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Abstract: The Hypercontractive Inequality of Bonami (1968, 1970) and Gross (1975) is
equivalent to the following statement: for every q > 2 and every function f : {−1,1}n→ R
of Fourier degree at most m,

‖ f‖q ≤ (q−1)m/2‖ f‖2 .

The original proof of this inequality is analytical. Friedgut and Rödl (2001) gave an al-
ternative proof of the slightly weaker Hypercontractive Inequality ‖ f‖4 ≤ 28m/4‖ f‖2 by
combining tools from information theory and combinatorics. Specifically, they recast the
problem as a statement about multi-hypergraphs, generalized Shearer’s lemma, and used
probabilistic arguments to obtain the inequality.

We show that Shearer’s Lemma and elementary arguments about the entropy of random
variables are sufficient to recover the optimal Hypercontractive Inequality for all even
integers q.
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1 Introduction

The Hypercontractive Inequality plays a fundamental role in the analysis of Boolean functions. Discovered
independently1 by Aline Bonami [3, 4] and several years later by Leonard Gross [14], the inequality
is concerned with the noise operator Tρ that acts on functions f : {−1,1}n→ R via Tρ f (x) = E[ f (y)],
where y is a ρ-correlated copy of x (i. e., y is drawn from the product distribution where E[yixi] = ρ for
all i ∈ [n]). Intuitively, the noise operator smooths f by replacing each f (x) with the average of f ’s values
in a neighborhood around x; this effect is also evident when considering the Fourier expansion

Tρ f = ∑
S⊆[n]

ρ
|S| f̂ (S)χS , where χS(x) = ∏

i∈S
xi .

Here we see that each Fourier coefficient f̂ (S) is attenuated by a factor ρ |S| that gets harsher the larger |S|
is. The Hypercontractive Inequality quantifies this smoothing effect by showing that applying Tρ to f
allows one to bound its 2-norm by a smaller norm:

Hypercontractive Inequality. Let f : {−1,1}n→ R and 0 < ρ < 1. Then
∥∥Tρ f

∥∥
2 ≤ ‖ f‖1+ρ2 .

The Hypercontractive Inequality is equivalent (via duality, see, e. g., [22]) to the following inequality.

Theorem 1.1. For any f : {−1,1}n → R, let f (=m) = ∑|S|=m f̂ (S)χS denote the projection of f to its
degree-m part. Then for all q > 2,

‖ f (=m)‖q ≤ (q−1)m/2 · ‖ f (=m)‖2 .

That is, the 2→ q norm of the projection operator P=m that maps f : {−1,1}n→ R to its degree-m part
is at most (q−1)m/2. We denote this as ‖P=m‖2→q ≤ (q−1)m/2.

First introduced into theoretical computer science by the celebrated work of Kahn, Kalai, and
Linial [15], the Hypercontractive Inequality has seen utility in a surprisingly wide variety of areas,
spanning distributed computing, random graphs, k-SAT, social choice, inapproximability, learning theory,
metric spaces, statistical physics, convex relaxation hierarchies, etc. [2, 6, 22, 8, 9, 10, 11, 5, 18, 17, 21,
13, 19, 1]. In almost every one of these results there are no known alternate proofs that do not require the
use of hypercontractivity. (See de Wolf’s survey [23, Sec. 4] and O’Donnell’s monograph [20, Ch. 9] for
more details on the Hypercontractive Inequality and its applications.)

The well-known analytic proof of the Hypercontractive Inequality proceeds by induction on n. The
crux of the inductive step (sometimes referred to as the tensoring property of the Hypercontractive
Inequality) is Minkowski’s inequality, the triangle inequality for Lp spaces; the base case is a two-
point inequality that reduces to standard analytic calculations but is nonetheless technically involved.
Considering the ubiquity of the Hypercontractive Inequality in discrete settings, there has been significant
interest in obtaining alternative proofs of the inequality.

Ehud Friedgut and Vojtech Rödl [12] obtained one such alternative proof by exploiting a novel
connection between the Hypercontractive Inequality and Shannon entropy. Specifically, their main result
is an information-theoretic/combinatorial proof of the inequality

‖P=m‖2→4 ≤ (
√

28)m/2 .

1For a history of the discovery of the Hypercontractive Inequality we refer the reader to the Notes in [20, Ch. 9].
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This is a slightly weaker version of the q= 4 special case of Theorem 1.1, but it is nonetheless qualitatively
sufficient for many applications of the Hypercontractive Inequality, with a slight loss in the corresponding
bounds. Friedgut and Rödl obtain this result by recasting the inequality in terms of multi-hypergraphs,
invoking a generalization of Shearer’s entropy lemma for such hypergraphs, and applying probabilistic
arguments to complete the proof.

Friedgut and Rödl’s result raises two fundamental questions: Is the combinatorial/information
theoretic argument strong enough to recover the optimal value of ‖P=m‖2→q? And, can this result be
obtained directly by elementary information theoretic arguments? We give positive answers to both
questions: we show that Friedgut and Rödl’s argument can be simplified and sharpened by reasoning
directly about the Fourier spectrum of f , without requiring the translation to hypergraphs or generalization
of Shearer’s lemma. With this direct approach, we obtain a simple proof of the optimal Hypercontractive
Inequality

‖P=m‖2→2k ≤ (2k−1)m/2

for all k ∈ N (i. e., Theorem 1.1 for all even integers q) using only elementary information-theoretic facts.
Let us briefly mention two other alternative proofs for special cases of the Hypercontractive Inequality.

First, there is a short and elegant inductive proof of the q = 4 special case of Theorem 1.1 that requires
only the Cauchy-Schwarz inequality. This proof first appeared in the literature in [19], although Bonami’s
original paper [4] contains a proof along similar lines. This proof, however, does not appear to generalize
beyond the q = 4 special case. Second, in independent recent work, Kauers et al. noted that the two-point
inequality in the standard analytic proof of the Hypercontractive Inequality becomes particularly simple
when q is an even integer [16]. However, this proof still uses the inductive step as a black-box (i. e., the
fact that the Hypercontractive Inequality tensorizes, requiring Minkowski’s inequality), and remains very
much an analytic proof.

2 Basics of Shannon entropy

Let X be a (scalar or vector valued) random variable over the discrete sample space Ω and let p : Ω→ [0,1]
be the probability mass function of X. The entropy of X is

H(X) =−∑
x∈Ω

p(x) log p(x) .

Here and throughout this note, logarithms are taken to base 2. The conditional entropy of X given Y is

H(X | Y) = E
y

[
−∑

x
p(x | y) log p(x | y)

]
.

We use the following basic properties of entropy in our analysis.

Lemma 2.1 (Universal upper bound). For any random variable X over the sample space Ω,

H(X)≤ log |supp(X)| ≤ log |Ω| .

The equality H(X) = log |Ω| holds if and only if X is uniformly distributed over Ω.
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Lemma 2.2 (Chain rule). The entropy of a sequence X1, . . . ,Xn of random variables satisfies

H(X1, . . . ,Xn) =
n

∑
i=1

H(Xi | X1, . . . ,Xi−1).

Finally we recall Shearer’s lemma, a generalization of the subadditivity of entropy. (For a simple
proof, see [7].) For a sequence of random variables X = (X1, . . . ,Xn) and a set S⊆ [n], we write XS to
denote the projection of X onto the coordinates in S, i. e., XS = (X j) j∈S.

Lemma 2.3 (Shearer’s Lemma). Let X ∈Ωn be a vector of random variables and let S1, . . . ,Sm ⊆ [n] be
a collection of sets that cover each element in [n] at least t times. Then

H(X)≤ 1
t

m

∑
j=1

H(XS j) .

3 Hypercontractivity via the entropy method

In this section we prove Theorem 1.1 for all even integers q using the entropy method.

Theorem 3.1 (Special case of Theorem 1.1). For any f : {−1,1}n→ R and any even integer q > 2,

‖ f (=m)‖q ≤ (q−1)m/2 · ‖ f (=m)‖2 .

Proof. By a limiting argument, it suffices to prove the inequality for f : {−1,1}n→Q. By homogeneity,
we may further assume that the Fourier coefficients of f are integral (i. e., f̂ (S) ∈ Z for all S⊆ [n]).

For each S ∈
(
[n]
m

)
, let WS denote a set of | f̂ (S)| elements which we call witnesses for S. The witness

sets for any two distinct sets S 6= T are disjoint, and we write W=
⋃

S WS to denote the disjoint union
of all

(n
m

)
witness sets. We say that q witnesses in W are a legal q-tuple if their corresponding sets

S1, . . . ,Sq ∈
(
[n]
m

)
satisfy S14 ·· · 4Sq = /0.

Let w = (w1, . . . ,wq) ∈Wq be a random variable drawn uniformly at random from the collection of
ordered legal q-tuples in Wq (where repetitions are allowed) and let S = (S1, . . . ,Sq) ∈

(
[n]
m

)q
be the sets

corresponding to the q witnesses in w. By the chain rule, the joint entropy of w and S satisfies

H(w,S) = H(w)+H(S | w) = log

 ∑
S1,...,Sq∈([n]m)
S14···4Sq= /0

| f̂ (S1) . . . f̂ (Sq)|

+0

≥ log

∣∣∣∣∣∣∣∣∣∣
∑

S1,...,Sq∈([n]m)
S14···4Sq= /0

f̂ (S1) . . . f̂ (Sq)

∣∣∣∣∣∣∣∣∣∣
= log(‖ f (=m)‖q

q) , (1)

where the final equality uses the fact that q is even.
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Let

T = (T{1,2},T{1,3}, . . . ,T{q−1,q}) ∈
(

[n]
≤ m

)(q
2)

be a sequence of
(q

2

)
sets such that for every i < j ∈ [q],

T{i, j} =
{

x ∈ [n] : x ∈ (Si∩S j)\(Si+1∪·· ·∪S j−1) and #{` ∈ [q] : ` < i, x ∈ S`} is even
}
.

Recall that the symmetric difference of the sets in S is empty, and so every x ∈ [n] occurs in an even
number of them. Therefore, if an element x satisfies {i ∈ [q] : x ∈ Si}= {i1, . . . , ik} where i1 ≤ . . .≤ ik,
then x is added to the sets T{i1,i2},T{i3,i4}, . . . ,T{ik−1,ik}.

Let
T{i,∗} := (T{i, j}) j 6=i = (T{1,i},T{2,i}, . . . ,T{i−1,i},T{i,i+1}, . . . ,T{i,q}) .

This construction guarantees that for every i ∈ [q], the sets in T{i,∗} partition Si (since every x ∈ Si is
in exactly one set T{i, j} for some j 6= i). In particular, S determines T and vice-versa so H(S) = H(T).
With a different application of the chain rule to the joint entropy of w and S, we obtain

H(w,S) = H(S)+H(w | S) = H(T)+H(w | S) . (2)

The chain rule also yields H(w | S) = ∑
n
i=1 H(wi | w1, . . . ,wi−1,S1, . . . ,Sn). Given Si, the random variable

wi is uniformly distributed among the witnesses for Si and, in particular, is independent of w j and S j for
each j 6= i. So the conditional entropy of w given S satisfies

H(w | S) =
q

∑
i=1

H(wi | Si) . (3)

The random variables T{1,∗}, . . . ,T{q,∗} cover each set in {T{i, j}}i6= j twice, so by Shearer’s Lemma

H(T)≤ 1
2

q

∑
i=1

H(T{i,∗}) . (4)

Since T{i,∗} is a partition of Si, H(T{i,∗}) = H(Si,T{i,∗}). Also, there are at most (q− 1)m possible
ordered partitions of the m elements of Si into q−1 parts so the universal upper bound yields

H(T{i,∗} | Si)≤ m log(q−1) .

These two observations imply that

H(T{i,∗}) = H(Si,T{i,∗}) = H(Si)+H(T{i,∗} | Si)≤ H(Si)+m log(q−1) . (5)

We can now combine (2)–(5) to obtain the upper bound

H(w,S)≤ qm
2

log(q−1)+
1
2

q

∑
i=1

(
H(Si)+2H(wi | Si)

)
. (6)
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Finally, we observe that H(Si)+ 2H(wi | Si) = H(wi,w′i,Si) where wi, Si are as above, and w′i is
another witness of Si chosen uniformly at random from WSi . By the universal upper bound,

H(Si)+2H(wi | Si) = H(wi,w′i,Si)≤ log

(
∑

S∈([n]m)

| f̂ (S)|2
)

= log‖ f (=m)‖2
2 . (7)

Combining (1), (6), and (7) and rearranging completes the proof.

Remark 3.2. For f : {−1,1}n → R, define f (≤m) = ∑|S|≤m f̂ (S)χS. The argument above (with only
minor changes in the choice of random variables) can also be used to show that

‖ f (≤m)‖q ≤ (q−1)m/2 · ‖ f (≤m)‖2

for every even integer q > 2, a slight generalization of Theorem 3.1.
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