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Inverting a Permutation is as Hard as
Unordered Search
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Abstract: We show how an algorithm for the problem of inverting a permutation may be
used to design one for the problem of unordered search (with a unique solution). Since
there is a straightforward reduction in the reverse direction, the problems are essentially
equivalent.

The reduction we present helps us bypass the hybrid argument due to Bennett, Bernstein,
Brassard, and Vazirani (1997) and the quantum adversary method due to Ambainis (2002)
that were earlier used to derive lower bounds on the quantum query complexity of the
problem of inverting permutations. It directly implies that the quantum query complexity of
the problem is asymptotically the same as that for unordered search, namely in Θ(

√
n).
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1 Introduction

Let n be a positive integer. The problem PERMUTATIONn of inverting a permutation π on the set [n] =
{1,2, . . . ,n} is defined as follows. Given π in the form of an oracle, and n as input, output “yes” if the
pre-image π−1(1) is even and “no” if it is odd. This is a natural decision version of the problem that
asks us to find π−1(1). A related problem is that of unordered search: Given a function f : [n]→{0,1}
as an oracle, and n as input, output “yes” if f−1(1) is non-empty and “no” otherwise. In other words,
determine if f maps any element i ∈ [n] to 1. In this article, we restrict ourselves to functions f which
map at most one element to 1. As we might expect, these constitute the hardest instances of unordered
search. We refer to the corresponding sub-problem as UNIQUE SEARCHn.

The two problems were originally used by Bennett, Brassard, Bernstein, and Vazirani [2] to
show limitations of quantum computers. The search problem UNIQUE SEARCH was used to show
that relative to a random boolean oracle A, with probability 1, NPA 6⊆ BQPA. The inversion prob-
lem PERMUTATION was similarly used to show that relative to a random permutation oracle A, with
probability 1, NPA∩ co-NPA 6⊆ BQPA. For the first result, Bennett et al. showed that any quantum algo-
rithm for UNIQUE SEARCHn requires Ω(

√
n) queries for a constant probability of error. This involved a

hybrid argument that works for both worst-case error and distributional error under an equal mixture of
uniform distributions over “yes” and “no” instances. The lower bound is matched by the Grover quantum
search algorithm [3], and is therefore optimal. For the second result, Bennett et al. used a nested hybrid
argument and showed that any quantum algorithm for the inversion problem requires Ω( 3

√
n) queries

(for constant probability of error under the uniform distribution). The optimal bound of Ω(
√

n) was
established for worst-case query complexity by Ambainis [1] using the then-newly-minted quantum
adversary method.

An algorithm for unordered search (in fact, for UNIQUE SEARCHn) may be used to solve the inversion
problem PERMUTATIONn in the obvious manner, using at most twice the number of oracle queries.
Namely, we define a boolean function f on [n] such that f (i) = 1 iff π(i) = 1 and i is even. This function
may be evaluated with one classical query to an oracle for π . An additional query is used in the quantum
case to “erase” the answer to the first query (see the discussion regarding quantum queries at the end of
the proof of Theorem 2.1 in Section 2). Therefore the Grover quantum search algorithm [3] solves this
problem with O(

√
n) queries to an oracle for π . We describe a reduction in the reverse direction, i. e.,

we show how any algorithm that solves PERMUTATIONn may be modified to solve UNIQUE SEARCHn/2
when n is even. The intuition behind the reduction comes from a hybrid argument in which we consider
runs of the algorithm on oracles not in its domain. This kind of device has been used in numerous works
on quantum query complexity to great effect.

The reduction we present is randomized and is between distributional versions of the problems, with
equal weight on “yes” and “no” instances, and with uniform conditional distributions for each kind of
instance. Due to the inherent symmetry in the two problems under consideration, the distributional and
worst-case versions of the problems are, in fact, equivalent in query complexity (for the distributions
described above; see Lemma 2.2 and the discussion following it). Thus, we are also able to derive an
algorithm for UNIQUE SEARCHn/2 with a bound on its worst-case error.

Let µn denote the distribution obtained by taking an equal mixture of the sole “no” instance and the
uniform distribution over “yes” instances of UNIQUE SEARCHn.

THEORY OF COMPUTING, Volume 7 (2011), pp. 19–25 20

http://dx.doi.org/10.4086/toc


INVERTING A PERMUTATION IS AS HARD AS UNORDERED SEARCH

Theorem 1.1. Let n be an even positive integer. Let A be an algorithm (classical or quantum) that
solves PERMUTATIONn with distributional error at most ε < 1/2 on the uniform distribution over
permutations on [n], with q queries to the permutation oracle. Then there is an algorithm of the
same kind as A (classical or quantum) with distributional error at most (1+ 2ε)/4 with respect to
the distribution µn/2, that solves UNIQUE SEARCHn/2 with at most q queries to the search oracle in
the classical case, and at most 2q queries in the quantum case. Moreover, this may be modified to an
algorithm for UNIQUE SEARCHn/2 with worst-case error at most 1/(3−2ε)< 1/2 and with the same
query complexity.

We emphasize that the reduction uses only the knowledge of a bound ε on the distributional error of A,
and not its precise value. An algorithm for PERMUTATIONn for n > 2 with distributional error at most ε

on the uniform distribution may be used to solve PERMUTATIONn−1 with the same query complexity and
distributional error at most ε +1/2n on the uniform distribution (see the discussion after Lemma 2.2). So
a reduction similar to the one in the theorem above exists for odd n as well.

Any quantum algorithm for UNIQUE SEARCHn/2 with constant probability of error < 1/2 with
respect to µn/2 requires Ω(

√
n) queries [2]. Theorem 1.1 therefore implies a similar lower bound for

quantum algorithms for PERMUTATIONn, and an Ω(n) query lower bound for classical algorithms for the
problem. (The lower bound of Ω(n) for PERMUTATIONn in the classical case is straightforward to prove
directly.)

Corollary 1.2. Any quantum algorithm that solves PERMUTATIONn (for any integer n > 1) with constant
distributional error ε < 1/2 on the uniform distribution over permutations on [n] requires Ω(

√
n) queries.

Consequently, the same query lower bound holds for algorithms for PERMUTATIONn with worst-case
error at most ε .

Naturally, Theorem 1.1 and Corollary 1.2 both also hold for any quantum algorithm for the search
version of PERMUTATIONn with the same kind of error bound as in the statements above.

The reduction we present bypasses the hybrid argument due to Bennett, Bernstein, Brassard, and
Vazirani [2] and the quantum adversary method due to Ambainis [1], and shows a direct connection
between inversion and search. The hybrid argument underlying the reduction was discovered in 2004 and
communicated informally to a few people. The reduction is written up here for wider dissemination.

2 The reduction

We start by fixing some notation and making preliminary observations. Then we sketch a hybrid argument
which paves the way for the reduction (Theorem 2.1). Lemma 2.2 derives a worst-case algorithm for
UNIQUE SEARCHn from an average-case algorithm, and together with Theorem 2.1 implies Theorem 1.1.
We finish by sketching how Theorem 1.1 extends to odd n.

Let n be any positive integer. Define the following sets of “no” and “yes” instances of PERMUTATIONn:

P0 =
{

π : π is a permutation on [n], π
−1(1) is odd

}
, and

P1 =
{

π : π is a permutation on [n], π
−1(1) is even

}
.
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We also consider oracles that compute functions h : [n]→ [n] with a unique collision at 1, with one odd
and one even number in the colliding pair. In other words, these functions h are such that there are
precisely two distinct elements i, j with the same image under h. Moreover, h(i) = h( j) = 1, and precisely
one of i, j is odd (and the other is even). Let Q denote the set of all such functions.

Consider any fixed permutation π on [n]. Consider also the functions in Q that differ from π

in exactly one point. These are functions h with a unique collision such that the collision is at 1,
and

∣∣π−1(1)∩h−1(1)
∣∣ = 1. If π ∈ P0, then the even element that is also mapped to 1 by h is precisely

the one on which π and h differ. Similarly, if π ∈ P1, then the odd element that is also mapped to 1 by h
is precisely the one on which π and h differ. Let Qπ denote the set of such functions h. If we pick a
uniformly random permutation π ∈ P0, and then pick a uniformly random function h in Qπ , then h is
uniformly random in Q. The same holds if we switch P0 with P1.

Given a permutation π on [n] with n even, and a function f : [n/2]→{0,1}, we define a function hπ, f :
[n]→ [n] as follows. If π ∈ P0, for any i ∈ [n],

hπ, f (i) =

{
1 if i is even and f (i/2) = 1,
π(i) if (i is odd) or (i is even and f (i/2) = 0).

(1)

If π ∈ P1, for any i ∈ [n],

hπ, f (i) =

{
1 if (i is odd) and f ((i+1)/2) = 1,
π(i) if (i is even) or (i is odd and f ((i+1)/2) = 0).

(2)

The function hπ, f coincides with π if f−1(1) is empty and belongs to Qπ otherwise.
We make use of the above properties of P0,P1,Q,Qπ and hπ, f in our reduction.
The essential idea behind our reduction is that any algorithm that distinguishes a uniformly random

permutation in P0 from a uniformly random one in P1 necessarily distinguishes a random permutation
from Pi from a uniformly random unique-collision function in Q, for at least one i ∈ {0,1}. Suppose
that i = 0. Using convexity, we may further deduce that such an algorithm also distinguishes the
permutation π ∈ P0 from a uniformly random unique-collision function h ∈ Qπ , for at least one π . Since
any function h ∈ Qπ differs from π in exactly one of n/2 points when n is even, this final problem is
equivalent to the problem of unique unordered search over a domain of size n/2. The above hybrid
argument suffices to prove a query lower bound for PERMUTATIONn, but is not entirely satisfactory
because it corresponds to a non-uniform reduction. (A priori, we do not know which i ∈ {0,1} and
which π ∈ Pi would give us a correct algorithm for UNIQUE SEARCHn/2.) We may however glean a
reduction in the uniform sense from this argument. The idea is to replace the choices made on the basis
of existential arguments by randomized ones. We therefore try distinguishing a uniformly random π ∈ P0
from a uniformly random hπ, f ∈ Qπ , and similarly with a uniformly random permutation from P1, with
equal probability. At least one of these probabilistic attempts succeeds, and gives us a bounded-error
algorithm.

Recall that µn is the distribution which assigns probability 1/2 to the constant function 0, and
probability 1/2n to each of the “yes” instances of UNIQUE SEARCHn. Let µ1

n be the uniform distribution
on “yes” instances alone, and let µ0

n be the analogue for the lone “no” instance.
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Theorem 2.1. Let n be an even positive integer. Let A be an algorithm (classical or quantum) that
solves PERMUTATIONn with distributional error at most ε < 1/2 on the uniform distribution over permu-
tations on [n], with q queries to the permutation oracle. Then there is an algorithm of the same kind as A
with distributional error at most (1+2ε)/4 < 1/2 with respect to µn/2 that solves UNIQUE SEARCHn/2
with at most q queries to the search oracle in the classical case, and at most 2q queries in the quantum
case. Moreover, its error probability on an input drawn from µ0

n/2 is at most ε and that for µ1
n/2 is 1/2.

Proof. Suppose we are given an algorithm A as in the statement of the theorem that takes as input an
even integer n≥ 1, and an oracle g : [n]→ [n]. Let f be an input oracle for UNIQUE SEARCHn/2. Recall
the definition of the function hπ, f : [n]→ [n], where π is a permutation on [n], as in Eqs. (1) and (2). The
following reduction B solves UNIQUE SEARCHn/2 with distributional error as claimed:

With probability 1
2 , pick a uniformly random permutation π ∈ P0, output A(n,hπ, f ) and stop.

With probability 1
2 , pick a uniformly random permutation π ∈ P1, output ¬A(n,hπ, f ) and

stop.

We may calculate the probability of error of the algorithm B by considering “yes” and “no” instances
separately. The output of B on the lone “no” instance of UNIQUE SEARCHn/2 is{

A(n,π) with probability 1
2 , for a uniformly random π ∈ P0, and

¬A(n,π) with probability 1
2 , for a uniformly random π ∈ P1.

Let ε0 be the probability of error of A on a uniformly random oracle from P0, and let ε1 be the corre-
sponding quantity for P1. We have ε0 + ε1 ≤ 2ε . The probability of error of B on the “no” instance is
thus bounded by (ε0 + ε1)/2≤ ε .

The output of B on a uniformly random “yes” instance of UNIQUE SEARCHn/2 is{
A(n,h) with probability 1

2 , for a uniformly random h ∈ Q, and
¬A(n,h) with probability 1

2 , for a uniformly random h ∈ Q.

If p denotes the probability that the output A(n,h) is “no” for a uniformly random h ∈ Q, the probability
of error of B on a uniformly random “yes” instance of UNIQUE SEARCHn/2 is p/2+(1− p)/2 = 1/2.

Since π is known explicitly in the algorithm B, the function hπ, f can be evaluated with at most one
query to f in the classical case. In the quantum case, the situation is not as straightforward. Data in
quantum memory generated during computations may prevent the quantum interference necessary for
correct working of an algorithm. This may be the case with the answers to oracle queries to f that are
used to compute hπ, f . It is therefore important to simulate queries to hπ, f cleanly, i. e., without modifying
any part of the workspace except the answer register. With a standard implementation of the oracle to f as
a unitary operator, a query to hπ, f can be simulated cleanly by using two queries (see [2, Section 4] or [4,
Section 1.5]). We note that by working with a different implementation of the oracle for f , it is possible
to simulate a query to hπ, f cleanly with only one query. As this leads to only a minor improvement in our
reduction, we omit the details.
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Any algorithm with worst-case error ε implies an algorithm with distributional error ε with respect
to any distribution. We point out that UNIQUE SEARCH and PERMUTATION both admit random self-
reductions, so the average-case algorithm described in Theorem 2.1 implies the worst-case algorithm
claimed in Theorem 1.1.

Lemma 2.2. Suppose B is an algorithm for UNIQUE SEARCHn with distributional error at most ε1
on distribution µ1

n , and at most ε0 on µ0
n such that ε0 + ε1 < 1. Then, there is an algorithm for

UNIQUE SEARCHn that makes the same number of queries as B, and has worst-case error at most

ε =
max{ε0,ε1}
1+ |ε0− ε1|

<
1
2
.

Proof. Composing a function f : [n]→ {0,1} with a permutation σ on [n] preserves the “yes” and the
“no” instances of UNIQUE SEARCHn. Consider the algorithm Bsym:

Pick a uniformly random permutation σ on [n], and then return the value given by the
algorithm B with every oracle query i ∈ [n] replaced by a query to σ(i).

Effectively, any single instance of UNIQUE SEARCHn is mapped to a uniformly random instance with the
same answer. So the worst-case error on the “no” instance is at most ε0, and on any “yes” instance is at
most ε1.

It only remains to equalize the bounds on error on the two kinds of instance, and this may be
accomplished by a standard modification: depending on whether ε0 < ε1 or not, we accept or reject with
some probability p, and run the algorithm Bsym with probability 1− p. The choice of

p =
|ε1− ε0|

1+ |ε1− ε0|

gives us the claimed error bound.

There is a similar randomized self-reduction for PERMUTATIONn. Let ω,σ be uniformly random
permutations on [n] such that ω maps 1 to itself, and σ permutes odd integers among themselves and even
integers among themselves. Then for any permutation π on [n], the composition ω ◦π ◦σ is uniformly
distributed in P1 if π is a “yes” instance, and in P0 if it is a “no” instance. Therefore, an algorithm A for
PERMUTATIONn with distributional error at most ε1,ε0 on uniformly random “yes” and “no” instances,
respectively, leads to a worst-case algorithm which makes error at most ε1 on any “yes” instance and at
most ε0 on any “no” instance. When n is even, the distributional error of A on the uniform distribution is
at most ε = (ε0 + ε1)/2 and when n is odd, it is at most

ε =
(1+1/n)ε0 +(1−1/n)ε1

2
.

We may now rebalance the bound on error in the two kinds of instance to obtain a worst-case algorithm.
The self-reduction also allows us to use an algorithm A for PERMUTATIONn to solve PERMUTATIONn−1
as claimed in Section 1. We first symmetrize the algorithm A through the self-reduction, and then run it
on the extension of the input permutation π on [n−1] obtained by defining π(n) = n.
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