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property. We give almost tight upper and lower bounds for this testing problem, as well as
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1 Introduction

In recent years, several works have investigated the problem of testing various properties of data that is
most naturally thought of as samples of an unknown distribution. More specifically, the goal in testing a
specific property is to distinguish the case that the samples come from a distribution that has the property
from the case that the samples come from a distribution that is far (usually in terms of `1 norm, but
other norms have been studied as well) from any distribution that has the property. To give just a few
examples, such tasks include testing whether a distribution is uniform [25, 39] or similar to another known
distribution [12], and testing whether a joint distribution is independent [10]. Related tasks concern
sublinear estimation of various measures of a distribution, such as its entropy [9, 26] or its support
size [41]. Recently, general techniques have been designed to obtain nearly tight lower bounds on such
testing and estimation problems [48, 47].

These types of questions have arisen in several disparate areas, including physics [33, 45, 36],
cryptography and pseudorandom number generation [31], statistics [19, 27, 50, 38, 39, 37], learning
theory [51], property testing of graphs and sequences (e. g., [25, 20, 30, 35, 40, 23]) and streaming
algorithms (e. g., [4, 21, 24, 26, 18, 17, 7, 28, 15, 16, 14, 29]). In these works, there has been significant
focus on properties of distributions over very large domains, where standard statistical techniques based
on learning an approximation of the distribution may be very inefficient.

In this work we consider the setting in which one receives data which is most naturally thought of
as samples of several distributions, for example, when studying purchase patterns in several geographic
locations, or the behavior of linguistic data among varied text sources. Such data could also be generated
when samples of the distributions come from various sensors that are each part of a large sensor-net. In
these examples, it may be reasonable to assume that the number of such distributions might be quite large,
even on the order of a thousand or more. However, for the most part, previous research has considered
properties of at most two distributions [11, 48]. We propose new models of property testing that apply to
properties of several distributions. We then consider the complexity of testing properties within these
models, beginning with properties that we view as basic and expect to be useful in constructing building
blocks for future work. We focus on quantifying the dependence of the sample complexities of the testing
algorithms in terms of the number of distributions that are being considered, as well as the size of the
domain of the distributions.

1.1 Our contributions

1.1.1 The models

We begin by proposing two models that describe possible access patterns to multiple distributions
D1, . . . ,Dm over the same domain [n]. In these models there is no explicit description of the distribution –
the algorithm is only given access to the distributions via independent samples. In the first model, referred
to as the sampling model, at each time step, the algorithm receives a pair of the form (i, j) where i is
selected uniformly in [m] and j ∈ [n] is distributed according to Di. In the second model, referred to
as the query model, at each time step, the algorithm is allowed to specify i ∈ [m] and receives j that is
distributed according to Di. It is immediate that any algorithm in the sampling model can also be used
in the query model. On the other hand, as is implied by our results, there are property testing problems
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which have a significantly larger sample complexity in the sampling model than in the query model.
In both models the task is to distinguish between the case that the tested distributions have the property

and the case that they are ε-far from having the property, for a given distance parameter ε . Distance to the
property is measured in terms of the average `1-distance between the tested distributions and the closest
collection of distributions that have the property. The `1-distance between two probability distributions
D1,D2 over domain [n],

‖D1,D2‖1 = ∑
i∈[n]
|D1(i)−D2(i)| ,

is perhaps the most standard measure of distance between distributions, as it measures the maximum
difference between the probability of any event (i. e., set S⊆ [n]) occurring according to one distribution
as compared to the other distribution. In other words, if the distance is small, then the distributions
are essentially indistinguishable in terms of their behavior. In all of our results, the dependence of the
algorithms on the distance parameter ε is (inverse) polynomial. Hence, for the sake of succinctness,
in all that follows we do not mention this dependence explicitly. We also consider an extension to the
sampling model in which the distribution over distributions (that is, the distribution of the index i) is
non-uniform (i. e., is determined by a weight wi) and the distance measure is adapted accordingly (see in
the preliminaries section for details).

1.1.2 Testing equivalence in the sampling model

One of the first properties of distributions studied in the property testing model is that of determining
whether two distributions over domain [n] are identical (alternatively, very close) or far (according to the
`1-distance). In [12], an algorithm is given that uses Õ(n2/3) samples1 and distinguishes between the case
that the two distributions are ε-far and the case that they are O(ε/

√
n)-close. This algorithm has been

shown to be nearly tight (in terms of the dependence on n) by Valiant [47]. Valiant also shows that in
order to distinguish between the case that the distributions are ε-far and the case that they are β -close, for
two constants ε and β , requires almost linear dependence on n.

Our main focus is on a natural generalization, which we refer to as the equivalence property of
distributions D1, . . . ,Dm, in which the goal of the tester is to distinguish the case in which all distributions
are the same (or, slightly more generally, that there is a distribution D∗ for which (1/m)∑

m
i=1 ‖Di−D∗‖1≤

poly(ε)/
√

n), from the case in which there is no distribution D∗ for which (1/m)∑
m
i=1 ‖Di−D∗‖1 ≤ ε .

To solve this problem in the (uniform) sampling model with sample complexity Õ(n2/3m) (which ensures
with high probability that each distribution is sampled Ω̃(n2/3 logm) times), one can make m−1 calls to
the algorithm of [12] to check that every distribution is close to D1.

Our algorithms We show that one can get a better sample complexity dependence on m. Specifically,
we give two algorithms, one with sample complexity Õ(n2/3m1/3 + m) and the other with sample
complexity Õ(n1/2m1/2 +n). The first result in fact holds for the case that for each sample pair (i, j), the
distribution Di (which generated j) is not selected necessarily uniformly, and furthermore, it is unknown
according to what weight it is selected. The second result holds for the case where the selection is

1For a function f over t ≥ 1 variables n1, . . . ,nt we use Õ( f (n1, . . . ,nt)) as a shorthand for O( f (n1, . . . ,nt) logk f (n1, . . . ,nt))
for some constant k.
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non-uniform, but the weights are known. Moreover, the second result extends to the case in which it is
desired that the tester pass distributions that are close for each element, to within a multiplicative factor of
(1± ε/c) for some constant c > 1, and for sufficiently large frequencies. Thus, starting from the known
result for m = 2, as long as n≥ m, the complexity grows as Õ(n2/3m1/3 +m) = Õ(n2/3m1/3), and once
m ≥ n, the complexity is Õ(n1/2m1/2 + n) = Õ(n1/2m1/2) (which is lower than the former expression
when m≥ n).

Both of our algorithms build on the close relation between testing equivalence and testing indepen-
dence of a joint distribution over [m]× [n] which was studied in [10]. The Õ(n2/3m1/3 +m) algorithm
follows from [10] after we fill in a certain gap in the analysis of their algorithm due to an imprecision of a
claim given in [11]. The Õ(n1/2m1/2 +n) algorithm exploits the fact that i is selected uniformly (or, more
generally, according to a known weight wi) to improve on the Õ(n2/3m1/3 +m) algorithm (in the case
that m≥ n).

Almost matching lower bounds We show that the behavior of the upper bound on the sample complex-
ity of the problem is not just an artifact of our algorithms, but rather (almost) captures the complexity of the
problem. Indeed, we are able to give almost matching lower bounds of Ω(n2/3m1/3) for n = Ω(m logm)
and Ω(n1/2m1/2) (for every n and m). The latter lower bound can be viewed as a generalization of a lower
bound given in [12], but the analysis is somewhat more subtle.

Our lower bound of Ω(n2/3m1/3) consists of two parts. The first is a general theorem concerning
testing symmetric properties of collections of distributions. This theorem extends a central lemma of
Valiant [47] on which he builds his lower bounds, and in particular the lower bound of Ω(n2/3) for testing
whether two distributions are identical or far from each other (i. e., the case of equivalence for m = 2).
The second part is a construction of two collections of distributions to which the theorem is applied
(where the construction is based on the one proposed in [10] for testing independence). As in [47], the
lower bound is shown by focusing on the similarity between the typical collision statistics of a family
of collections of distributions that have the property and a family of collections of distributions that are
far from having the property. However, since many more types of collisions are expected to occur in the
case of collections of distributions, our proof outline is more intricate and requires new ways of upper
bounding the probabilities of certain types of events.

1.1.3 Testing clusterability in the query model

The second property that we consider is a natural generalization of the equivalence property. The question
we ask is whether the distributions can be partitioned into at most k subsets (clusters), such that within
every cluster the distance between every two distributions is (very) small. We study this property in the
query model, and give an algorithm whose complexity does not depend on the number of distributions
and for which the dependence on n is Õ(n2/3). The dependence on k is almost linear. The algorithms
works by combining the diameter clustering algorithm of [3] (for points in a general metric space where
the algorithm has access to the corresponding distance matrix) with the tester for equivalence of a pair of
distributions of [12]. We observe that the above-mentioned lower bound of Ω(n2/3) in [47] for testing
equivalence of a pair of distributions implies that sample complexity of Õ(n2/3) for the clustering problem
is tight to within polylogarithmic factors in n, for constant k. This is true because one can reduce testing
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equivalence of a pair of distributions to testing clusterability for a constant number of clusters.2

1.1.4 Implications of our results

As noted previously, in the course of proving the lower bound of Ω(n2/3m1/3) for the equivalence property,
we prove a general theorem concerning testability of symmetric properties of collections of distributions
(which extends a lemma in [47]). This theorem may have applications to proving other lower bounds
on collections of distributions. Further byproducts of our research regard the sample complexity of
testing whether a joint distribution is independent. More precisely, the following question is considered
in [10]: Let Q be a distribution over pairs of elements drawn from [m]× [n] (without loss of generality,
assume n≥ m); what is the sample complexity in terms of m and n required to distinguish independent
joint distributions, from those that are far from the nearest independent joint distribution (in term of `1
distance)? The lower bound claimed in [10], contains a known gap in the proof. Similar gaps in the
lower bounds of [12] for testing the equivalence of a pair of distributions and of [9] for estimating the
entropy of a distribution were settled by the work of [47], which applies to symmetric properties. Since
independence is not a symmetric property, the work of [47] cannot be directly applied here. In this
work, we show that the lower bound of Ω(n2/3m1/3) indeed holds. Furthermore, by the aforementioned
correction of the upper bound of Õ(n2/3m1/3) from [10], we get nearly tight bounds on the complexity of
testing independence.

1.2 Other related work

Other works on testing and estimating properties of (single or pairs of) distributions include [8, 26, 13,
43, 2, 44, 6, 1, 5].

1.3 Open problems and further research

There are several possible directions for further research on testing properties of collections of distribu-
tions, and we next give a few examples. One natural extension of our results is to give algorithms for
testing the property of clusterability for k > 1 in the sampling model. One may also consider testing
properties of collections of distributions that are defined by certain measures of distributions, and may
be less sensitive to the exact form of the distributions. For example, a very basic measure is the mean
(expected value) of the distribution, when we view the domain [n] as integers instead of element names, or
when we consider other domains. Given this measure, we may consider testing whether the distributions
all have similar means (or whether they should be modified significantly so that this holds). It is not hard
to verify that this property can be quite easily tested in the query model by selecting Θ(1/ε) distributions
uniformly and estimating the mean of each. On the other hand, in the sampling model an Ω(

√
m) lower

2Consider the following reduction. Let D∗1 and D∗2 be a pair of distributions over [n] that we wish to test. We wish to accept
if D∗1 = D∗2 and to reject if ‖D∗1−D∗2‖1 > ε . Let D be a collection of m distributions over domain [2n] such that an ε-fraction of
the distributions are identical to D∗1 and an ε-fraction are identical to D∗2. We select the remaining t = (1−2ε)m distribution,
denoted by D1, . . . ,Dt , so that they have the following properties. First, the support of each is (a subset of) [n+1, . . . ,2n] (so
that it is disjoint from the support of D∗1 and D∗2). Second, the collection {D1, . . .Dt} is (k−1,0)-clusterable (see Definition 7.1)
and ε/(1−2ε)-far from being (k−2,0)-clusterable. The reduction follows from the fact that D is (k,0)-clusterable if and only
if D∗1 = D∗2 and ε-far from being (k,0)-clusterable if and only if ‖D∗1 = D∗2‖1 > ε .
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bound is quite immediate even for n = 2 (and a constant ε). We are currently investigating whether
the complexity of this problem (in the sampling model) is in fact higher, and it would be interesting to
consider other measures as well.

1.4 Organization

We start by providing notation and definitions in Section 2. In Section 3 we give the lower bound
of Ω(n2/3m1/3) for testing equivalence in the uniform sampling model, which is the main technical
contribution of this paper. In Section 4 we give our second lower bound (of Ω(n1/2m1/2)) for testing
equivalence and our algorithms for the problem follow in Sections 5 and 6. We conclude with our
algorithm for testing clusterability in the query model in Section 7.

2 Preliminaries

Let [n] def
= {1, . . . ,n}, and let D = (D1, . . . ,Dm) be a list of m distributions, where Di : [n]→ [0,1] and

∑
n
j=1 Di( j) = 1 for every 1≤ i≤ m. For a vector v = (v1, . . . ,vn) ∈ Rn, let ‖v‖1 = ∑

n
i=1 |vi| denote the `1

norm of the vector v.
For a property P of lists of distributions and 0 ≤ ε ≤ 1, we say that D is ε-far from (having) P

if (1/m)∑
m
i=1 ‖Di−D∗i ‖1 > ε for every list D∗ = (D∗1, . . . ,D

∗
m) that has the property P. Note that the

statistical distance (also known as the total variation distance) between two discrete distributions, D and
D∗ over [n], that is, maxS⊆[n] |∑i∈S D(i)−∑i∈S D∗(i)|, equals ‖D−D∗‖1/2.

Given a distance parameter ε , a testing algorithm for a property P should distinguish between the
case that D has the property P and the case that it is ε-far from P. We consider two models within which
this task is performed.

The Query Model In this model the testing algorithm may indicate an index 1≤ i≤ m of its choice and
it gets an independent sample j distributed according to Di.

The Sampling Model In this model the algorithm cannot select (“query”) a distribution of its choice.
Rather, it may obtain a pair (i, j) where i is selected uniformly (we refer to this as the Uniform
sampling model) and j is an independent sample distributed according to Di.

We also consider a generalization in which there is an underlying weight vector w = (w1, . . . ,wm)
(where ∑

m
i=1 wi = 1), and the distribution Di is selected according to w. In this case the notion of

“ε-far” needs to be modified accordingly. We shall say that D is ε-far from P with respect to w if
∑

m
i=1 wi · ‖Di−D∗i ‖1 > ε for every list D∗ = (D∗1, . . . ,D

∗
m) that has the property P.

We consider two variants of this non-uniform model: The known-weights sampling model, in which
w is known to the algorithm, and the unknown-weights sampling model in which w is known.

A main focus of this work is on the following property. We shall say that a list D= (D1 . . .Dm) of m
distributions over [n] belongs to P

eq
m,n (or has the property P

eq
m,n) if Di = Di′ for all 1≤ i, i′ ≤ m.
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3 A lower bound for testing equivalence in the uniform sampling model

In this section we prove the following theorem:

Theorem 3.1. Any testing algorithm for the property P
eq
m,n in the uniform sampling model for every

ε ≤ 1/20 and for n > cm logm where c is some sufficiently large constant, requires Ω(n2/3m1/3) samples.

The proof of Theorem 3.1 consists of two parts. The first is a general theorem (Theorem 3.5)
concerning testing symmetric properties of lists of distributions. This theorem extends a lemma of
Valiant [47, Lem. 4.5.4] (which leads to what Valiant refers to as the “Wishful Thinking Theorem”). The
second part is a construction of two lists of distributions to which Theorem 3.5 is applied. Our analysis
uses a technique called Poissonization [46] (which was used in the past in the context of lower bounds
for testing and estimating properties of distributions in [41, 48, 47]), and hence we first introduce some
preliminaries concerning Poisson distributions. We later provide some intuition regarding the benefits of
Poissonization.

3.1 Preliminaries concerning Poisson distributions

For a positive real number λ , the Poisson distribution poi(λ ) takes the value x ∈ N (where N =
{0,1,2, . . .}) with probability poi(x;λ ) = e−λ λ x/x!. The expectation and variance of poi(λ ) are both λ .
For λ1 and λ2 we shall use the following bound on the `1 distance between the corresponding Poisson
distributions (for a proof see for example [41, Claim A.2]):

‖poi(λ1)−poi(λ2)‖1 ≤ 2|λ1−λ2| . (3.1)

For a vector ~λ = (λ1, . . . ,λd) of positive real numbers, the corresponding multivariate Poisson
distribution poi(~λ ) is the product distribution poi(λ1)×·· ·×poi(λd). That is, poi(~λ ) assigns each vector
~x = x1 . . . ,xd ∈ Nd the probability ∏

d
i=1 poi(xi;λi).

We shall sometimes consider vectors~λ whose coordinates are indexed by vectors~a = (a1, . . . ,am) ∈
Nm, and will use~λ (~a) to denote the coordinate of~λ that corresponds to~a. Thus, poi(~λ (~a)) is a univariate
Poisson distribution. With a slight abuse of notation, for a subset I ⊆ [d] (or I ⊆ Nm), we let poi(~λ (I))
denote the multivariate Poisson distributions restricted to the coordinates of~λ in I.

For any two d-dimensional vectors~λ+ = (λ+
1 , . . . ,λ+

d ) and~λ−= (λ−1 , . . . ,λ−d ) of positive real values,
we get from the proof of [47, Lemma 4.5.3] that∥∥∥poi(~λ+)−poi(~λ−)

∥∥∥
1
≤

d

∑
j=1

∥∥∥poi(λ+
j )−poi(λ−j )

∥∥∥
1
. (3.2)

For our purposes we generalize equation (3.2) in the following lemma.

Lemma 3.2. For any two d-dimensional vectors~λ+ = (λ+
1 , . . . ,λ+

d ) and~λ− = (λ−1 , . . . ,λ−d ) of positive
real values, and for any partition {Ii}`i=1 of [d],∥∥∥poi(~λ+)−poi(~λ−)

∥∥∥
1
≤

`

∑
i=1

∥∥∥poi(~λ+(Ii))−poi(~λ−(Ii))
∥∥∥

1
. (3.3)
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Proof. Let {Ii}`i=1 be a partition of [d], let~i denote (i1, . . . id), by the triangle inequality we have that for
every k ∈ [`],∣∣∣poi(~i ;~λ+)−poi(~i ;~λ−)

∣∣∣ =
∣∣∣ ∏

j∈[d]
poi(i j;λ

+
j )− ∏

j∈[d]
poi(i j;λ

−
j )
∣∣∣ (3.4)

≤
∣∣∣ ∏

j∈[d]
poi(i j;λ

+
j )− ∏

j∈[d]\Ik

poi(i j;λ
+
j )∏

j∈Ik

poi(i j;λ
−
j )
∣∣∣ (3.5)

+
∣∣∣ ∏

j∈[d]\Ik

poi(i j;λ
+
j )∏

j∈Ik

poi(i j;λ
−
j )− ∏

j∈[d]
poi(i j;λ

−
j )
∣∣∣ . (3.6)

Hence, we obtain that∥∥∥poi(~λ+)−poi(~λ−)
∥∥∥

1
= ∑

~i∈Nd

∣∣∣poi(~i ;~λ+)−poi(~i ;~λ−)
∣∣∣ (3.7)

≤
∥∥∥poi(~λ+(Ik))−poi(~λ−(Ik))

∥∥∥
1

(3.8)

+
∥∥∥poi(~λ+([d]\ Ik))−poi(~λ−([d]\ Ik))

∥∥∥
1
. (3.9)

Thus, the lemma follows by induction on `.

We shall also make use of the following lemma.

Lemma 3.3. For any two d-dimensional vectors~λ+ = (λ+
1 , . . . ,λ+

d ) and~λ− = (λ−1 , . . . ,λ−d ) of positive
real values,

∥∥∥poi(~λ+)−poi(~λ−)
∥∥∥

1
≤ 2

√√√√2
d

∑
j=1

(λ−j −λ
+
j )

2

λ
−
j

. (3.10)

Proof. In order to prove the lemma we shall use the KL-divergence between distributions. For two
distributions p1 and p2 over a domain X , we set

DKL(p1‖ p2)
def
= ∑

x∈X
p1(x) · ln

p1(x)
p2(x)

.

Let~λ+ = (λ+
1 . . . ,λ+

d ),~λ− = (λ−1 . . . ,λ−d ) and let~i denote (i1, . . . id). We have that

ln
poi(~i ;~λ+)

poi(~i ;~λ−)
=

d

∑
j=1

ln
(

eλ
−
j −λ

+
j

(
λ
+
j /λ

−
j

)i j
)

(3.11)

=
d

∑
j=1

(
(λ−j −λ

+
j )+ i j · ln(λ+

j /λ
−
j )
)

(3.12)

≤
d

∑
j=1

(
(λ−j −λ

+
j )+ i j · (λ+

j /λ
−
j −1)

)
, (3.13)
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where in the last inequality we used the fact that lnx≤ x−1 for every x > 0. Therefore, we obtain that

DKL

(
poi(~λ+)‖poi(~λ−)

)
= ∑

~i∈Nd

poi(~i ;~λ+) · ln poi(~i ;~λ+)

poi(~i ;~λ−)
(3.14)

≤
d

∑
j=1

(
(λ−j −λ

+
j )+λ

+
j · (λ

+
j /λ

−
j −1)

)
(3.15)

=
d

∑
j=1

(λ−j −λ
+
j )

2

λ
−
j

, (3.16)

where in equation (3.15) we used the facts that ∑i∈N poi(i;λ ) = 1 and ∑i∈N poi(i;λ ) · i = λ . The `1
distance is related to the KL-divergence by

‖D−D′‖1 ≤ 2
√

2DKL (D‖D′)

and thus we obtain the lemma.

The next lemma bounds the probability that a Poisson random variable is significantly smaller than its
expected value.

Lemma 3.4. Let X ∼ poi(λ ), then,

Pr[X < λ/2]< (3/4)λ/4 . (3.17)

Proof. Consider the matching between j and j+λ/2 for every j = 0, . . . ,λ/2−1. We consider the ratio
between poi( j;λ ) and poi( j+λ/2;λ ):

poi( j+λ/2;λ )

poi( j;λ )
=

e−λ ·λ j+λ/2/( j+λ/2)!
e−λ ·λ j/ j!

(3.18)

=
λ λ/2

( j+λ/2)( j+λ/2−1) · · ·( j+1)
(3.19)

=
λ

j+λ/2
· λ

j+λ/2−1
· · · λ

j+1
(3.20)

≥ λ

λ −1
· λ

λ −2
· · · λ

λ/2
(3.21)

>

(
λ

(3/4)λ

)λ/4

(3.22)

= (4/3)λ/4 . (3.23)

This implies that

Pr[X < λ/2] =
Pr[X < λ/2]

Pr[λ/2≤ X < λ ]
·Pr[λ/2≤ X < λ ] (3.24)

<
Pr[X < λ/2]

Pr[λ/2≤ X < λ ]
(3.25)

< (3/4)λ/4 , (3.26)
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and the proof is completed.

The next two notations will play an important technical role in our analysis. For a list of distributions
D= (D1 . . .Dm), an integer κ and a vector~a = (a1, . . . ,am) ∈ Nm, let

pD,κ( j;~a) def
=

m

∏
i=1

poi(ai;κ ·Di( j)) . (3.27)

That is, for a fixed choice of a domain element j ∈ [n], consider performing m independent trials, one for
each distribution Di, where in trial i we select a non-negative integer according to the Poisson distribution
poi(λ ) for λ = κ ·Di( j). Then pD,κ( j;~a) is the probability of the joint event that we get an outcome of
ai in trial i, for each i ∈ [m]. Let~λD,κ be a vector whose coordinates are indexed by all~a ∈ Nm, such that

~λD,κ(~a) =
n

∑
j=1

pD,κ( j;~a) . (3.28)

That is,~λD,κ(~a) is the expected number of times we get the joint outcome (a1, . . . ,am) if we perform the
probabilistic process defined above independently for every j ∈ [n]. In the next subsection we show that
the quantity~λD,κ(~a) characterizes the view of the tester, provided that it tests a symmetric property, and
thus a lower bound can be proved via a construction of two instances of collections that agree on this
quantity while one instance has the property and the other is far from having the property.

3.2 Testability of symmetric properties of lists of distributions

In this subsection we prove the following theorem (which is used to prove Theorem 3.1).

Theorem 3.5. Let D+ and D− be two lists of m distributions over [n], all of whose frequencies are at
most δ

κ·m where κ is some positive integer and 0 < δ ≤ 1/2. If∥∥∥poi
(
~λD+,κ

)
−poi

(
~λD−,κ

)∥∥∥
1
<

31
60
− 352δ

5
, (3.29)

then testing in the uniform sampling model any symmetric property of distributions such that D+ has the
property, while D− is Ω(1)-far from having the property requires Ω(κ ·m) samples.

A high-level discussion of the proof of Theorem 3.5 For an element j ∈ [n] and a distribution Di,
i ∈ [m], let αi, j be the number of times the pair (i, j) appears in the sample (when the sample is selected
according to some sampling model). Thus (α1, j, . . . ,αm, j) is the sample histogram of the element j. The
histogram of the elements’ histograms is called the fingerprint of the sample. That is, the fingerprint
indicates, for every~a ∈ Nm, the number of elements j such that (α1, j, . . . ,αm, j) =~a. As shown in [12],
when testing symmetric properties of distributions, it can be assumed without loss of generality that the
testing algorithm is provided only with the fingerprint of the sample. Furthermore, since the number, n,
of elements is fixed, it suffices to give the tester the fingerprint of the sample without the~0 = (0, . . . ,0)
entry.

THEORY OF COMPUTING, Volume 9 (8), 2013, pp. 295–347 304

http://dx.doi.org/10.4086/toc


TESTING PROPERTIES OF COLLECTIONS OF DISTRIBUTIONS

For example, consider the distributions D1 and D2 over {1,2,3} such that D1[ j] = 1/3 for every
j ∈ {1,2,3}, D2[1] = D2[2] = 1/2 and D2[3] = 0. Assume that we sample (D1,D2) four times, according
to the uniform sampling model and we get the samples (1,1),(2,1),(2,2),(1,3), where the first coordinate
denotes the distribution, and the second coordinate denotes the element. Then the sample histogram of
element 1 is (1,1) because 1 was selected once by D1 and once by D2. For the elements 2,3 we have the
sample histograms (0,1) and (1,0), respectively. The fingerprint of the sample is (0,1,1,0,1,0,0, . . .)
for the following order of histograms: ((0,0),(0,1),(1,0),(2,0)(1,1),(0,2),(3,0), . . .).

In order to prove Theorem 3.5, we would like to show that the distributions of the fingerprints when
the sample is generated according to D+ and when it is generated according to D− are similar, for a
sample size that is below the lower bound stated in the theorem. For each choice of element j ∈ [n] and a
distribution Di, the number of times the sample (i, j) appears, i. e., αi, j, depends on the number of times
the other samples appear simply because the total number of samples is fixed. Furthermore, for each
histogram~a, the number of elements with sample histogram identical to~a is dependent on the number of
times the other histograms appear, because the number of samples is fixed. For instance, in the example
above, if we know that we have the histogram (0,1) once and the histogram (1,1) once, then we know
that third histogram cannot be (2,0). In addition, it is dependent because the number of elements is fixed.

We thus see that the distribution of the fingerprints is rather difficult to analyze (and therefore it is
difficult to bound the statistical distance between two different such distributions). Therefore, we would
like to break as much of the above dependencies. To this end we define a slightly different process
for generating the samples that involves Poissonization [46]. In the Poissonized process the number
of samples we take from each distribution Di, denoted by κ ′i , is distributed according to the Poisson
distribution. We prove that, while the overall number of samples the Poissonized process takes is bigger
just by a constant factor from the uniform process, we get with very high probability that κ ′i > κi, for
every i, where κi is the number of samples taken from Di. This implies that if we prove a lower bound for
algorithms that receive samples generated by the Poissonized process, then we obtain a related lower
bound for algorithms that work in the uniform sampling model.

As opposed to the process that takes a fixed number of samples according to the uniform sampling
model, the benefit of the Poissonized process is that the αi, j’s determined by this process are independent.
Therefore, the type of sample histogram that element j has is completely independent of the types of
sample histograms the other elements have. We get that the fingerprint distribution is a generalized
multinomial distribution, which has been studied by Roos [42] (the connection is due to Valiant [48]).

Definition 3.6. In the Poissonized uniform sampling model with parameter κ (which we’ll refer to as the
κ-Poissonized model), given a list D= (D1, . . . ,Dm) of m distributions, a sample is generated as follows.

• Draw m independent samples κ1, . . . ,κm from poi(κ),

• Return κi independent samples distributed according to Di for each i ∈ [m].

Lemma 3.7. Assume there exists a tester T in the uniform sampling model for a property P of lists of m
distributions, that takes a sample of size s = κm where κ ≥ c for some sufficiently large constant c, and
works for every ε ≥ ε0 where ε0 is a constant (and whose success probability is at least 2/3). Then there
exists a tester T ′ for P in the Poissonized uniform sampling model with parameter 2κ , that works for
every ε ≥ ε0 and whose success probability is at least 19/30.
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Proof. Roughly speaking, the tester T ′ tries to simulate T if it has a sufficiently large sample, and
otherwise it guesses the answer. More precisely, let T ′ be a tester in the Poissonized uniform sampling
model with parameter 2κ . The tester T ′ receives a set of samples, S′, where each sample in the set is
distributed uniformly and independently over the m distributions, and their number, κ ′, is distributed as
κ ′ ∼ poi(2κm) (see [22, p. 216]). By Lemma 3.4 we have that,

Pr
[
κ
′ < κm

]
≤ (3/4)κm/2 . (3.30)

If κ ′ ≥ κm then T ′ picks a random subset of samples, S⊂ S′, of size κm and simulates T on S. Otherwise
it “accepts” or “rejects” with equal probability. Since the samples in S are distributed as κm samples
drawn according to the uniform sampling model, if equation (3.30) holds then T ′ simulates a tester in the
uniform sampling model successfully.

The probability that κ ′ ≥ κm is at least 1− (3/4)κm/2, which is greater than 4/5 for κ > c and a
sufficiently large constant c. Therefore, the success probability of T ′ is at least

4
5
· 2

3
+

1
5
· 1

2
=

19
30

,

as desired.

Given Lemma 3.7 it suffices to consider samples that are generated in the Poissonized uniform
sampling model. The process for generating a sample {α1, j, . . . ,αm, j} j∈[n] (recall that αi, j is the number
of times that element j was selected by distribution Di) in the κ-Poissonized model is equivalent to the
following process: For each i ∈ [m] and j ∈ [n], independently select αi, j according to poi(κ ·Di( j))
(see [22, p. 216]). Thus the probability of getting a particular histogram~a = (a1, . . . ,am) for element j is
pD,κ( j;~a) (as defined in equation (3.27)). We can represent the event that the histogram of element j is~a
by a Bernoulli random vector~b j that is indexed by all~v ∈ Nm, is 1 in the coordinate corresponding to~a,
and is 0 elsewhere. Given this representation, the fingerprint of the sample corresponds to ∑

n
j=1

~b j.
As defined above, the dimension of the~b j’s is unbounded. This is simply because poi(λ ) is unbounded

for every λ > 0, and so every possible histogram has non-zero probability. However, we may consider
vectors of finite dimension (we show in the proof of Theorem 3.5 that it is sufficient) and map the
histograms that we do not consider to the vector (0, . . . ,0). Roos’s theorem, stated next, shows that the
distribution of the fingerprints can be approximated by a multivariate Poisson distribution (the Poisson
here is related to the fact that the fingerprints’ distributions are generalized multinomial distributions
and not related to the Poisson from the Poissonization process). For simplicity, the theorem is stated for
vectors~b j that are indexed directly, that is~b j = (b j,1, . . . ,b j,h).

Theorem 3.8 ([42]). Let DSn be the distribution of the sum Sn of n independent Bernoulli random vectors
~b1, . . . ,~bn in Rh where Pr

[
~b j =~e`

]
= p j,` and Pr

[
~b j = (0, . . . ,0)

]
= 1−∑

h
`=1 p j,` (here~e` satisfies e j,` = 1

and e j,`′ = 0 for every `′ 6= `). Let us define an h-dimensional vector~λ = (λ1, . . . ,λh) by λ` := ∑
n
j=1 p j,`.

Then ∥∥∥DSn−poi(~λ )
∥∥∥

1
≤ 88

5

h

∑
`=1

∑
n
j=1 p2

j,`

∑
n
j=1 p j,`

. (3.31)
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We next show how to obtain a bound on sums of the form given in equation (3.31) under appropriate
conditions.

Lemma 3.9. Given a list D= (D1, . . . ,Dm) of m distributions over [n] and a real number 0 < δ ≤ 1/2
such that for all i ∈ [m] and for all j ∈ [n], Di( j)≤ δ/(m ·κ) for some integer κ , we have that

∑
~a∈Nm\~0

∑
n
j=1 pD,κ( j;~a)2

∑
n
j=1 pD,κ( j;~a)

≤ 2δ . (3.32)

Proof.

∑
~a∈Nm\~0

∑
n
j=1 pD,κ( j;~a)2

∑
n
j=1 pD,κ( j;~a)

≤ ∑
~a∈Nm\~0

max
j

(
pD,κ( j;~a)

)
(3.33)

= ∑
~a∈Nm\~0

max
j

(
m

∏
i=1

poi(ai;κ ·Di( j))

)
(3.34)

≤ ∑
~a∈Nm\~0

(
δ

m

)a1+...+am

(3.35)

≤
∞

∑
a=1

ma
(

δ

m

)a

(3.36)

≤ 2δ , (3.37)

where the inequality in equation (3.37) holds for δ ≤ 1/2 and the inequality in equation (3.35) follows
from:

poi(a;κ ·Di( j)) =
e−κ·Di( j)(κ ·Di( j))a

a!
(3.38)

≤ (κ ·Di( j))a (3.39)

≤
(

δ

m

)a

, (3.40)

and the proof is completed.

Proof of Theorem 3.5. Let DD− and DD+
denote the distribution of the fingerprints when taking samples

in the κ-Poissonized model (see Definition 3.6) from D− and D+, respectively. We first bound the
`1-distance between DD− and DD+

and then prove the desired result on the uniform sampling model by
applying Lemma 3.7. Let A⊂ Nm be some finite subset of histograms such that for both D− and D+, the
probability (in the κ-Poissonized model) that at least one of the elements has a sample histogram~a /∈ A is
smaller than 1/120 (it is easy to verify, for example by Markov’s inequality, that such a subset exists).
Denote by F the subset of fingerprints describing outcomes where for each element in [n], the sample
histogram is in A. Hence,

∑
F̄3~f

∣∣∣DD−
(
~f
)
−DD+

(
~f
)∣∣∣≤ 1

60
.
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We next turn to bound
∑
F3~f

∣∣∣DD−
(
~f
)
−DD+

(
~f
)∣∣∣ .

By the first premise of the theorem, D+
i ( j),D+

i ( j) ≤ δ/(κm)− for every i ∈ [m] and j ∈ [n]. By
Lemma 3.9 this implies that equation (3.32) holds both for D=D+ and for D=D−. Combining this
with Theorem 3.8 we get that the `1-distance between the fingerprint distribution over F when the sample
is generated according to D+ (in the κ-Poissonized model) and the distribution poi

(
~λD+,κ

)
is at most

88
5
·2δ =

176
5

δ ,

and an analogous statement holds for D−. By applying the premise in equation (3.29) (concerning the `1
distance between poi

(
~λD+,κ

)
and poi

(
~λD−,κ

)
) and the triangle inequality, we get that

∑
F̄∪F3~f

∣∣∣DD−
(
~f
)
−DD+

(
~f
)∣∣∣≤ 2 · 176

5
δ +

31
60
− 352δ

5
+

1
60

=
16
30

,

which implies that the statistical distance is smaller than 8/30. Thus a tester that accepts D+ and rejects
D− with probability greater than

1
2
+

1
2
· 8

30
=

19
30

,

viewing only the above-mentioned fingerprints, does not exist. By Lemma 3.7 the theorem follows.

3.3 Proof of Theorem 3.1

In this subsection we show how to apply Theorem 3.5 to two lists of distributions, D+ and D−, which we
will define shortly, where D+ ∈ Peq = P

eq
m,n while D− is (1/20)-far from Peq. Recall that by the premise

of Theorem 3.1, n≥ cm logm for some sufficiently large constant c > 1. In the proof it will be convenient
to assume that m is even and that n (which corresponds in Lemma 3.10 to 2t) is divisible by 4. It is not
hard to verify that it is possible to reduce the general case to this case. In order to define D−, we shall
need the next lemma.

Lemma 3.10. For every two even integers m and t, there exists a 0/1-valued matrix M with m rows and t
columns for which the following holds:

1. In each row and each column of M, exactly half of the elements are 1 and the other half are 0.

2. For every integer 2 ≤ x < m/2, and for every subset S ⊆ [m] of size x, the number of columns j
such that M[i, j] = 1 for every i ∈ S is at least

t ·

(
1
2x

(
1− 2x2

m

)
−
√

2x lnm
t

)
,

and at most

t ·

(
1
2x +

√
2x lnm

t

)
.
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Proof. Consider selecting a matrix M randomly as follows. Denote the first t/2 columns of M by F . For
each column in F , pick, independently from the other t/2−1 columns in F , a random half of its elements
to be 1, and the other half of the elements to be 0. Columns t/2+1, . . . , t are the negations of columns
1, . . . , t/2, respectively. Thus, in each row and each column of M, exactly half of the elements are 1 and
the other half are 0.

Consider a fixed choice of x. For each column j between 1 and t, each subset of rows S⊆ [m] of size
x, and b ∈ {0,1}, define the indicator random variable IS, j,b to be 1 if and only if M[i, j] = b for every
i ∈ S. Hence,

Pr[IS, j,b = 1] =
1
2
·
(

1
2
− 1

m

)
· . . . ·

(
1
2
− x−1

m

)
. (3.41)

Clearly, Pr[IS, j,b = 1]< 1/2x. On the other hand,

Pr[IS, j,b = 1] ≥
(

1
2
− x

m

)x

(3.42)

=
1
2x

(
1− 2x

m

)x

(3.43)

≥ 1
2x

(
1− 2x2

m

)
, (3.44)

where the last inequality is due to Bernoulli’s inequality which states that (1+ x)n > 1+nx, for every
real, nonzero number x >−1 and an integer n > 1 ([34]).

Let ES,b denote the expected value of ∑
t/2
j=1 IS, j,b. From the fact that columns t/2+ 1, . . . , t are the

negations of columns 1, . . . , t/2 it follows that

t

∑
j=t/2+1

IS, j,1 =
t/2

∑
j=1

IS, j,0 .

Therefore, the expected number of columns 1 ≤ j ≤ t such that M[i, j] = 1 for every i ∈ S is simply
ES,1 +ES,0 (that is, at most t ·1/2x and at least (t ·1/2x)

(
1−2x2/m

)
). By the additive Chernoff bound,

Pr

[∣∣∣ t/2

∑
j=1

IS, j,b−ES,b

∣∣∣>√ tx lnm
2

]
< 2exp(−2(t/2)(2x lnm)/t) (3.45)

= 2m−2x . (3.46)

Thus, by taking a union bound (over b ∈ {0,1}),

Pr

[∣∣∣ t

∑
j=1

IS, j,1− (ES,1 +ES,0)
∣∣∣>√2tx lnm

]
< 4m−2x . (3.47)

By taking a union bound over all subsets S we get that M has the desired properties with probability
greater than 0.
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We first define D+, in which all distributions are identical. Specifically, for each i ∈ [m]:

D+
i ( j) def

=


1

n2/3m1/3 if 1≤ j ≤ n2/3m1/3

2 ,

1
n if n

2 < j ≤ n ,

0 otherwise.

(3.48)

We now turn to defining D−. Let M be a matrix as in Lemma 3.10 for t = n/2. For every i ∈ [m]:

D−i ( j) def
=


1

n2/3m1/3 if 1≤ j ≤ n2/3m1/3

2 ,

2
n if n

2 < j ≤ n and M[i, j−n/2] = 1 ,

0 otherwise.

(3.49)

For both D+ and D−, we refer to the elements 1 ≤ j ≤ n2/3m1/3/2 as the heavy elements, and to the
elements n/2 ≤ j ≤ n, as the light elements. Observe that each heavy element has exactly the same
probability weight, 1/(n2/3m1/3), in all distributions D+

i and D−i . On the other hand, for each light
element j, while D+

i ( j) = 1/n (for every i), in D− we have that D+
i ( j) = 2/n for half of the distributions,

the distributions selected by the M, and D+
i ( j) = 0 for half of the distributions, the distributions which

are not selected by M. We later use the properties of M to bound the `1 distance between the fingerprints’
distributions of D+ and D−.

A high-level discussion To gain some intuition before delving into the detailed proof, consider first the
special case that m = 2 (which was studied by Valiant [48], and indeed the construction is the same as the
one he analyzes (and was initially proposed in [11])). In this case each heavy element has probability
weight Θ(1/n2/3) and we would like to establish a lower bound of Ω(n2/3) on the number of samples
required to distinguish between D+ and D−. That is, we would like to show that the corresponding
fingerprints’ distributions when the sample is of size o(n2/3) are very similar.

The first main observation is that since the probability weight of light elements is Θ(1/n) in both D+

and D−, the probability that a light element will appear more than twice in a sample of size o(n2/3) is
very small. That is (using the fingerprints of histograms notation we introduced previously), for each
~a = (a1,a2) such that a1 +a2 > 2, the sample will not include (with high probability) any light element j
such that α1, j = a1 and α2, j = a2 (for both D+ and D−). Moreover, for every x ∈ {1,2}, the expected
number of elements j such that (α1, j,α2, j) = (x,0) is the same in D+ and D−, as well as the variance
(from symmetry, the same applies to (0,x)). Thus, most of the difference between the fingerprints’
distributions is due to the numbers of elements j such that (α1, j,α2, j) = (1,1). For this setting we do
expect to see a non-negligble difference for light elements between D+ and D− (in particular, we cannot
get the (1,1) histogram for light elements in D−, as opposed to D+).

Here is where the heavy elements come into play. Recall that in both D+ and D− the heavy
elements have the same probability weight, so that the expected number of heavy elements i such that
(a1, j,a2, j) = (1,1) is the same for D+ and D−. However, intuitively, the variance of these numbers
for the heavy elements “swamps” the differences between the light elements so that it is not possible
to distinguish between D+ and D−. The actual proof, which formalizes (and quantifies) this intuition,
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considers the difference between the values of the vectors~λD+,k and~λD−,k (as defined in equation (3.28))
in the coordinates corresponding to~a such that a1 +a2 = 2. We can then apply Lemmas 3.2 and 3.3 to
obtain equation (3.29) in Theorem 3.5.

Turning to m > 2, it is no longer true that in a sample of size o(n2/3m1/3) we will not get histogram
vectors ~a such that ∑

m
i=1 ai > 2 for light elements. Thus we have to deal with many more vectors ~a (of

dimension m) and to bound the total contribution of all of them to the difference between fingerprints of
D+ and of D−. To this end we partition the set of all possible histograms’ vectors into several subsets
according to their Hamming weight ∑

m
i=1 ai and depending on whether all a′is are in {0,1}, or there exists

a least one ai such that ai ≥ 2. In particular, to deal with the former (whose number, for each choice of
Hamming weight x is relatively large, i. e., roughly mx), we use the properties of the matrix M based on
which D− is defined. We note that from the analysis we see that, similarly to when m = 2, we need the
variance of the heavy elements to play a role just for the cases where ∑

m
i=1 ai = 2 while in the other cases

the total contribution of the light elements is rather small.
In the remainder of this section we provide the details of the analysis.

Before establishing that indeed D− is Ω(1)-far from Peq, we introduce some more notation (which
will be used throughout the remainder of the proof of Theorem 3.1). Let Sx be the set of vectors of
dimension m that contain exactly x coordinates that are 1, and all the rest are 0 (which corresponds to an
element that was sampled once or 0 times by each distribution). Let Ax be the set of vector of dimension
m that their coordinates sum up to x but must contain at least one coordinate that is 2 (which corresponds
to an element that was samples at least twice by at least one distribution). More formally, for any integer
x, we define the following two subsets of Nm:

Sx
def
=

{
~a ∈ Nm : ∑

m
i=1 ai = x and
∀i ∈ [m],ai < 2

}
, (3.50)

and

Ax
def
=

{
~a ∈ Nm : ∑

m
i=1 ai = x and
∃i ∈ [m],ai ≥ 2

}
. (3.51)

For~a ∈ Nm, let sup(~a) def
= {i : ai 6= 0} denote the support of~a, and let

IM(~a) def
=

{
j : D−i ( j) =

2
n
∀i ∈ sup(~a)

}
. (3.52)

Note that in terms of the matrix M (based on which D− is defined), IM(~a) consists of the columns in M
whose restriction to the support of ~a contains only 1’s. In terms of the D−, it corresponds to the set of
light elements that might have a sample histogram of~a (when sampling according to D−).

Lemma 3.11. For every m > 5 and for n≥ c lnm for some sufficiently large c, we have that

m

∑
i=1
‖D−i −D∗‖1 >

m
20

for every distribution D∗ over [n]. That is, the list D− is (1/20)-far from Peq.
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Proof. Consider any~a ∈ S2. By Lemma 3.10, setting t = n/2, the size of IM(~a), i. e., the number of light
elements ` such that D−i [`] = 2/n for every i ∈ sup(~a), is at most

n
2

(
1
4
+

√
8lnm

n

)
.

The same upper bound holds for the number of light elements ` such that D−i [`] = 0 for every i ∈ sup(~a).
This implies that for every i 6= i′ in [m], for at least

n
2
−n

(
1
4
+

√
8lnm

n

)

of the light elements, `, we have that D−i [`] = 2/n while D−i′ [`] = 0, or that D−i′ [`] = 2/n while D−i [`] = 0.
Therefore,

‖D−i −D−i′ ‖1 ≥
1
2
−2

√
8lnm

n
,

which for n≥ c lnm and a sufficiently large constant c, is at least 1/8. Thus, by the triangle inequality we
have that for every D∗,

m

∑
i=1
‖D−i −D∗‖1 ≥

⌊m
2

⌋
· 1

8
,

which greater than m/20 for m > 5.

In what follows we work towards establishing that equation (3.29) in Theorem 3.5 holds for D+ and
D−. Set κ = δ ·n2/3/m2/3, where δ is a constant to be determined later. We shall use the shorthand~λ+

for~λD+,κ , and~λ− for~λD−,κ (recall that the notation~λD,κ was introduced in equation (3.28)). By the
definition of~λ+, for each~a ∈ Nm,

~λ+(~a) =
n

∑
j=1

m

∏
i=1

(κ ·D+
i ( j))ai

eκ·D+
i ( j) ·ai!

(3.53)

=
n2/3m1/3/2

∑
j=1

m

∏
i=1

(δ/m)ai

eδ/m ·ai!
+

n

∑
j=n/2+1

m

∏
i=1

(δ/(n1/3m2/3))ai

eδ/(n1/3m2/3) ·ai!
(3.54)

=
n2/3m1/3

2eδ

m

∏
i=1

(δ/m)ai

ai!
+

n
2eδ (m/n)1/3

m

∏
i=1

(δ/(n1/3m2/3))ai

ai!
. (3.55)

By the construction of M, for every light j, ∑
m
i=1 D−i ( j) = 2

n ·
m
2 = m

n . Therefore,

~λ−(~a) =
n2/3m1/3

2eδ

m

∏
i=1

(δ/m)ai

ai!
+

1
eδ (m/n)1/3 ∑

j∈IM(~a)

m

∏
i=1

(2δ/(n1/3m2/3))ai

ai!
. (3.56)

Hence, ~λ+(~a) and ~λ−(~a) differ only on the term which corresponds to the contribution of the light
elements. Equations (3.55) and (3.56) demonstrate why we choose M with the specific properties defined
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in Lemma 3.10. First of all, in order for every D−i to be a probability distribution, we want each row of
M to sum up to exactly n/4. We also want each column of M to sum up to exactly m/2, in order to get
∏

m
i=1 e−κ·D+

i ( j) = ∏
m
i=1 e−κ·D−i ( j). Finally, we would have liked |IM(~a)| ·∏m

i=1 2ai to equal n/2 for every~a.
This would imply that~λ+(~a) and~λ−(~a) are equal. As we show below, this is in fact true for every~a ∈ S1.
For vectors~a ∈ Sx where x > 1, the second condition in Lemma 3.10 ensures that |IM(~a)| is sufficiently
close to (n/2) · (1/2x). This property of M is not necessary in order to bound the contribution of the
vectors in Ax. The bound that we give for those vectors is less tight, but since there are fewer such vectors,
it suffices.

We start by considering the contribution to equation (3.29) of histogram vectors~a ∈ S1 (i. e., vectors
of the form (0, . . . ,0,1,0, . . . ,0)) which correspond to the number of elements that are sampled only by
one distribution, once. We prove that in the Poissonized uniform sampling model, for every~a ∈ S1 the
number of elements with such sample histogram is distributed exactly the same in D+ and D−.

Lemma 3.12.

∑
~a∈S1

∥∥∥poi(~λ+(~a)−poi(~λ−(~a))
∥∥∥

1
= 0 . (3.57)

Proof. For every~a ∈ S1, the size of IM(~a) is n/4, thus,

∑
j∈IM(~a)

m

∏
i=1

(2δ/(n1/3m2/3))ai

ai!
=

n
2

m

∏
i=1

(δ/(n1/3m2/3))ai

ai!
. (3.58)

By equations (3.55) and (3.56), it follows that
∣∣∣~λ+(~a)−~λ−(~a)

∣∣∣= 0 for every~a ∈ S1. The lemma follows
by applying equation (3.1).

We now turn to bounding the contribution to equation (3.29) of histogram vectors~a ∈ A2 (i. e., vectors of
the form (0, . . . ,0,2,0, . . . ,0) which correspond to the number of elements that are sampled only by one
distribution, twice.

Lemma 3.13. ∥∥∥poi(~λ+(A2))−poi(~λ−(A2))
∥∥∥

1
≤ 3δ . (3.59)

Proof. For every~a ∈ A2, the size of IM(~a) is n/4, thus,

∑
j∈IM(~a)

m

∏
i=1

(2δ/(n1/3m2/3))ai

ai!
= n

m

∏
i=1

(δ/(n1/3m2/3))ai

ai!
. (3.60)

By equations (3.55), (3.56) and (3.60) it follows that

~λ−(~a)−~λ+(~a) =
n

2eδ (m/n)1/3

m

∏
i=1

(δ/(n1/3m2/3))ai

ai!
=

n1/3δ 2

4eδ (m/n)1/3m4/3
, (3.61)
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and that

~λ−(~a)≥ n2/3m1/3

2eδ

m

∏
i=1

(δ/m)ai

ai!
=

n2/3δ 2

4eδ m5/3 . (3.62)

By equations (3.61) and (3.62) we have that(
~λ−(~a)−~λ+(~a)

)2

~λ−(~a)
≤ eδ−2δ (m/n)1/3

δ 2

4m
≤ δ 2

m
. (3.63)

By equation (3.63) and the fact that |A2|= m we get

∑
~a∈A2

(
~λ−(~a)−~λ+(~a)

)2

~λ−(~a)
≤ m · δ

2

m
= δ

2 (3.64)

The lemma follows by applying Lemma 3.3.

Recall that for a subset I of Nm, poi(~λ (I)) denotes the multivariate Poisson distributions restricted to
the coordinates of~λ that are indexed by the vectors in I. We separately deal with Sx where 2≤ x < m/2,
and x≥ m/2, where our main efforts are with respect to the former, as the latter correspond to very low
probability events.

Lemma 3.14. For m≥ 16, n≥ cm lnm (where c is a sufficiently large constant) and for δ ≤ 1/16∥∥∥∥∥poi

(
~λ+

(
m/2−1⋃

x=2

Sx

))
−poi

(
~λ−

(
m/2−1⋃

x=2

Sx

))∥∥∥∥∥
1

≤ 32δ . (3.65)

Proof. Let~a be a vector in Sx then by the definition of Sx, every coordinate of~a is 0 or 1. Therefore we
make the following simplification of equation (3.55): For each~a ∈

⋃m/2−1
x=2 Sx,

~λ+(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ (m/n)1/3 ·
(

δ

n1/3m2/3

)x

. (3.66)

By Lemma 3.10, for every~a ∈
⋃m/2−1

x=2 Sx the size of IM(~a) is at most

n
2
·

(
1
2x +

√
4x lnm

n

)

and at least
n
2
·

(
1
2x −

2x2

2xm
−
√

4x lnm
n

)
.
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By equation (3.56) this implies that

~λ−(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ (m/n)1/3 ·
(

1
2x +η

)(
2δ

n1/3m2/3

)x

, (3.67)

where

−

(
2x2

2xm
+

√
4x lnm

n

)
≤ η ≤

√
4x lnm

n

and thus

|η | ≤
√

x
m
·

(
2x2

2x√m
+

√
4m lnm

n

)
.

By the facts that n≥ cm lnm for some sufficiently large constant c, and that

2x2

2x√m
≤ 1

2

for every 2≤ x < m/2 and m≥ 16, we obtain that |η | ≤
√ x

m . So we have that

(~λ+(~a)−~λ−(~a))2 ≤
(

n
2eδ (m/n)1/3 ·

(
2δ

n1/3m2/3

)x

·
√

x
m

)2

≤ n2

4
·
(

4δ 2

n2/3m4/3

)x

· x
m
. (3.68)

and that

~λ−(~a)≥ n2/3m1/3

2eδ
·
(

δ

m

)x

. (3.69)

Then we get, for δ ≤ 1/2, that(
~λ+(~a)−~λ−(~a)

)2

~λ−(~a)
≤ eδ n4/3

2m1/3 ·
(

4δ

n2/3m1/3

)x

· x
m

(3.70)

≤ n4/3

m1/3 ·
(

4δ

n2/3m1/3

)x

· x
m

(3.71)

≤ n4/3

m4/3 ·

(
4x1/xδ

n2/3m1/3

)x

(3.72)

≤ n4/3

m4/3 ·
(

8δ

n2/3m1/3

)x

. (3.73)

Summing over all

~a ∈
m/2−1⋃

x=2

Sx
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we get:

∑
~a∈
⋃m/2−1

x=2 Sx

(~λ−(~a)−~λ+(~a))2

~λ−(~a)
≤

∞

∑
x=2

n4/3

m4/3 ·

(
8δm2/3

n2/3

)x

(3.74)

=
∞

∑
x=0

64δ
2 ·

(
8δm2/3

n2/3

)x

(3.75)

≤ 64δ 2

1−8δ
(3.76)

≤ 128δ
2 . (3.77)

where in equation (3.75) we used the fact that n > m, and equation (3.77) holds for δ ≤ 1/16. The lemma
follows by applying Lemma 3.3.

Lemma 3.15. For n≥ m, m≥ 12 and δ ≤ 1/4, ∑
x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a))−poi(~λ−(~a))
∥∥∥

1
≤ 32δ

3 .

Proof. We first observe that |Sx| ≤ mx/x for every x≥ 6. To see why this is true, observe that |Sx| equals
the number of possibilities of arranging x balls in m bins, i. e.,

|Sx|=
(

m
x

)
≤
(em

x

)x
≤ mx

x
. (3.78)

where we have used the premise that m≥ 12 and thus x≥ 6. By equations (3.55) and (3.56) (and the fact
that |x− y| ≤max{x,y} for every positive real numbers x,y),

∑
x≥m/2

∑
~a∈Sx

∣∣∣~λ+(~a)−~λ−(~a)
∣∣∣ ≤ ∑

x≥m/2
∑
~a∈Sx

n
2

m

∏
i=1

(
2δ

n1/3m2/3

)ai

(3.79)

= ∑
x≥m/2

∑
~a∈Sx

n
2

(
2δ

n1/3m2/3

)
∑

m
i=1 ai

(3.80)

≤
∞

∑
x=m/2

mx

x
· n

2

(
2δ

n1/3m2/3

)x

(3.81)

≤
∞

∑
x=m/2

2mx

m
· n

2

(
2δ

n1/3m2/3

)x

(3.82)

=
n
m

∞

∑
x=m/2

(
2δm1/3

n1/3

)x

(3.83)

= 8δ
3

∞

∑
x=m/2−3

(
2δm1/3

n1/3

)x

(3.84)

≤ 8δ 3

1−2δ
(3.85)

≤ 16δ
3 (3.86)
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where in equation (3.85) we used the fact that n≥ m and equation (3.86) holds for δ ≤ 1/4. The lemma
follows by applying equation (3.1).

We finally turn to the contribution of~a ∈ Ax such that x≥ 3.

Lemma 3.16. For n≥ m and δ ≤ 1/4,

∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a))−poi(~λ−(~a))
∥∥∥

1
≤ 16δ

3 . (3.87)

Proof. We first observe that |Ax| ≤ mx−1 for every x. To see why this is true, observe that |Ax| equals the
number of possibilities of arranging x−1 balls, where one ball is a “special” (“double”) ball in m bins.
By equations (3.55) and (3.56) (and the fact that |x− y| ≤max{x,y} for every positive real numbers x,y),

∑
x≥3

∑
~a∈Ax

∣∣∣~λ+(~a)−~λ−(~a)
∣∣∣ ≤ ∑

x≥3
∑
~a∈Ax

n
2

m

∏
i=1

(
2δ

n1/3m2/3

)ai

(3.88)

= ∑
x≥3

∑
~a∈Ax

n
2

(
2δ

n1/3m2/3

)
∑

m
i=1 ai

(3.89)

≤
∞

∑
x=3

mx−1 · n
2

(
2δ

n1/3m2/3

)x

(3.90)

=
n

2m

∞

∑
x=3

(
2δm1/3

n1/3

)x

(3.91)

= 4δ
3

∞

∑
x=0

(
2δm1/3

n1/3

)x

(3.92)

≤ 4δ 3

1−2δ
(3.93)

≤ 8δ
3 (3.94)

where in equation (3.93) we used the fact that n≥ m and equation (3.94) holds for δ ≤ 1/4. The lemma
follows by applying equation (3.1).

We are now ready to finalize the proof of Theorem 3.1.

Proof of Theorem 3.1. Let D+ and D− be as defined in equations (3.48) and (3.49), respectively, and
recall that κ = δ ·n2/3/m2/3 (where δ will be set subsequently). By the definition of the distributions
in D+ and D−, the probability weight assigned to each element is at most 1/(n2/3m1/3) = δ/(κ ·m), as
required by Theorem 3.5. By Lemma 3.11, D− is (1/20)-far from Peq. Therefore, it remains to establish
that equation (3.29) holds for D+ and D−. Consider the following partition of Nm:{~a}~a∈S1 ,A2,

m/2−1⋃
x=2

Sx,{~a}~a∈⋃x≥m/2 Sx ,{~a}~a∈⋃x≥3 Ax

 , (3.95)
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where {~a}~a∈T denotes the list of all singletons of elements in T . By Lemma 3.2 it follows that∥∥∥poi(~λ+)−poi(~λ−)
∥∥∥

1
≤ ∑

~a∈S1

∥∥∥poi(~λ+(~a)−poi(~λ−(~a))
∥∥∥

1
(3.96)

+
∥∥∥poi(~λ+(A2)−poi(~λ−(A2))

∥∥∥
1

(3.97)

+
∥∥∥poi(~λ+(

m/2−1⋃
x=2

Sx))−poi(~λ−(
m/2−1⋃

x=2

Sx))
∥∥∥

1
(3.98)

+ ∑
x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a)−poi(~λ−(~a))
∥∥∥

1
(3.99)

+ ∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a)−poi(~λ−(~a))
∥∥∥

1
. (3.100)

For δ < 1/16 we get by Lemmas 3.12–3.16 that∥∥∥poi(~λ+)−poi(~λ−)
∥∥∥

1
≤ 35δ +48δ

3 , (3.101)

which is less than
31
60
− 352δ

5

for δ = 1/200. Hence, the theorem follows from Theorem 3.5.

3.4 A lower bound for testing independence

In this subsection we show that Theorem 3.1 implies a lower bound on testing independence of joint
distributions over [m]× [n]. A tester for independence gets samples from a distribution Q over [m]× [n]
and distinguishes between Q that is a product distribution Q1×Q2, where Q1 is a distribution over [m]
and Q2 is a distribution over [n] (i. e., Q(i, j) = Q1(i) ·Q2( j) for every (i, j) ∈ [m]× [n]) and Q that is
ε-far in the `1-distance from any product distribution. In other words, if we denote by π1Q the marginal
distribution according to Q of the first coordinate, i, and by π2Q the marginal distribution of the second
coordinate, j, then Q has the property of independence if π1Q and π2Q are independent. With a slight
abuse of the terminology, we shall say in such a case that Q is independent.

In Lemma 3.18 we prove that the problem of testing equivalence of a collection of distributions in the
sampling model reduces to the problem of testing whether a pair of random variables are independent
given samples from their joint distribution. Due to this relation between the two problems we get that any
lower bound on the number of samples for the problem of equivalence implies a lower bound for testing
independence. Therefore, the lower bound in Theorem 3.1 holds for testing independence, as stated in
Corollary 3.19. In the proof of the lemma we shall use the following proposition.

Proposition 3.17 ([10]). Let p,q be distributions over [m]× [n]. If ‖p−q‖1 ≤ ε/3 and q is independent,
then ‖p−π1 p×π2 p‖1 ≤ ε .
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Lemma 3.18. If there exists an algorithm T for testing whether a joint distribution Q over [m]× [n]
is independent using a sample of size s(m,n,ε), then there exists an algorithm T ′ for testing whether
D ∈ Peq in the unknown-weights sampling model using a sample of size s(m,n,ε/3).

If T is provided with (and uses) an explicit description of the marginal distribution π1Q, then the
claim holds for T ′ in the known-weights sampling model.

Proof. Given a sample {(i`, j`)}
s(m,n,ε/3)
`=1 generated according to D in the sampling model with a weight

vector ~w = (w1, . . . ,wm), the algorithm T ′ simply runs T on the sample and returns the answer that T
gives. If ~w is known, then T ′ provides T with ~w (as the marginal distribution of i). If D1, . . . ,Dm are
identical and equal to some D∗, then for each (i, j) ∈ [m]× [n] we have that the probability of getting (i, j)
in the sample is wi ·D∗( j). That is, the joint distribution of the first and second coordinates is independent
and therefore T (and hence T ′) accepts with probability at least 2/3.

On the other hand, suppose that D is ε-far from Peq, that is, ∑
m
i=1 wi · ‖Di−D∗‖1 > ε for every

distribution D∗ over [n]. In such a case, in particular we have that ∑
m
i=1 wi ·

∥∥Di−D
∥∥

1 > ε , where D is
the distribution over [n] such that D( j) = ∑

m
i=1 wi ·Di( j). By Proposition 3.17, the joint distribution Q

over i and j (determined by the list D and the sampling process) is ε/3-far from independent, so T (and
hence T ′) rejects with probability greater than 2/3.

The next corollary follows directly from Lemma 3.18 and Theorem 3.1.

Corollary 3.19. Given a joint distribution Q over [m]× [n] it is impossible to test if Q is independent or
1/48-far from independent using o(n2/3m1/3) samples.

4 A lower bound for testing equivalence in the uniform sampling model

In this section we prove the following theorem.

Theorem 4.1. Testing the property P
eq
m,n in the uniform sampling model for every ε ≤ 1/2 and m≥ 64

requires Ω(n1/2m1/2) samples.

We assume without loss of generality that n is even (or else, we set the probability weight of the
element n to 0 in all distributions considered, and work with n−1 that is even). Define Hn to be the set
of all distributions over [n] that have probability 2/n on exactly half of the elements and 0 on the other
half. Define Hm

n to be the set of all possible lists of m distributions from Hn. Define Um
n to consist of only

a single list of m distributions each of which is identical to Un, where Un denotes the uniform distribution
over [n]. Thus the single list in Um

n belongs to P
eq
m,n. On the other hand we show, in Lemma 4.2, that Hm

n
contains mostly lists of distributions that are Ω(1)-far from P

eq
m,n. However, we also show, in Lemma 4.3,

that any tester in the uniform sampling model that takes less than n1/2m1/2/6 samples cannot distinguish
between D that was uniformly drawn from Hm

n and D= (Un, . . . ,Un) ∈ Um
n . Details follow.

Lemma 4.2. For every m≥ 3, with probability at least (1−2/
√

m) over the choice of D∼UHm
n
, where

UHm
n

denotes the uniform distribution over Hm
n , we have that D is (1/2)-far from P

eq
m,n.
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Proof. We need to prove that with probability at least (1−2/
√

m) over the choice of D, for every
v = (v1, . . . ,vn) ∈ Rn which corresponds to a distribution (i. e., v j ≥ 0 for every j ∈ [n] and ∑

n
j=1 v j = 1),

1
m

m

∑
i=1
‖Di−v‖1 >

1
2
. (4.1)

We shall actually prove a slightly more general statement, namely, that equation (4.1) holds for every
vector v ∈ Rn. We define the function medD : [n]→ [0,1] by medD( j) = µ 1

2
(D1( j), . . . ,Dm( j)), where

µ 1
2
(x1, . . . ,xm) denotes the median of x1, . . . ,xm (where if m is even, it is the value in position m/2 in

sorted non-decreasing order). The sum ∑
m
i=1 |xi− c| is minimized when c = µ 1

2
(x1, . . . ,xm). Therefore,

for every D and every vector v ∈ Rn,

m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
≤

m

∑
i=1
‖Di−v‖1 . (4.2)

Recall that for every D = (D1, . . . ,Dm) in Hm
n , and for each (i, j) ∈ [m]× [n], we have that either

Di( j) = 2/n, or Di( j) = 0. Thus, medD( j) = 0 when Di( j) = 0 for at least half of the i’s in [m] and
medD( j) = 2/n otherwise. We next show that for every (i, j) ∈ [m]× [n], the probability over D∼UHm

n

that Di( j) will have the same value as medD( j) is at most a bit bigger than half. More precisely, we show
that for every (i, j) ∈ [m]× [n]:

Pr
D∼UHm

n

[
Di( j) 6= medD( j)

]
≥ 1

2

(
1− 1√

m

)
. (4.3)

Fix (i, j) ∈ [m]× [n], and consider selecting D uniformly at random from Hm
n . Suppose we first determine

the values Di′( j) for i′ 6= i, and set Di( j) in the end. For each (i′, j) the probability that Di′( j) = 0 is 1/2,
and the probability that Di′( j) = 2/n is 1/2. If at least m/2 of the outcomes are 0, or more than m/2 are
2/n, then the value of medD( j) is already determined. Conditioned on this we have that the probability
that Di( j) 6= medD( j) is exactly 1/2. On the other hand, in the complementary event, i. e., when for odd
m there are (m−1)/2 that are 0 and (m−1)/2 that are 2/n, and for even m there are m/2−1 that are 0
and m/2 that are 2/n, it holds that medD( j) = Di( j). We thus bound the probability of this event. First
consider the case that m is even:

Pr
[

Bin
(

m,
1
2

)
=

m
2
−1
]
< Pr

[
Bin
(

m,
1
2

)
=

m
2

]
=

(
m
m
2

)
· 1

2m =
m!

m
2 ! m

2 !
· 1

2m . (4.4)

By Stirling’s approximation, m! =
√

2πm
(m

e

)m eλm , where λm is a parameter that satisfies

1
12m+1

< λm <
1

12m
,
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thus,

m!
m
2 ! m

2 !
· 1

2m <

√
2πm(m

e )
me

1
12m

(
√

2πm/2(m/2
e )m/2e

1
12m/2+1 )2

· 1
2m (4.5)

=
e

1
12m−

2
6m+1√

πm/2
(4.6)

<
1√

πm/2
(4.7)

<
1√
m
. (4.8)

where Inequalities (4.7) and (4.8) hold for m≥ 3. In case m is odd, the probability (over the choice of
Di′( j) for i′ 6= i) that medD( j) is determined by Di( j) is

Pr
[

Bin
(

m,
1
2

)
=

m−1
2

]
= Pr

[
Bin
(

m+1,
1
2

)
=

m+1
2

]
which is at most 1/

√
m+1 by equation (4.8). Hence, equation (4.3) holds for all m and we obtain the

following bound on the expectation

ED∼UHm
n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1

]
=

m

∑
i=1

n

∑
j=1

ED∼UHm
n

[∣∣∣Di( j)−medD( j)
∣∣∣] (4.9)

= m ·n · Pr
D∼UHm

n G=

[
D j(i) 6= medD(i)

]
· 2

n
(4.10)

≥ m ·n · 1
2

(
1− 1√

m

)
· 2

n
(4.11)

= m−
√

m . (4.12)

while the maximum value is bounded as

m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
=

m

∑
i=1

n

∑
j=1

∣∣∣Di( j)−medD( j)
∣∣∣ (4.13)

≤
n

∑
j=1

m
2
· 2

n
(4.14)

= m . (4.15)

Assume for the sake of contradiction that

Pr
D∼UHm

n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
≤ m

2

]
>

2√
m
. (4.16)
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then by equation (4.15) we have,

ED∼UHm
n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1

]
(4.17)

≤ Pr
D∼UHm

n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
≤ m

2

]
· m

2
(4.18)

+

(
1− Pr

D∼UHm
n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
≤ m

2

])
·m (4.19)

= m− Pr
D∼UHm

n

[
m

∑
i=1

∥∥∥Di−medD
∥∥∥

1
≤ m

2

]
· m

2
(4.20)

< m−
√

m , (4.21)

which contradicts equation (4.12).

Recall that for an element j ∈ [n] and a distribution Di, i ∈ [m], we let αi, j denote the number of
times the pair (i, j) appears in the sample (when the sample is selected in the uniform sampling model).
Thus (a1, j, . . . ,am, j) is the sample histogram of the element j. Since the sample points are selected
independently, a sample is simply the union of the histograms of the different elements, or equivalently, a
matrix M in Nm×n.

Lemma 4.3. Let U be the distribution of the histogram of q samples taken from the uniform distribution
over [m]× [n], and let H be the distribution of the histogram of q samples taken from a random list of
distributions in Hm

n . Then,

‖U−H‖1 ≤
4q2

mn
. (4.22)

Proof. For every matrix M ∈ Nm×n, let AM be the event of getting the histogram M i. e., M[i, j] = x if
element j is chosen exactly x times from distribution Di in the sample; For every~x = (x1, . . . ,xm) ∈ Nm,
let B~x be the event of getting a histogram M with exactly xi samples from distribution Di i. e., such that
for every i ∈ [m], ∑ j∈[n] M[i, j] = xi; Let C be the event of getting a histogram M such that there exists
(i, j) ∈ [m]× [n] such that M[i, j]≥ 2; Let

V = {B~x : Pr
H

(
B~x∩C

)
> 0}

(where C denotes the event complementary to C). Recall that if we take strictly less than n/2 samples
then conditioned on the event that there are no collisions in the sample, i. e., each element is drawn at
most once, a sample from Un and a sample from a random distribution in Hn are distributed exactly
the same. We extend this observation for samples from H and U as follows. For every B~x ∈ V , given
the occurrence of B~x∩C, i. e., given the histogram projected on the first coordinate and given that there
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were no collisions, samples from H and U are distributed the same. We shall use this fact to bound the
statistical distance between H and U. We next formalize this.

‖U−H‖1 = ∑
AM⊆C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣+ ∑
AM⊆C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ (4.23)

≤ Pr
U
(C)+Pr

H
(C)+ ∑

AM⊆C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ . (4.24)

We start by bounding the third term in equation (4.24).

∑
AM⊆C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ = ∑
B~x

∑
AM⊆B~x∩C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ (4.25)

= ∑
B~x∈V

∑
AM⊆B~x∩C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ (4.26)

+ ∑
B~x∈V

∑
AM⊆B~x∩C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ . (4.27)

We next bound the expression in equation (4.26).

∑
B~x∈V

∑
AM⊆B~x∩C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ (4.28)

= ∑
B~x∈V

Pr
U
(B~x) ∑

AM⊆B~x∩C

Pr
U

(
AM | B~x∩C

)
·
∣∣∣∣Pr
U

(
C | B~x

)
−Pr

H

(
C | B~x

)∣∣∣∣ (4.29)

= ∑
B~x∈V

Pr
U
(B~x)

∣∣∣∣Pr
U

(
C | B~x

)
−Pr

H

(
C | B~x

)∣∣∣∣ (4.30)

= ∑
B~x∈V

Pr
U
(B~x)

∣∣∣∣(1−Pr
U
(C | B~x)

)
−
(

1−Pr
H
(C | B~x)

)∣∣∣∣ (4.31)

= ∑
B~x∈V

Pr
U
(B~x)

∣∣∣∣Pr
U
(C | B~x)−Pr

H
(C | B~x)

∣∣∣∣ (4.32)

≤ Pr
U
(C)+Pr

H
(C) , (4.33)

where in equation (4.29) we used the fact that for every B~x ∈ V,M ∈ Nm×n, PrU (B~x) = PrH (B~x) and
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PrU
(
AM | B~x∩C

)
= PrH

(
AM | B~x∩C

)
. Turning to the expression in equation (4.27),

∑
B~x∈V

∑
AM⊆B~x∩C

∣∣∣∣Pr
U
(AM)−Pr

H
(AM)

∣∣∣∣ = ∑
B~x∈V

∑
AM⊆B~x∩C

Pr
U
(AM) (4.34)

≤ ∑
B~x∈V

Pr
U
(B~x) (4.35)

= ∑
B~x∈V

Pr
H
(B~x) (4.36)

= ∑
B~x∈V

Pr
H
(B~x∩C) (4.37)

≤ Pr
H
(C) , (4.38)

where the first equality follows from the fact that B~x ∈ V , hence by the definition of V we get that
PrH (AM) = 0. We thus obtain that ‖U−H‖1 ≤ 2PrU(C)+3PrH(C). If we take q uniform independent
samples from [`], then by a union bound over the q samples, the probability to get a collision is at most

1
`
+

2
`
+ · · ·+ q−1

`

which is q2/(2`). Thus,

2Pr
U
(C)+3Pr

H
(C)≤ 2 · q2

2mn
+3 · q2

mn
=

4q2

mn
,

and the lemma follows.

Proof of Theorem 4.1. Assume there is a tester, T , for the property P
eq
m,n in the uniform sampling model,

which takes q≤ m1/2n1/2/6 samples. By Lemma 4.2,

Pr
D∼UHm

n

[A accepts D] ≤ 2√
m
·1+

(
1− 2√

m

)
· 1

3
(4.39)

=
1
3

(
1+

4√
m

)
(4.40)

≤ 1
2
, (4.41)

where the last inequality holds for m≥ 64. By Lemma 4.3, for q≤ m1/2n1/2/6,

1
2
‖U−H‖1 ≤

1
18

,

while by equation (4.41),(
Pr

D∼UHm
n

[A accepts D]− Pr
D∼UHm

n

[A accepts D]

)
≥ 2

3
− 1

2
>

1
18

.
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5 Algorithms for testing equivalence in the sampling model

In this section we state our two main theorems (Theorems 5.1 and 5.2) regarding testing Equivalence in
the sampling model. We prove Theorem 5.1 in this section. In Section 6 we prove a stronger version
of Theorem 5.2 (Theorem 6.11) as well as a stronger version of Theorem 5.1 (Theorem 6.13). We have
chosen to give the proof of Theorem 5.1, in addition to the proof of Theorem 6.13, because it is simpler
than the latter.

Theorem 5.1. Let D be a list of m distributions over [n]. It is possible to test whether D ∈ Peq in the
unknown-weights sampling model using a sample of size Õ((n2/3m1/3 +m) ·poly(1/ε)).

Theorem 5.2. Let D be a list of m distributions over [n]. It is possible to test whether D ∈ Peq in the
known-weights sampling model using a sample of size Õ((n1/2m1/2 +n) ·poly(1/ε)).

Thus, when the weight vector ~w is known, and in particular when all weights are equal (the uniform
sampling model), we get a combined upper bound of Õ(min{n2/3m1/3 +m,n1/2m1/2 +n} ·poly(1/ε)).
Namely, as long as n≥ m, the complexity (in terms of n and m) grows as Õ(n2/3m1/3), and when m≥ n,
it grows as Õ(n1/2m1/2).

5.1 Proof of Theorem 5.1

By Lemma 3.18, in order to prove Theorem 5.1 it suffices to design an algorithm for testing independence
of a joint distribution (with the complexity stated in the theorem). Indeed, testing independence was
studied in [10]. However, there was a certain flaw in one of the claims on which their analysis built
(Theorem 15 in [10], which is attributed to [11]), and hence we fix the flaw next (building on [12], which
is the full version of [11]).

Given a sampling access to a pair of distributions p and q and bounds on their `∞-norm bp and bq,
respectively, the algorithm Bounded-`∞-Closeness-Test (Algorithm 1) tests the equivalence of p and q.
The sample complexity of the algorithm depends on bp and bq, as described in the next theorem.

For a multiset of sample points F over a domain R and an element j ∈ R, let occ( j,F) de-
note the number of times that j appears in the sample F and define the collision count of F to be
coll(F)

def
= ∑ j∈R

(occ( j,F)
2

)
.

Theorem 5.3. Let p and q be two distributions over the same finite domain R. Suppose that ‖p‖
∞
≤ bp and

‖q‖
∞
≤ bq where bq ≥ bp. For every ε ≤ 1/4 , Algorithm Bounded-`∞-Closeness-Test(p,q,bp,bq, |R|,ε)

has the following properties.

1. If ‖p−q‖1 ≤ ε/(2|R|1/2), then the test accepts with probability at least 2/3.

2. If ‖p−q‖1 > ε , then the test rejects with probability at least 2/3.

The algorithm takes O
(
|R| ·b1/2

p /ε2 + |R|2 ·bq ·bp/ε4
)

sample points from each distribution.
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Bounded-`∞-Closeness-Test (sampling access to p, sampling access to q, bp, bq, |R|, ε > 0)

1. Take samples F1
p and F2

p from p, each of size t, where t = O
(
|R| ·b1/2

p /ε2 + |R|2 ·bq ·bp/ε4
)

2. Take samples F2
q and F2

q from q, each of size t

3. Let rp = coll(F1
p ) be the number of collisions in F1

p

4. Let rq = coll(F1
q ) be the number of collisions in F1

q

5. Let sp,q = ∑ j∈R(occ( j,F2
p ) ·occ( j,F2

q )) be the number of collisions between F2
p and F2

q

6. If rq > (7/4)
(t

2

)
bp then REJECT

7. Define δ
def
= ε/|R|1/2, r def

= 2t
t−1(rp + rq) and s def

= 2sp,q

8. If r− s > t2δ 2/2 then REJECT, otherwise ACCEPT

Algorithm 1: The algorithm for testing `1 distance when `∞ is bounded.

Proof. Following the analysis of [11, Lemma 5], we have that

Exp[r− s] = t2‖p−q‖2
2 , (5.1)

and we have the following bounds on the variances of rp, rq and s (for some constant c):

Var[s]≤ ct2
∑
`∈R

p(`)q(`)+ ct3
∑
`∈R

(p(`)q(`)2 + p(`)2q(`)) , (5.2)

Var[rp]≤ ct2
∑
`∈R

p(`)2 + ct3
∑
`∈R

p(`)3 , (5.3)

and

Var[rq]≤ ct2
∑
`∈R

q(`)2 + ct3
∑
`∈R

q(`)3 . (5.4)

Using the bounds we have on the `∞ norms of p and q we get (possibly for a larger constant c):

Var[s]≤ ct2‖p‖∞ + ct3(‖p‖∞‖q‖2
2 +‖p‖2

∞)≤ ct2bp + ct3(bp‖q‖2
2 +b2

p) , (5.5)

Var[rp]≤ ct2‖p‖2
2 + ct3‖p‖∞‖p‖2

2 ≤ ct2‖p‖∞ + ct3‖p‖2
∞ ≤ ct2bp + ct3b2

p , (5.6)

and

Var[rq]≤ ct2‖q‖2
2 + ct3‖q‖∞‖q‖2

2 ≤ ct2‖q‖2
2 + ct3bq‖q‖2

2 . (5.7)
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By equations (5.5) and (5.7), a tighter bound on ‖q‖2
2 will imply a tighter bound on Var[s] and Var[rq].

To this end, the check in Step 6 in the algorithm was added to the original `2-Distance-Test of [11].
This check is beneficial in achieving a tighter bound on the sample complexity. First, prove that the
tester distinguishes with high constant probability between the case that ‖q‖2

2 > 2bp and the case that
‖q‖2

2 ≤ (3/2)bp by rejecting (with high probability) when rq > (7/4)
(t

2

)
bp. Notice that by the triangle

inequality ‖p−q‖2 ≥ ‖q‖2−‖p‖2. Thus, if ‖q‖2
2 > (3/2)bp and ‖p‖2

2 ≤ bp then it follows that

‖p−q‖2 ≥
√

(3/2)b1/2
p −b1/2

p .

Therefore, by the fact that bp ≥ 1/|R|, we obtain that

‖p−q‖1 ≥ ‖p−q‖2 ≥
(√

(3/2)−1
)
/|R|1/2

which is greater than ε/(2|R|1/2) for ε ≤ 1/4. Consider first the case that ‖q‖2
2 > 2bp, so that Exp[rq]>

2
(t

2

)
bp. Then we can bound the probability that the tester accepts, that is, that rq ≤ (7/4)

(t
2

)
bp, by the

probability that rq < (7/8)Exp[rq]. In the case that ‖q‖2
2 ≤ (3/2)bp, so that Exp[rq] ≤ (3/2)

(t
2

)
bp, we

can bound the probability that the tester rejects, that is, that rq > (7/4)
(t

2

)
bp, by the probability that

rq > (7/6)Exp[rq]. Then the probability to accept when ‖q‖2
2 > 2bp and reject when ‖q‖2

2 ≤ bp is upper
bounded by

Pr[|rq−Exp[rq]|> Exp[rq]/8 .

Now, using the upper bound on the variance of rq that we have (the first bound in equation (5.7)), the fact
that for every distribution q over R, ‖q‖2

2 ≤ 1/|R| and Exp[rq] =
(t

2

)
‖q‖2

2, we have that

Pr[|rq−Exp[rq]|> Exp[rq]/8] ≤
64Var[rq]

Exp2[rq]
(5.8)

≤ c · (t2‖q‖2
2 + t3‖q‖∞‖q‖2

2)

t4‖q‖4
2

(5.9)

=
c

t2‖q‖2
2
+

c‖q‖∞

t‖q‖2
2

(5.10)

≤ c|R|
t2 +

c|R|‖q‖∞

t
. (5.11)

To make this a small constant, we choose t so that

t = Ω

(
|R|1/2 + |R|bq

)
. (5.12)

Next, we prove that the tester distinguishes between the case that ‖p−q‖2 > δ and ‖p−q‖2 ≤ δ/2 by
rejecting when r− s > t2δ 2/2. We have that Exp[r− s] = t2‖p−q‖2

2. Chebyshev gives us that

Pr[|A−Exp[A]|> ρ]≤ Var[A]/ρ
2 ,

and so, for the case ‖p−q‖2 > δ (i. e., Exp[r− s]> t2δ 2) we have that

Pr[r− s < t2
δ

2/2] ≤ Pr[|(r− s)−Exp[r− s]|< t2
δ

2/2] (5.13)

≤ 4Var[r− s]
t4δ 4 , (5.14)
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and similarly, for the case ‖p−q‖2 ≤ δ/2 (i. e., Exp[r− s]≤ t2δ 2/4) we have that

Pr[r− s≥ t2
δ

2/2] ≤ Pr[|(r− s)−Exp[r− s]|< t2
δ

2/4] (5.15)

≤ 16Var[r− s]
t4δ 4 . (5.16)

That is, we want
Var[r− s]

t4δ 4

which is of the order of
Var[r− s] · |R|2

t4ε4

to be a small constant. If we use

Var[r− s] =
4t2

(t−1)2 (Var[rp]+Var[rq])+Var[s] ,

then we need to ensure that each of

Var[rp] · |R|2

t4ε4 ,
Var[rq] · |R|2

t4ε4 and
Var[s] · |R|2

t4ε4

is a small constant, which by equations (5.5), (5.6), (5.7), and the premise that ‖q‖2
2 ≤ 2bp, holds when

t = Ω

(
|R| ·b1/2

p /ε
2 + |R|2 ·bq ·bp/ε

4
)
, (5.17)

since both bp,bq ≥ 1/|R|, the bound in equation (5.17) dominates the bound in equation (5.12). Hence,
the bound on the sample complexity follows.

As a corollary of Theorem 5.3 we obtain:

Theorem 5.4. Let Q be a distribution over [m]× [n] such that Q satisfies: ‖π1Q‖∞ ≤ b1, ‖π2Q‖∞ ≤ b2

and b2 ≤ b1. There is a test that takes O(nmb1/2
1 b1/2

2 /ε2 +n2m2b1b2
2/ε4) samples from Q, such that if Q

is independent, then the test accepts with probability at least 2/3 and if Q is ε-far from independent, then
the test rejects with probability at least 2/3.

Proof. By the premise of the theorem we have that ‖Q‖
∞
≤ b2 and that ‖π1Q×π2Q‖

∞
≤ b1 · b2. Ap-

plying Theorem 5.3 we can test if Q is identical to π1Q×π2Q using sample of size O(nmb1/2
1 b1/2

2 /ε2 +
n2m2b1b2

2/ε4) from3 Q. If Q is independent, then Q equals π1Q× π2Q and the tester accepts with
probability at least 2/3. If Q is ε-far from independent, then in particular Q is ε-far from π1Q×π2Q and
the tester rejects with probability at least 2/3.

3We obtain a sample from π1Q×π2Q by simply taking two independent samples from Q, (i1, j1) and (i2, j2) and considering
(i1, j2) as a sample from π1Q×π2Q.
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Applying Theorem 5.4 with b1 = 1/m, b2 = 1/n2/3m1/3, and combining that in the sample analysis of
TestLightIndependence [10], the following theorem is obtained:4

Theorem 5.5 ([10]). There is an algorithm that given a distribution Q over [m]× [n] and an ε > 0,

• If Q is independent then the test accepts with high probability.

• If Q is ε-far from independent then the test rejects with high probability.

The algorithm uses Õ
(
(n2/3m1/3 +m)poly(ε−1)

)
samples.

Finally, Theorem 5.1 follows by combining Theorem 5.5 with Lemma 3.18.

6 Algorithms for tolerant testing of equivalence in the sampling model

Given a list of distributions D, a tolerant equivalence tester is guaranteed to accept, with high probability,
if the distributions in D are close (and not necessarily identical), and reject D, with high probability, if
the distributions in D are far. In this section we prove Theorems 6.11 and 6.13. Theorem 6.11 states
that there is a tolerant equivalence tester taking Õ(n1/2m1/2 +n) samples in the known-weights sampling
model. Theorem 6.13 states that there is a tolerant equivalence tester taking Õ(n2/3m1/3 +m) samples in
the unknown-weights sampling model. A tolerant equivalence tester is also a non-tolerant equivalence
tester, so Theorems 6.11 and 6.13 are stronger versions of Theorems 5.2 and 5.1, respectively.

6.1 An algorithm for tolerant testing of identity in the sampling model

Consider the problem where given sample access to a distribution p and an explicit description of a
distribution q, the algorithm should accept ,with high probability, if p and q are identical, and should
reject, with high probability, if p and q are far. This is called Identity Testing and is defined in [10]. If the
algorithm is guaranteed to accept p and q that are close, and not necessarily identical, we refer to it as a
tolerant identity test. We will use the tolerant identity test as a subroutine in the algorithms for tolerant
testing of equivalence.

We next present and prove Theorem 6.3, which states that there is a tolerant identity tester taking
Õ(
√

n) samples. The theorem is a restatement of theorems in [49] and [10]. The specific tolerance of
Theorem 6.3 is somewhat complex and in order to state it we introduce the following new definitions.

Definition 6.1. For two parameters α,β ∈ (0,1), we say that a distribution p is an (α,β )-multiplicative
approximation of a distribution q (over the same domain R) if the following holds.

• For every i ∈ R such that q(i)≥ α we have that q(i) · (1−β )≤ p(i)≤ q(i) · (1+β ).

• For every i ∈ R such that q(i)< α we have that p(i)< α · (1+β ).

4The procedure TestLightIndependence [10] is called by the TestIndependence [10] Algorithm. In Step (5) of TestLightIn-
dependence use Algorithm 1 to obtain the desired result.
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Definition 6.2. For α ∈ (0,1), we say that a distribution p is an α-additive approximation of a distribution
q (over the same domain R) if for every i ∈ R, |p(i)−q(i)| ≤ α .

Theorem 6.3 (Adapted from [49], [10]). Given sample access to p, a black-box distribution over a
finite domain R, and q, an explicitly specified distribution over R, for every 0 < ε ≤ 1/3, algorithm
Tolerant-Identity-Test(p,q,n,ε) has the following properties.

1. If ‖p−q‖1 > 13ε , the algorithm rejects with high constant probability.

2. If q is an (ε/n,ε/24)-multiplicative approximation of some q′ such that

∥∥p−q′
∥∥

1 ≤
72ε2

`
√

n
,

where `= log(n/ε)/ log(1+ε), the algorithm accepts with high constant probability (in particular,
if q is an (ε/n,ε/24)-multiplicative approximation of p or if

‖p−q‖1 ≤
72ε2

`
√

n
,

the test accepts with high constant probability).

The algorithm takes Õ(
√

npoly(ε−1)) samples from p.

Let p be a distribution over some finite domain R, and let R′ be a subset of R such that p(R′) > 0
where p(R′) = ∑i∈R′ p(i). Denote by p|R′ the restriction of p to R′, i. e., p|R′ is a distribution over R′

such that for every i ∈ R′, p|R′(i) = p(i)/p(R′). In the proof of Theorem 6.3 we shall use the following
definitions and lemmas.

Definition 6.4 ([10]). Given an explicit distribution p over R, Bucket(p,R,α,β ) is the partition
{R0, . . . ,R`} of R with `= log(1/α)/ log(1+β ), R0 = {i : p(i)≤ α}, such that for all j in [`],

R j =
{

i : α(1+β ) j−1 < p(i)≤ α(1+β ) j} . (6.1)

Definition 6.5 ([10]). Given a distribution p over R, and a partition R= {R1, . . . ,R`} of R, the coarsening
p〈R〉 is the distribution over [`] with distribution p〈R〉(i) = p(Ri).

Theorem 6.6 ([10]). Let p be a black-box distribution over a finite domain R and let S be a sample set
from p. coll(S)/

(|S|
2

)
approximates ‖p‖2

2 to within a factor of (1± ε), with probability at least 1− δ ,
provided that |S| ≥ c

√
|R|ε−2 log(1/δ ) for some sufficiently large constant c.

Lemma 6.7 ([10]). Let p,q be distributions over R and let R′ ⊆ R, then ‖p|R′−q|R′‖1 ≤ 2‖p−q‖1/p(R′).

Lemma 6.8 ([10]). For any distribution p over R, ‖p‖2
2−‖UR‖2

2 = ‖p−UR‖2
2.

Lemma 6.9 (Based on [10]). Let p,q be distributions over R and let R′ ⊆ R, then

∑
i∈R′
|p(i)−q(i)| ≤ |p(R′)−q(R′)|+q(R′)‖p|R′−q|R′‖1 .
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Proof.

∑
i∈R′
|p(i)−q(i)| ≤ ∑

i∈R′

∣∣∣∣ p(i)(p(R′)−q(R′))
p(R′)

∣∣∣∣+ ∑
i∈R′

∣∣∣∣ p(i)q(R′)
p(R′)

−q(i)
∣∣∣∣ (6.2)

= |p(R′)−q(R′)|+ ∑
i∈R′

∣∣∣∣ p(i)q(R′)
p(R′)

−q(i)
∣∣∣∣ (6.3)

= |p(R′)−q(R′)|+ ∑
i∈R′

q(R′) ·
∣∣∣∣ p(i)

p(R′)
− q(i)

q(R′)

∣∣∣∣ (6.4)

= |p(R′)−q(R′)|+q(R′) ·
∥∥p|R′−q|R′

∥∥
1 , (6.5)

and the lemma is established.

Lemma 6.10. Let p,q be distributions over a finite domain R and let R′ ⊆ R be a subset of R such that
for every i ∈ R′ it holds that

q(i) ∈ p(i) · [1− ε,1+ ε] , (6.6)

Then for every i ∈ R′,

q|R′(i) ∈ p|R′(i) ·
[
(1− ε)

(1+ ε)
,
(1+ ε)

(1− ε)

]
(6.7)

Proof. Equation (6.6) implies that q(R′) ∈ p(R′) [1− ε,1+ ε] and therefore

p(R′)
q(R′)

∈
[

1
1+ ε

,
1

1− ε

]
.

Thus, we obtain that
q(i)

q(R′)
∈ p(i)

p(R′)
·
[
(1− ε)

(1+ ε)
,
(1+ ε)

(1− ε)

]
,

and the lemma follows.

Proof of Theorem 6.3. Let E1 be the event that for every i in [`] we have that mi approximates ‖p|Ri‖2
2 to

within a factor of (1± ε2). By Theorem 6.6 and the union bound, if Si is such that |Si| ≥ c
√

nε−4 log`
then E1 occurs with probability at least 8/9. Let E2 be the event that for every i in [`] we have that
|(|Si|/|S|)− p(Ri)| ≤ ε/(2`). By Hoeffding’s inequality E2 occurs with probability at least 8/9 for
|S|= Ω̃(`2ε−2). Let E3 be the event that p̃〈R〉 and q̃〈R〉 are ε/(2`)-additive approximations of p〈R〉 and
q〈R〉, respectively. By taking Θ(ε−2`2 log`) samples, E3 occurs with probability at least 8/9.

Let p and q be as described in Case 1, i. e., ‖p−q‖1 > 13ε . Suppose the algorithm accepts p and q.
Conditioned on E1∩E2, this implies that for each partition Ri for which Steps 4a - 4b were performed,
which are those for which q(Ri)≥ ε/`, we have

‖p|Ri‖
2
2 ≤

(1+ ε2)2

|Ri|
· 1

1− ε2 ,
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Tolerant-Identity-Test (sampling access to p, explicit description of q, n, ε > 0)

1. R
def
= {R0, · · · ,R`}= Bucket(q,n,ε/n,ε/24)

2. Let S be a set of Θ̃(
√

nε−5 logn) samples from p

3. Let H be the set of all x such that q(x)> ε(1+ ε)/n

4. For each Ri ⊆ H such that q(Ri)≥ ε/`

(a) If |Si|< c
√

nε−4 log`, where Si = S∩Ri and c is the constant from Theorem 6.6, then
REJECT

(b) If mi >
(1+ε2)2

|Ri| , where mi = coll(Si)/
(|Si|

2

)
, then REJECT

5. Take Θ(ε−2` log`) samples and obtain a ε/(4`)-additive approximations p̃〈R〉 and q̃〈R〉 of p〈R〉
and q〈R〉, respectively

6. If ‖ p̃〈R〉− q̃〈R〉‖1 > 3ε/2 then REJECT

7. ACCEPT

Algorithm 2: The algorithm for tolerant identity testing.

which is at most 1+4ε2

|Ri| for 0 < ε ≤ 1/3. Thus, by Lemma 6.8 it follows that

‖p|Ri−U|Ri‖
2
2 = ‖p|Ri‖

2
2−‖U|Ri‖

2
2 ≤

4ε2

|Ri|
. (6.8)

For every i ∈ [`],

‖q|Ri−U|Ri‖
2
2 = ∑

j∈Ri

∣∣∣∣ q( j)
q(Ri)

− q(Ri)/|Ri|
q(Ri)

∣∣∣∣2 ≤ 1
q(Ri)2 ∑

j∈Ri

∣∣∣∣ε q(Ri)

|Ri|

∣∣∣∣2 ≤ ε2

|Ri|
, (6.9)

where the second inequality follows from the bucketing definition. By the triangle inequality we obtain
from equations (6.8) and (6.9) that

‖p|Ri−q|Ri‖
2
2 ≤

9ε2

|Ri|
and thus ‖p|Ri − q|Ri‖1 ≤ 3ε . We also have that the sum of q(Ri) over all Ri for which Steps 4a - 4b
were not preformed is at most ` · (ε/`)+n · (ε(1+ ε)2/n)< 4ε . For those Ri we use the trivial bound
‖p|Ri−q|Ri‖1 ≤ 2. Also, ‖p〈R〉−q〈R〉‖1 ≤ 2ε by Step 6. So by Lemma 6.9 we get that ‖p−q‖1 ≤ 13ε

in contradiction to our assumption. Therefore, the test accepts p and q with probability at most 1/3 (the
bound on the probability of Ē1∪ Ē2∪ Ē3).

We next turn to proving the second item in the theorem. Suppose q is an (ε/n,(ε/24))-multiplicative
approximation of some q′ such that p is (72ε2/`

√
n)-close to q′. Conditioned on E2, every Ri that enters
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Step 4a also passes this step, since otherwise we get, in contradiction to our assumption, that q(Ri)≥ ε/`
while p(Ri)≤ 2ε/(3`). From the bucketing definition we have that for every i ∈ [`] and for every x ∈ Ri,

max(y ∈ Ri) ·
1

(1+(ε/24))
≤ q(x)≤min(y ∈ Ri) · (1+(ε/24)) ,

implying that

q(x) ∈ q(Ri)

|Ri|
·
[

1
(1+(ε/24))

,(1+(ε/24))
]
. (6.10)

Since q is an (ε/n,ε/24)-multiplicative approximation of q′, we get by Lemma 6.10 that for every Ri ⊆H
and every x ∈ H,

q(x)
q(Ri)

∈ q′(x)
q′(Ri)

·
[
(1− (ε/24))
(1+(ε/24))

,
(1+(ε/24))
(1− (ε/24))

]
. (6.11)

Combining equations (6.10) and (6.11) we get that

q′(x) ∈ q′(Ri)

|Ri|
·
[
(1− (ε/24))
(1+(ε/24))2 ,

(1+(ε/24))2

(1− (ε/24))

]
, (6.12)

and thus for 0 < ε ≤ 1/2,
q′(x)
q′(Ri)

∈
[
(1− (ε/2))
|Ri|

,
(1+(ε/2))
|Ri|

]
. (6.13)

By equation (6.13) we obtain that for every Ri ⊆ H

‖q′|Ri
−U|Ri‖2 ≤ ε/(2

√
|Ri|) . (6.14)

For all subsets Ri ⊆ H with q(Ri)≥ ε/` we have that q′(Ri)≥ ε/((1+ ε)`), combined with the fact that

‖p−q′‖1 ≤
72ε2

`
√

n

we get by Lemma 6.7 (for sufficiently large n) that

‖p|Ri−q′|Ri
‖1 ≤ ε/(2

√
n) . (6.15)

This implies that
‖p|Ri−q′|Ri

‖2 ≤ ‖p|Ri−q′|Ri
‖1 ≤ ε/(2

√
n)< ε/(2

√
|Ri|) . (6.16)

By the triangle inequality we get that

‖p|Ri−U|Ri‖2 ≤ ‖p|Ri−q′|Ri
‖2 +‖q′|Ri

−U|Ri‖2 ≤ ε/
√
|Ri| . (6.17)

Therefore, by Lemma 6.8 it follows that

‖p|Ri‖
2
2 = ‖p|Ri−U|Ri‖

2
2 +‖U|Ri‖

2
2 ≤ (1+ ε

2)/|Ri| . (6.18)

Therefore, conditioned on E1∩E2 all such subsets will pass Step 4b. Since q is ε/2-close to q′, by the
triangle inequality p is ε-close to q and thus conditioned on E3 the algorithm will pass Step 6 as well.
Thus the algorithm accepts with probability at least 2/3.

Finally, the sample complexity is Õ(
√

nε−5) from Step 2, which dominates the sample complexity of
Step 5.
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6.2 An algorithm for tolerant testing of equivalence in the known-weights sampling
model

In this section we prove Theorem 6.11. We note that in the proof of the theorem we essentially describe a
tolerant tester for the property of independence of two random variables.

Theorem 6.11. Let D be a list of m distributions over [n] and let ~w be a weight vector over [m]. Denote
by QD,~w the joint distribution over [m]× [n] such that QD,~w(i, j) = wi ·Di( j). There is a test that works
in the known-weights sampling model, which takes Õ((n1/2m1/2 +n)poly(1/ε)) samples from D, and
whose output satisfies the following:

• If D is 24ε2(1−3ε)/(`
√

n)-close to being in Peq, where ` = log(n/ε)/ log(1+ ε), or if QD,~w

is an (ε/n, ε/120)-multiplicative approximation of π1QD,~w×π2QD,~w, then the test accepts with
probability at least 2/3

• If D is 19ε-far from being in Peq, then the test rejects with probability at least 2/3.

In the proof of Theorem 6.11 we shall use the following lemma:

Lemma 6.12. Let Q be a joint distribution over [m]× [n]. Let Q̃1 be a (α1,β1)-multiplicative approxima-
tion of π1Q. Let Q̃2 be a (α2,β2)-multiplicative approximation of π2Q. Denote by A1 the set of all i ∈ [m]
such that Q̃1(i)≥ α1(1+β1). Denote by A2 the set of all j ∈ [n] such that Q̃2( j)≥ α2(1+β2). For every
B1 ⊆ A1 and every B2 ⊆ A2,

(
Q̃1× Q̃2

)
|B1×B2

is a
(
0,2(β1 +β2)/((1−β1) · (1−β2))

)
-multiplicative

approximation of (π1Q×π2Q)|B1×B2
.

Proof. For every (i, j) ∈ B1×B2 we have that

Q̃1(i) · Q̃2( j) ∈ π1Q(i) ·π2Q( j) · [(1−β1) · (1−β2),(1+β1) · (1+β2)] . (6.19)

From the facts that

(1+β1) · (1+β2)

(1−β1) · (1−β2)
= 1+

2(β1 +β2)

(1−β1) · (1−β2)
and

(1−β1) · (1−β2)

(1+β1) · (1+β2)
> 1− 2(β1 +β2)

(1−β1) · (1−β2)
,

and from Lemma 6.10 the lemma follows.

Proof of Theorem 6.11. The test referred to in the statement of the theorem is Algorithm 3. Let E1 be
the event that Q̃2 is an (ε/n, ε/120)-multiplicative approximation of π2Q, as defined in Definition 6.1.
By applying Chernoff’s inequality and the union bound, E1 occurs with probability at least 8/9 (for a
sufficiently large constant in the Θ(·) notation for the sample size). By Lemma 6.12, conditioned on E1,
we have that (

~w× Q̃2
)
|[m]×H

is a (0,ε/24)-multiplicative approximation of

(π1Q×π2Q)|[m]×H .
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Equivalence-Known-Weights-Tolerant-Test (sampling access to a list of m distributions, D, over
[n], in the known-weights sampling model, 0 < ε ≤ 1/3)

1. Let Q denote QD,~w

2. Take Θ(ε−3n logn) samples and obtain a (ε/n, ε/120)-multiplicative approximation, Q̃2, of
π2Q

3. Let H be the set of all j ∈ [n] such that Q̃2( j)> ε(1+ ε)/n and let L be [n]\H

4. If Tolerant-Identity-Test with parameters: Q[m]×H ,
(
~w× Q̃2

)
|[m]×H

, |H| ·m, ε and confidence

1/9, rejects then REJECT

5. I
def
= {[m]×H, [m]×L}

6. Take Θ(ε−2) samples and obtain a (ε/2)-additive approximations Q̃1×2
〈I〉 and Q̃〈I〉 of (π1Q×

π2Q)〈I〉 and Q〈I〉, respectively

7. If
∥∥∥Q̃1×2
〈I〉 − Q̃〈I〉

∥∥∥
1
> 2ε then REJECT

8. ACCEPT

Algorithm 3: The algorithm for tolerant testing of equivalence in the known-weights sampling model.

Thus, ∥∥∥∥(~w× Q̃2
)
|[m]×H

− (~w×π2Q)|[m]×H

∥∥∥∥
1
≤ ε/24 .

Let E2 be the event that the application of Tolerant-Identity-Test returned a correct answer, as defined by
Theorem 6.3. We run the amplified version of Tolerant-Identity-Test, therefore the additional parameter,
which is the confidence parameter, is set to 1/9, i. e., E2 occurs with probability at least 8/9.

Let D be 19ε-far from being in Peq and assume the test accepts. Conditioned on E2 this implies that∥∥∥∥Q|[m]×H −
(
~w× Q̃2

)
|[m]×H

∥∥∥∥
1
≤ 13ε .

By the triangle inequality, we obtain that conditioned on E1∩E2,∥∥∥Q|[m]×H − (~w×π2Q)|[m]×H

∥∥∥
1
≤ ε/24+13ε < 14ε . (6.20)

Conditioned on E1 we have that Q([m]×L)≤ 3ε , and therefore

Q([m]×L) ·
∥∥∥Q|[m]×L− (~w×π2Q)|[m]×L

∥∥∥
1
≤ 6ε . (6.21)

Let E3 be the event that Q̃1×2
〈I〉 and Q̃〈I〉 are ε/2-additive approximations of (π1Q× π2Q)〈I〉 and Q〈I〉,

respectively. By taking Θ(ε−2) samples, E3 occurs with probability at least 8/9. Conditioned on E3, we
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have that ∥∥(π1Q×π2Q)〈I〉−Q〈I〉
∥∥

1 ≤ 3ε . (6.22)

Combining equations (6.20) - (6.22), by Lemma 6.9, we have that

‖(π1Q×π2Q)−Q‖1 ≤ 3ε +14ε +6ε = 23ε . (6.23)

Hence D is 23ε-close to being in Peq, in contradiction to our assumption. It follows that the test accepts
with probability at most 1/3.

On the other hand, consider the case that either D is 24ε2(1−3ε)/(`
√

n)-close to being in Peq, or
that π1QD,~w×π2QD,~w is an (ε/n, ε/120)-multiplicative approximation of QD,~w, and assume that the test
rejects. For the sake of simplicity, denote

(
~w× Q̃2

)
by A and (~w×π2Q) by B. In case the test rejects in

Step (4) then conditioned on E2, we get by Theorem 6.3 that A|[m]×H is not an (ε/n,ε/24)-multiplicative
approximation of any q′ such that ∥∥Q|[m]×H −q′

∥∥
1 ≤

72ε2

`
√

n
.

Conditioned on E1, we have that A|[m]×H is an (ε/n,ε/24)-multiplicative approximation of B|[m]×H . Thus,
conditioned on E1∩E2, we obtain that

∥∥Q|[m]×H −B|[m]×H
∥∥

1 >
72ε2

`
√

n
.

Based on the fact that Q([m]×H) = B([m]×H), it follows, conditioned E1∩E2, that

‖Q−B‖1 > Q([m]×H) ·
∥∥Q|[m]×H −B|[m]×H

∥∥
1 >

72ε2(1−3ε)

`
√

n
.

By Proposition 3.17 this implies that D is 24ε2(1−3ε)/(`
√

n)-far from being in Peq. By setting
q′ = Q|[m]×H we also have that A|[m]×H is not an (ε/n,ε/24)-multiplicative approximation of Q|[m]×H .
Hence, there exists (i, j) ∈ [m]×H that satisfies either

A|[m]×H(i, j)> (1+(ε/24))Q|[m]×H(i, j) (6.24)

or
A|[m]×H(i, j)< (1− (ε/24))Q|[m]×H(i, j) . (6.25)

By Lemma 6.12, we get that A|[m]×H is a (0,ε/30)-multiplicative approximation of B|[m]×H . Therefore,
by equations (6.24) and (6.24), either it holds that

Q|[m]×H(i, j)<
1+(ε/30)
1+(ε/24)

B|[m]×H(i, j) (6.26)

or that

Q|[m]×H(i, j)>
1− (ε/30)
1− (ε/24)

B|[m]×H(i, j) . (6.27)
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Since Q([m]×H) = B([m]×H), we obtain from equations (6.26) and (6.27) that either

Q(i, j)<
1+(ε/30)
1+(ε/24)

B(i, j) or Q(i, j)>
1− (ε/30)
1− (ε/24)

B(i, j) ,

which by a simple calculation implies that Q is not a (ε/n,ε/120)-multiplicative approximation of
~w×π2Q.

Alternatively, in case the test rejects in Step 7 then by the triangle inequality we get that conditioned
on E3, Q is ε-far from π1Q×π2Q. In both cases we get a contradiction to our assumption and therefore
the algorithm accepts D with probability at most 1/3 (which is the upper bound on the probability of
Ē1∪ Ē2∪ Ē3).

The sample complexity of Step 4 is bounded by Õ(n1/2m1/2poly(ε−1)) so the overall sample com-
plexity is Õ((n1/2m1/2 +n)poly(ε−1)).

6.3 An algorithm for tolerant testing of equivalence in the unknown-weights sampling
model

In this section we prove the following theorem:

Theorem 6.13. Let D be a list of m distributions over [n]. It is possible to distinguish between the
case that D is 36ε3/(`

√
n)-close to being in Peq, where `= log(n/ε)/ log(1+ ε) and the case that D is

25ε-far from being in Peq in the unknown-weights sampling model using a sample of size Õ((n2/3m1/3 +
m) ·poly(1/ε)).

Proof of Theorem 6.13. The algorithm referred to in the statement of the theorem is Algorithm 4. We note
that we run the amplified version of Tolerant-Identity-Test and Bounded-`∞-Closeness-Test and that
the additional parameter in the application of Tolerant-Identity-Test and Bounded-`∞-Closeness-Test
is the confidence parameter. Let E1 be the event that Q̃1 is an (ε/m, ε/250)-multiplicative approximation
of π1Q. By taking a sample of size Θ(ε−3m logm), E1 occurs with probability at least 20/21. Let E2
be the event that Q̃2 is an (ε/n2/3m1/3, ε/250)-multiplicative approximation of π2Q. For a sample of
size Θ(ε−3n2/3m1/3 logn), we get, by Chernoff’s inequality, that E2 occurs with probability at least
20/21. By Lemma 6.12, for every 0 < ε ≤ 1/3, we get, condition on E1∩E2, that

(
Q̃1× Q̃2

)
|H1×H2

is a
(0,ε/24)-multiplicative approximation of (π1Q×π2Q)|H1×H2

. Thus, conditioned on E1∩E2, we have
that ∥∥∥∥(Q̃1× Q̃2

)
|H1×H2

− (π1Q×π2Q)|H1×H2

∥∥∥∥
1
≤ ε/24 . (6.28)

Let E3 be the event that the application of Tolerant-Identity-Test returned a correct answer, as defined
by Theorem 6.3. E3 occurs with probability at least 20/21.

Let D be 25ε-far from being in Peq and assume the algorithm accepts. Then either Tolerant-
Identity-Test returns accept or γ < 3ε/2. Consider the case that Tolerant-Identity-Test returns accept.
Conditioned on E3, by Theorem 6.3, we have that∥∥∥∥(Q̃1× Q̃2

)
|H1×H2

−Q|H1×H2

∥∥∥∥
1
≤ 13ε .
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Equivalence-Unknown-Weights-Tolerant-Test (sampling access to a list of m distributions, D,
over [n], in the unknown-weights sampling model, 0 < ε ≤ 1/8)

1. Let Q denote QD,~w

2. Take Θ(ε−3m logm) samples and obtain an (ε/m, ε/250)-multiplicative approximation Q̃1 of
π1Q

3. R
def
= {R0, · · · ,R`}= Bucket(Q̃1,m,(1+ ε)ε/m,ε)

4. Let L1 = R0 and let H1 = [m]\L1

5. Take Θ(ε−3n2/3m1/3 logn) samples and obtain an (ε/(n2/3m1/3), ε/250)-multiplicative ap-
proximation Q̃2 of π2Q

6. Let H2 be the set of all j ∈ [n] such that Q̃2( j)> ε(1+ ε)/(n2/3m1/3) and let L2 = [n]\H2

7. Take Θ(ε−2) samples and let γ be the fraction of samples in H1×H2. If γ < 3ε/2 then skip
the next step.

8. If Tolerant-Identity-Test with parameters: Q|H1×H2 , (Q̃1× Q̃2)|H1×H2 , |H1| · |H2| ,ε and confi-
dence 1/21 rejects then REJECT

9. Let S be a set of Θ̃(`2ε−2) independent samples. For each Ri such that |Si|/|S| ≥ ε/`,
where Si = S∩ (Ri×L2), if Bounded-`∞-Closeness-Test with parameters: (π1Q×π2Q)|Ri×L2 ,
Q|Ri×L2 , 4`/(εn2/3m1/3|Ri|), 2`/(εn2/3m1/3), |L2| · |Ri|, ε and confidence 1/(21`), rejects then
REJECT

10. I
def
= {H1×H2,L1×H2,R0×L2, · · · ,R`×L2}

11. Take Θ(ε−2`2 log`) samples and obtain an ε/(2`)-additive approximations Q̃1×2
〈I〉 and Q̃〈I〉 of

(π1Q×π2Q)〈I〉 and Q〈I〉, respectively

12. If
∥∥∥Q̃1×2
〈I〉 − Q̃〈I〉

∥∥∥
1
> 2ε then REJECT

13. ACCEPT

Algorithm 4: The algorithm for tolerant testing of equivalence in the unknown-weights sampling model.
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By the triangle inequality and equation (6.28) we obtain that∥∥∥(π1Q×π2Q)|H1×H2
−Q|H1×H2

∥∥∥
1
≤ 13ε + ε/24 < 14ε . (6.29)

Consider the case γ < 3ε/2. Let E4 be the event that |γ−Q(H1×H2)| ≤ ε/2. By taking Θ(ε−2) samples,
E4 occurs with probability at least 20/21. Then we have that

Q(H1×H2)≤ 2ε . (6.30)

Let E5 be the event that all applications of Bounded-`∞-Closeness-Test returned a correct answer, as
defined by Theorem 5.3. By the union bound, E5 occurs with probability at least 20/21. Conditioned on
E5, we obtain that every Ri that passes Step 9 satisfies the following∥∥(π1Q×π2Q)|Ri×L2−Q|Ri×L2

∥∥
1 ≤ ε . (6.31)

Let E6 to be the event that for every i in [`] we have that |(|Si|/|S|)−Q(L2×Ri)| ≤ ε/(2`). By Hoeffding’s
inequality E6 occurs with probability at least 20/21 for |S|= Ω̃(`2ε−2). From the fact that for every Ri

that doesn’t enter Step 9 we have that |Si|/|S|< ε/`, we obtain, conditioned on E6, that

Q(Ri×L2)≤ 3ε/(2`) . (6.32)

Let E7 be the event that Q̃1×2
〈I〉 and Q̃〈I〉 are ε/(2`)-additive approximations of (π1Q×π2Q)〈I〉 and Q〈I〉,

respectively. By taking Θ(ε−2`2 log`) samples, E7 occurs with probability at least 20/21. Since we
assume that the algorithm accepts D then, in particular, D passes Step 12. Therefore, conditioned on E7,
we have that ∥∥(π1Q×π2Q)〈I〉−Q〈I〉

∥∥
1 ≤ 3ε . (6.33)

Conditioned on E1∩E2, for 0 < ε ≤ 1/5 we have that

Q(L1×H2)≤ 3ε/2 . (6.34)

For every I ∈ I we have the following trivial bound∥∥(π1Q×π2Q)|I−Q|I
∥∥

1 ≤ 2 . (6.35)

Combining equations (6.29) - (6.35), by Lemma 6.9, we have that

‖(π1Q×π2Q)−Q‖1 ≤ 3ε +14ε +2ε + ` ·3ε/(2`) ·2+3ε/2 ·2 = 25ε . (6.36)

Therefore, D is 25ε-close to being in Peq in contradiction to our assumption. It follows that the algorithm
accepts D with probability at most 1/3.

On the other hand, let D be 36ε3/(`
√

n)-close to being in Peq and assume the algorithm rejects.
Conditioned on E1 ∩E2, we have that (Q̃1× Q̃2)|H1×H2 is a (0,ε/24)-multiplicative approximation of
(π1Q×π2Q)|H1×H2 . Therefore, conditioned on E1∩E2∩E3∩E4, if we reject in Step 8, then we obtain
by Theorem 6.3 that ∥∥Q|H1×H2−

(
π1Q×π2Q

)
|H1×H2

∥∥
1 > 72 · ε2

`
√

n
. (6.37)
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It follows, by Lemma 6.7, that

‖π1Q×π2Q−Q‖1 >
π1Q(H1) ·π2Q(H2)

2
·72 · ε2

`
√

n
≥ 36ε3

`
√

n
.

If we reject in Step 9, then conditioned on E5∩E6, there is Ri such that Q(Ri×L2)≥ ε/` in which the
following holds, ∥∥∥(π1Q×π2Q)|Ri×L2

−Q|Ri×L2

∥∥∥
1
> ε/(2

√
n) . (6.38)

Thus, by Lemma 6.7,

‖π1Q×π2Q−Q‖1 >
Q(Ri×L2)

2
· ε/(2

√
n)≥ ε

2/(4`
√

n) .

If we reject in Step 12, then conditioned on E7 it follows that ‖π1Q×π2Q−Q‖1 > ε . Thus we get a
contradiction to our assumption (that the algorithm rejects), which implies that the algorithm accepts D
with probability at least 2/3. To achieve (1−δ ) confidence, the amplified algorithm takes the majority
result of Θ(log1/δ ) applications of the original algorithm. In addition, both algorithms are applied
on restricted domains (H1×H2 in Tolerant-Identity-Test and Ri×L2 in Bounded-`∞-Closeness-Test).
This affects the sample complexity only by a factor of poly(1/ε, logn). For every Ri that enters Step 9,
the number of required samples from the domain Ri×L2 in that step is bounded by

Õ((n2/3 · |Ri|1/2/m1/6 +n2/3 · |Ri|/m2/3) ·poly(1/ε)) .

Thus, since ` is logarithmic in n and 1/ε , the number of samples required by all the applications of
Bounded-`∞-Closeness-Test is bounded by Õ(n2/3m2/3 ·poly(1/ε)). Therefore, the sample complexity
is Õ((n2/3m1/3 +m) ·poly(1/ε)) as required.

7 Testing (k,β )-clusterability in the query model

In this section we consider an extension of the property P
eq
m,n studied in the previous sections. Namely,

rather than asking whether all distributions in a list D are the same, we ask whether there exists a partition
of D into at most k lists, such that within each list all distributions are the the same (or close). That is, we
are interested in the following a clustering problem:

Definition 7.1. Let D be a list of m distributions over [n]. We say that D is (k,β )-clusterable if there
exists a partition of D to k lists ,{Di}k

i=1 such that for every i ∈ [k] and every D,D′ ∈Di, ‖D−D′‖1 ≤ β .

In particular, for k = 1 and β = 0, we get the property P
eq
m,n. We study testing (k,β )-clusterability

(for k ≥ 1) in the query model. The question for k > 1 in the (uniform) sampling model remains open.
We start by noting that if we allow a linear (or slightly higher) dependence on n, then it is possible,

for any ε and β (by adapting the algorithm we give below), to obtain a tester that distinguishes collections
that are (k,β )-clusterable from collections that are ε-far from being (k,β )-clusterable. The complexity of
this tester is Õ(n · k ·poly(1/ε))). However, if we want a dependence on n that grows slower than n1−o(1),
then it is not possible to get such a result even for m = 2 (and k = 1). This is true since distinguishing
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between the case that a pair of distributions are β -close and the case that they are β ′-far for constant β

and β ′ requires n1−o(1) samples [47]. We also note that for β = 0 the dependence on n must be at least
Ω(n2/3) (for m = 2 and k = 1) [47]. Our algorithm works for β = 0 and slightly more generally, for
β = O(ε/

√
n), has no dependence on m, has almost linear dependence on k, and its dependence on n

grows like Õ(n2/3).

Theorem 7.2. Algorithm 5 Clusterability-Test is a testing algorithm for (k,β )-clusterability of a list of
distributions in the query model, which works for every ε > 8βn1/2, and performs Õ(n2/3 · k ·poly(1/ε))
sampling queries.

We build on the following theorem.

Theorem 7.3 ([11]). Given parameter δ , and sampling access to distributions p,q over [n], there is a
test, `1-Distance-Test(p,q,ε,δ ), which takes O(ε−4n2/3 logn logδ−1) samples from each distribution
and for which the following holds.

• If ‖p−q‖1 ≤ ε/(4n1/2), then the test accepts with probability at least 1−δ .

• If ‖p−q‖1 > ε , then the test rejects with probability at least 1−δ .

Algorithm 5 is an adaptation of the diameter-clustering tester of [3], which applies to clustering
vectors in Rd . While often clustering algorithms rely on a method of evaluating distances between the
objects that they cluster, the algorithm from [11] only distinguishes pairs of distributions that are very
close from those that are ε-far (in `1 distance). Still, this is enough information in conjunction with the
algorithm of [3] to construct a good distribution (k,b)-clusterability tester.

Clusterability-Test (query access to a list, D, of m distributions over [n] in the query model, k, β ,
ε > 0)

1. Pick the representative of the first cluster, rep1, uniformly from D

2. For i := 1, . . . ,k

(a) Uniformly and independently select a set, D′, of 2 ln(6(k+1))/ε distributions from D

(b) If there exists D∈D′ such that `1-Distance-Test(D, rep`, β/2, ε/12(k+1) ln(6(k+1)))
rejects for every 1≤ `≤ i, then set repi+1 = D, otherwise ACCEPT

3. REJECT

Algorithm 5: The algorithm for testing clusterability.

Proof of Theorem 7.2. Assume all applications of `1-Distance-Test returned a correct answer, as defined
by Theorem 7.3. By the union bound, this happens with probability at least 5/6. Let us refer to this
event as E1. Conditioned on E1, the clustering algorithm rejects only if it finds k+1 distributions in D
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such that the `1 distance between every two of them is greater than (ε/2)/(4n1/2) ≥ β . Thus, if D is
(k,β )-clusterable, then it will be accepted with probability at least 5/6.

We thus turn to the case that D is ε-far from being (k,β )-clusterable. In this case we claim that
as long as there are t ≤ k representatives, rep1, . . . , rept , the number of distributions Di ∈D such that
‖Di−rep`‖1 > ε/2 for every 1≤ `≤ t, is at least εm/2. To verify this, assume for the sake of contradiction
that there are less than εm/2 such distributions. Then the sum of the distances of each of these distributions
to an arbitrary representative plus the sum over the other distributions of the distance between each
distribution and the closest representative is less than εm, implying that the collection is ε-close to being
(k,0)-clusterable.

Since in each iteration of the while loop, there are less than k+1 representative distributions, at least
εm/2 of the distributions in D are ε/2-far from any of the former representative distributions. Therefore,
conditioned on E1, for every iteration of the while loop, the probability that a new representative is not
found is less than

(1− ε/2)2ln(6(k+1))/ε < eln(6(k+1)) =
1

6(k+1)
.

By applying the union bound, the algorithm rejects D with probability greater than 2/3. Since there are
O(logk/ε) iterations, and in each there is a single application of the `1-distance test, by Theorem 7.3 the
total number of samples used is as stated.
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