subspaces, and [et,...,P; be the partition oP such thaf is the subset of points closest to
Vi. Theoreml.4implies that there exist§ C R of size at mosk + 2k(k+ 1) /e such that there is a
k-dimensional subspad#d in the span of§ with

p;l d(p,W)? < (1+§) p;. d(p,Vi)? < (1+§) B . (4.10)

Considerrspags) (R), the projection of to spart§). We want to apply-emmad.1t0 Zspaqs) (R) and
W with radiusR andé as in the algorithm. Note that the optimal solution is of value at Bpsb we

have that:
T d(p.W)2+28k< Epd(p,vv.)brzakg,/(1+8)B+25k:R. (4.11)
(R) peH 2

PEsparis)
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Let F be the subspace spannedkoyoints from thes-netD; for 75,a45)(P) promised byLemma4. 1
For everyi, we have that:

Y dpRP< Y dpW)?+4ens’1aks Y d(pw)

pe”spams)(Pl) pe”sparisi)(Pl) pe”sparﬁ)(Pl)
c 1/2
< 3 d(p,Wl)2+ZB+4k5 <n d(p,Wl)2>
pe”sparisi)(Pl) ] pe”sparisi)(Pl)
2 €
< 3 dpw?tsB. (4.12)

PETspans) (R)

Now, for any pointp € R, we can decompose the squared distance fpaoF as follows:
d(p, FI)Z = d(ﬂ:sparﬁs)(p)v Fl)z + d(”spar{S)i (p)a F|)2

The same decomposition can be doned‘(m,W.)z. Now, sincel; andW both lie in the span o, we
have the following for any poinp € R: d(nspamS)L(p),F.)z = d(nspamS)L(p),V\/.)z. Applying this to
(4.12 and @.10, we have:

p;d(pﬁ)Zg <l+§> pgnd(p’vi)ZJrzejB '

LetS=J; S. The algorithm will enumerat8in Step2a and it will enumerate the partitic® U---US;

in Step2a In Step2(a)i, the algorithm will, for each, construct a5-netD; for 75,a45)(P). Lastly, in
Step2(a)ii it will consider the subspacés, ..., F; whose existence is proven above. The cost associated
with this solution is:

i ]
LR < 2 - id 2, Ep _
CF R 3 5 dpR S (145) 3 5 dpv)teB= (1B
The number of subsets of sike-- 2k(k+1)/& enumerated by the algorithm is at még.%z ) g

A &-net D with radiusR for a point setQ of dimensiond is implemented by putting a box with side
length R of grid width §/+/d around each point i9. Let X be the set of grid points in the box around
a pointp. The number of subspaces in eathetD,; is therefore at most the number p$ubspaces that

one can choose for a partitida U--- U Tj is (n|X])’k. The computation for projecting points, finding a
basis, and determining the cost of a candidate family of subspaces take3(tiohgk). The cardinality

of X is (for e < 1):
2(k+1)?/e 2(k+1)2/e
2R . /n
IX| = (5/ 2(k+1)2/£> = <O<Jk\/;)> ' (*+.13)

Therefore, the running time of the algorithm is at m@ghd jk) n2i(<+1?/¢ (n|x|)*k = d (g)oul@/s)_ O
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5 Conclusions and subsequent work

Theoreml.4was further improved in][3] to show that for any real matrix, there ex@tk/e + klogk)
rows whose span contains the rows of a multiplicative- €)-approximation to the best rarkmatrix.
Using this subset aD(k/e + klogk) rows, the exponent in the running time of the projective clustering
algorithm decreases fro@( jk®/¢) to O(jk?/¢). It would be interesting to know if we can compute this
set ofO(k/¢e + klogk) rows efficiently in a small number of passes. It would also be nice to see other
applications of volume sampling.

In a recent result, Sarlo84] proved that, using random linear combinations of rows instead of a
subset of rows, we can compute a multiplicatjter €)-approximation using only 2 passes.
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