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1 Introduction

Sampling logconcave densities is a basic problem that arises in machine learning, statistics,

optimization, computer science and other areas. The problem is described as follows. Let

5 : ℝ3 → ℝ be a convex function. Our goal is to sample from the density proportional to e
− 5 (G)

.

We study Hamiltonian Monte Carlo (HMC), one of the most widely usedMarkov chain Monte Carlo

(MCMC) algorithms for sampling from a probability distribution. In many settings, HMC is

believed to outperform other MCMC algorithms such as the Metropolis–Hastings algorithm or

Langevin dynamics. In terms of theory, rapid mixing has been established for HMC in recent

papers [14, 15, 18, 19, 20] in various settings. However, in spite of much progress, a gap remains

between the known upper and lower bounds even in the basic setting when 5 is strongly convex

(e
− 5

is strongly logconcave) and has a Lipschitz gradient.

Many sampling algorithms such as theMetropolis–Hastings algorithmor Langevin dynamics

maintain a position G = G(C) that changes with time, so that the distribution of G will eventually

converge to the desired distribution, i. e., proportional to e
− 5 (G)

. In HMC, besides the position

G = G(C), we also maintain a velocity E = E(C). In the simplest Euclidean setting, the Hamiltonian

�(G, E) is defined as

�(G, E) = 5 (G) + 1

2

‖E‖2. (1.1)

Then in every step the pair (G, E) is updated using the following system of differential equations

for a fixed time interval ): 
dG(C)

dC
= ∇E �(G, E) = E(C),

dE(C)
dC

= −∇G �(G, E) = −∇ 5 (G(C)).
(1.2)

The initial position G(0) = G0 is the position from the last step, and the initial velocity E(0) = E0

is chosen randomly from the standard Gaussian distribution #(0, �). The updated position is

G())where ) can be thought of as the step-size. It is well known that the stationary distribution

of HMC is the density proportional to e
− 5
. Observe that

d�(G, E)
dC

= ∇G �(G, E) · G′(C) + ∇E �(G, E) · E′(C) = 0,

so the Hamiltonian �(G, E) does not change with C. We can also write (1.2) as the following

ordinary differential equation (ODE):

G′′(C) = −∇ 5 (G(C)), G(0) = G0 , G′(0) = E0. (1.3)

We state HMC explicitly as the following algorithm; also see Figure 1 for an illustration.

Hamiltonian Monte Carlo algorithm

Input: 5 : ℝ3 → ℝ that is �-strongly convex and !-smooth, � the error parameter.
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Figure 1: A trajectory of Hamiltonian Monte Carlo

1. Set starting point G(0), step-size ), number of steps # , and ODE error tolerance �.

2. For : = 1, . . . , # :

(a) Let E ∼ #(0, �);
(b) Denote by G(C) the solution to (1.2) with initial position G(0) = G(:−1)

and initial

velocity E(0) = E. Use the ODE solver to find a point G(:) such that


G(:) − G())


 ≤ �.

3. Output G(#).

In our analysis, we first consider ideal HMC where in every step we have the exact solution

to the ODE (1.2) and neglect the numerical error from solving the ODEs or integration (� = 0).

1.1 Preliminaries

We recall some standard definitions here. Let 5 : ℝ3 → ℝ be a continuously differentiable

function. For a positive real number �we say that 5 is �-strongly convex if for all G, H ∈ ℝ3
,

5 (H) ≥ 5 (G) + 〈∇ 5 (G), H − G〉 +
�

2

‖H − G‖2 .
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We say that 5 is !-smooth if ∇ 5 is !-Lipschitz, i. e., for all G, H ∈ ℝ3
,

‖∇ 5 (G) − ∇ 5 (H)‖ ≤ ! ‖G − H‖ .

If 5 is �-strongly convex and !-smooth, then the condition number of 5 is � = !/�. When 5 is a

twice differentiable function, 5 is �-strongly convex if and only if ∇2 5 (G) � �� for all G ∈ ℝ3
,

where ∇2 5 (G) denotes the Hessian matrix of 5 at G and � is the identity matrix; similarly, 5 is

!-smooth if and only if ∇2 5 (G) � !� for all G ∈ ℝ3
.

Consider a discrete-time reversibleMarkov chainℳ onℝ3
with stationary distribution �. Let

!2(�) =
{
5 : ℝ3 → ℝ

���� ∫
ℝ3

5 (G)2�(dG) < ∞
}

be the Hilbert space with inner product

〈 5 , ,〉 =
∫
ℝ3

5 (G),(G)�(dG)

for 5 , , ∈ !2(�). Denote by % the transition kernel ofℳ. We can view % as a self-adjoint operator

from !2(�) to itself: for 5 ∈ !2(�),

(% 5 )(G) =
∫
ℝ3

5 (H)%(G, dH).

Let !0

2
(�) = { 5 ∈ !2(�) :

∫
ℝ3 5 (G)�(dG) = 0} be a closed subspace of !2(�). The (absolute) spectral

gap of % is defined to be

�(%) = 1 − sup

5 ∈!0

2
(�)

‖% 5 ‖
‖ 5 ‖ = 1 − sup

5 ∈!0

2
(�)

‖ 5 ‖=1

| 〈% 5 , 5 〉 |.

The relaxation time of % is

�rel(%) =
1

�(%) .

Let �1 , �2 be twodistributions onℝ3
with finite ?’thmomentswhere ? ≥ 1. The ?-Wasserstein

distance between �1 and �2 is defined as

,?(�1 , �2) =
(

inf

(-,.)∈C(�1 ,�2)
E

[
‖- − .‖?

] )1/?
,

where C(�1 , �2) is the set of all couplings of �1 and �2. The Ricci curvature of % is defined as

Ric(%) = 1 − sup

G,H∈ℝ3 ,G≠H

,1(%(G, ·), %(H, ·))
‖G − H‖ .

It is known that �(%) ≥ Ric(%) (see [22, Proposition 29]), which provides an effective way to

bound the spectral gap through coupling arguments. We refer to [22] for more backgrounds on

the Ricci curvature.
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1.2 Related work

Various versions of Langevin dynamics have been studied in many recent papers, see [8, 9, 29,

23, 10, 7, 6, 3, 12, 27, 26, 17]. The convergence rate of HMC has also been studied recently in

[14, 15, 18, 19, 20, 24]. The first bound in our setting was obtained by Mangoubi and Smith [18],

who gave an $(�2) bound on the convergence rate of ideal HMC.

Theorem 1.1 ([18, Theorem 1]). Let 5 : ℝ3 → ℝ be a twice differentiable function such that

�� � ∇2 5 (G) � !� for all G ∈ ℝ3
. Then the relaxation time of ideal HMC for sampling from the density

∝ e
− 5

with step-size ) =
√
�/(2
√

2!) is $(�2).
This was improved by [14], which showed a bound of $(�1.5). They also gave an algorithm

with nearly optimal running time for solving the ODE that arises in the implementation of

HMC.

Theorem 1.2 ([14, Lemma 1.8]). Let 5 : ℝ3 → ℝ be a twice differentiable function such that

�� � ∇2 5 (G) � !� for all G ∈ ℝ3
. Then the relaxation time of ideal HMC for sampling from the density

∝ e
− 5

with step-size ) = �1/4/(2!3/4) is $(�1.5).
Both papers suggest that the correct bound is linear in �. It is mentioned in [18] that linear

dependency is the best one can expect. Meanwhile, [14] shows that there exists a choice of

step-sizes (time for running the ODE), which depends on 5 , the current position, and the random

initial velocity, that achieves a linear convergence rate (Lemma 1.8, second part); however it was

far from clear how to determine these step-sizes algorithmically.

Other papers focus on various aspects and use stronger assumptions (e. g., bounds on

higher-order gradients) to get better bounds on the overall convergence time or the number

of gradient evaluations in some ranges of parameters. For example, [20] shows that the

dependence on dimension for the number of gradient evaluations can be as low as 31/4
with

suitable regularity assumptions (and higher dependence on the condition number). We note

also that sampling logconcave functions is a polynomial-time solvable problem, without the

assumptions of strong convexity or gradient Lipschitzness, and even when the function e
− 5

is

given only by an oracle with no access to gradients [1, 16]. The Riemannian version of HMC

provides a faster polynomial-time algorithm for uniformly sampling polytopes [15]. However,

the dependence on the dimension is significantly higher for these algorithms, both for the

contraction rate and the time per step.

After the conference version [5] of our paper, several articles appeared on sampling from

logconcave densities. For example, [2, 11, 21, 25, 28] study the Langevin dynamics and its

variants, and [4, 13] study Metropolized HMC. Shen and Lee [25] propose the Randomized

Midpoint Method to discretize the underdamped Langevin diffusion; their algorithm achieves

smaller number of total gradient calls # = $̃(�7/631/6�−1/3 + �31/3�−2/3) and less running time

compared to our HMC method.

1.3 Results

In this paper, we show that the relaxation time of ideal HMC is Θ(�) for strongly logconcave

functions with Lipschitz gradient.
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Theorem 1.3. Suppose that 5 is �-strongly convex and !-smooth. Then the relaxation time (inverse of

spectral gap) of ideal HMC for sampling from the density ∝ e
− 5

with step-size ) = 1/(2
√
!) is $(�),

where � = !/� is the condition number.

We remark that the only assumption we made about 5 is strong convexity and smoothness.

(In particular, we do not require that 5 is twice differentiable, which is assumed in both [14] and

[18].)

We also establish a matching lower bound on the relaxation time of ideal HMC, implying

the tightness of Theorem 1.3.

Theorem 1.4. For any ! ≥ � > 0 and ) > 0, there exists a �-strongly convex and !-smooth function 5 ,

such that the relaxation time of ideal HMC for sampling from the density ∝ e
− 5

with step-size ) is Ω(�),
where � = !/� is the condition number.

Using the ODE solver from [14] with nearly optimal running time, we obtain the following

convergence rate in 2-Wasserstein distance for the HMC algorithm.

Theorem 1.5. Let � ∝ e
− 5

be the target distribution, and let �hmc be the distribution of the output of

HMC with starting point G(0) = arg minG 5 (G), step-size ) = 1/(16000

√
!), and ODE error tolerance

� =
√
�)2�/16. For any 0 < � <

√
3, if we run HMC for # = $

(
� log(3/�)

)
steps where � = !/�,

then we have

,2(�hmc ,�) ≤
�√
�
. (1.4)

Each step takes$
(√

�33/2�−1
log(�3/�)

)
time and$

(√
�3�−1

log(�3/�)
)
evaluations of∇ 5 , amortized

over all steps.

We note that since our new convergence rate allows larger steps, the ODE solver is run for a

longer time step. One interesting open problem is to find a matching lower bound for HMC

with respect to the 2-Wasserstein distance.

The comparison of convergence rates, running times and numbers of gradient evaluations is

summarized in the following table with polylog factors omitted.

reference convergence rate # gradients total time

[18] �2 �6.53 0.5 �6.531.5

[14] �1.5 �1.753 0.5 �1.7531.5

this paper � �1.53 0.5 �1.531.5

Finally, we remark that Theorem 1.4 also implies an Ω(�) computational lower bound for

HMC in terms of the number of gradient queries. This differs from [25] by a factor of $̃(�1/6).
As pointed out by one of the referees, a comparison with optimization literature seems to

suggest that the optimal number of gradient queries that can be achieved by any gradient-based

MCMC algorithm should scale as

√
�. This corroborates with the fine analysis in [2] that the
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convergence rate of continuous underdamped Langevin dynamics is $(
√
<) where < is the

Poincaré constant of the measure, suggesting that an ideal discretization of underdamped

Langevin dynamics with step-size $(
√

1/!) might be able to achieve $(
√
�) convergence. In

this sense, HMC probably cannot achieve the optimal convergence.

2 Convergence of ideal HMC

In this sectionwe show that the spectral gap of ideal HMC isΩ(1/�), and thus prove Theorem 1.3.

We first show a contraction bound for ideal HMC, which roughly says that the distance of two

points is shrinking after one step of ideal HMC.

Lemma 2.1 (Contraction bound). Suppose that 5 is �-strongly convex and !-smooth. Let G(C) and
H(C) be the solution to (1.2) with initial positions G(0), H(0) and initial velocities G′(0) = H′(0). Then for

0 ≤ C ≤ 1/(2
√
!) we have

‖G(C) − H(C)‖2 ≤
(
1 − �

4

C2
)
‖G(0) − H(0)‖2 . (2.1)

In particular, by setting C = ) = 1/(2
√
!) for some constant 2 ≥ 2 we get

‖G()) − H())‖2 ≤
(
1 − 1

422�

)
‖G(0) − H(0)‖2 (2.2)

where � = !/�.
Proof. Consider the two ODEs for HMC:{

G′(C) = D(C);
D′(C) = −∇ 5 (G(C)).

and

{
H′(C) = E(C);
E′(C) = −∇ 5 (H(C)).

with initial points G(0), H(0) and initial velocities D(0) = E(0). We will show that

‖G(C) − H(C)‖2 ≤
(
1 − �

4

C2
)
‖G(0) − H(0)‖2

for all 0 ≤ C ≤ 1/(2
√
!).

Consider the derivative of
1

2
‖G(C) − H(C)‖2:

d

dC

(
1

2

‖G(C) − H(C)‖2
)
= 〈G′(C) − H′(C), G(C) − H(C)〉 = 〈D(C) − E(C), G(C) − H(C)〉 . (2.3)

Taking derivative on both sides, we get

d
2

dC2

(
1

2

‖G(C) − H(C)‖2
)
= 〈D′(C) − E′(C), G(C) − H(C)〉 + 〈D(C) − E(C), G′(C) − H′(C)〉

= − 〈∇ 5 (G(C)) − ∇ 5 (H(C)), G(C) − H(C)〉 + ‖D(C) − E(C)‖2

= −�(C) ‖G(C) − H(C)‖2 + ‖D(C) − E(C)‖2 , (2.4)
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where we define

�(C) = 〈∇ 5 (G(C)) − ∇ 5 (H(C)), G(C) − H(C)〉
‖G(C) − H(C)‖2

.

Since 5 is �-strongly convex and !-smooth, we have � ≤ �(C) ≤ ! for all C ≥ 0.

We will give an upper bound on the term −�(C) ‖G(C) − H(C)‖2+ ‖D(C) − E(C)‖2, while keeping

its dependency on �(C). To lower bound ‖G(C) − H(C)‖2, we use the following crude bound.

Claim 2.2 (Crude bound). For all 0 ≤ C ≤ 1/(2
√
!) we have

1

2

‖G(0) − H(0)‖2 ≤ ‖G(C) − H(C)‖2 ≤ 2 ‖G(0) − H(0)‖2 . (2.5)

The proof of this claim is postponed to Section 2.1.

Next we derive an upper bound on ‖D(C) − E(C)‖2. By taking the derivative of
1

2
‖D(C) − E(C)‖2,

we get

‖D(C) − E(C)‖
(

d

dC
‖D(C) − E(C)‖

)
=

d

dC

(
1

2

‖D(C) − E(C)‖2
)

= 〈D′(C) − E′(C), D(C) − E(C)〉
= − 〈∇ 5 (G(C)) − ∇ 5 (H(C)), D(C) − E(C)〉 .

Thus, its absolute value is not greater than���� d

dC
‖D(C) − E(C)‖

���� = |− 〈∇ 5 (G(C)) − ∇ 5 (H(C)), D(C) − E(C)〉|‖D(C) − E(C)‖ ≤ ‖∇ 5 (G(C)) − ∇ 5 (H(C))‖ .

Since 5 is !-smooth and convex, it holds that

‖∇ 5 (G(C)) − ∇ 5 (H(C))‖2 ≤ ! 〈∇ 5 (G(C)) − ∇ 5 (H(C)), G(C) − H(C)〉 ;

see, e. g., [30, Lemma 4] for a proof. Hence, we obtain

‖∇ 5 (G(C)) − ∇ 5 (H(C))‖2 ≤ !�(C) ‖G(C) − H(C)‖2 ≤ 2!�(C) ‖G(0) − H(0)‖2 ,

where the last inequality follows from the crude bound (2.5). Then, using the fact that D(0) = E(0)
and the Cauchy–Schwarz inequality, we can upper bound ‖D(C) − E(C)‖2 by

‖D(C) − E(C)‖2 ≤
(∫ C

0

���� d

dB
‖D(B) − E(B)‖

����dB)2

≤
(∫ C

0

√
2!�(B) ‖G(0) − H(0)‖ dB

)2

≤ 2!C

(∫ C

0

�(B)dB
)
‖G(0) − H(0)‖2 .
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Define the function

%(C) =
∫ C

0

�(B)dB,

so %(C) is nonnegative and monotone increasing, with %(0) = 0. Also we have �C ≤ %(C) ≤ !C for
all C ≥ 0. Then,

‖D(C) − E(C)‖2 ≤ 2!C%(C) ‖G(0) − H(0)‖2 . (2.6)

Plugging (2.5) and (2.6) into (2.4), we deduce that

d
2

dC2

(
1

2

‖G(C) − H(C)‖2
)
≤ −�(C)

(
1

2

‖G(0) − H(0)‖2
)
+ 2!C%(C) ‖G(0) − H(0)‖2 .

If we define


(C) = 1

2

‖G(C) − H(C)‖2 ,

then we have


′′(C) ≤ −
(0)
(
�(C) − 4!C%(C)

)
.

Integrating both sides and using 
′(0) = 0, we obtain


′(C) =
∫ C

0


′′(B)dB

≤ −
(0)
(∫ C

0

�(B)dB − 4!

∫ C

0

B%(B)dB
)

≤ −
(0)
(
%(C) − 4!%(C)

∫ C

0

BdB

)
= −
(0)%(C)

(
1 − 2!C2

)
,

where the second inequality is due to the monotonicity of %(B). Since for all 0 ≤ C ≤ 1/(2
√
!) we

have %(C) ≥ �C and 1 − 2!C2 ≥ 1/2, we deduce that


′(C) ≤ −
(0)�
2

C.

Finally, one more integration yields


(C) = 
(0) +
∫ C

0


′(B)dB ≤ 
(0)
(
1 − �

4

C2
)
,

and the theorem follows. �

Proof of Theorem 1.3. Recall from Section 1.1 that the Ricci curvature of a Markov chain % is

defined to be 1 − supG≠H,1(%(G, ·), %(H, ·))/‖G − H‖ where ,1 is the 1-Wasserstein distance.

Then, Lemma 2.1 immediately implies that for any constant 2 ≥ 2, the Ricci curvature of ideal

HMC with step-size ) = 1/(2
√
!) is at least 1/(822�). It follows from [22, Proposition 29]

that the spectral gap of ideal HMC is at least 1/(822�). Hence, the relaxation time is at most

822� = $(�). �
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2.1 Proof of Claim 2.2

We present the proof of Claim 2.2 in this section. We remark that a similar crude bound was

established in [14] for general matrix ODEs. Here we prove the crude bound specifically for the

Hamiltonian ODE, but without assuming that 5 is twice differentiable.

Proof of Claim 2.2. We first derive a crude upper bound on ‖D(C) − E(C)‖. Since 5 is !-smooth,

we have

d

dC
‖D(C) − E(C)‖ =

− 〈∇ 5 (G(C)) − ∇ 5 (H(C)), D(C) − E(C)〉
‖D(C) − E(C)‖

≤ ‖∇ 5 (G(C)) − ∇ 5 (H(C))‖ ≤ ! ‖G(C) − H(C)‖ .

Then from D(0) = E(0)we get

‖D(C) − E(C)‖ =
∫ C

0

(
d

dB
‖D(B) − E(B)‖

)
dB ≤ !

∫ C

0

‖G(B) − H(B)‖ dB.

To obtain the upper bound for ‖G(C) − H(C)‖, we first bound its derivative by���� d

dC
‖G(C) − H(C)‖

���� = |〈D(C) − E(C), G(C) − H(C)〉|‖G(C) − H(C)‖ ≤ ‖D(C) − E(C)‖ ≤ !
∫ C

0

‖G(B) − H(B)‖ dB. (2.7)

Therefore, we have

‖G(C) − H(C)‖ = ‖G(0) − H(0)‖ +
∫ C

0

(
d

dB
‖G(B) − H(B)‖

)
dB

≤ ‖G(0) − H(0)‖ + !
∫ C

0

∫ B

0

‖G(A) − H(A)‖ dAdB

= ‖G(0) − H(0)‖ + !
∫ C

0

(C − B) ‖G(B) − H(B)‖ dB.

Then, applying a Grönwall-type inequality from [14, Lemma A.5], we deduce that

‖G(C) − H(C)‖ ≤ ‖G(0) − H(0)‖ cosh

(√
!C

)
≤
√

2 ‖G(0) − H(0)‖ , (2.8)

where we also use the fact that cosh(
√
!C) ≤ cosh(1/2) ≤

√
2.

Next, we deduce from (2.7) and (2.8) that

d

dC
‖G(C) − H(C)‖ ≥ −!

∫ C

0

‖G(B) − H(B)‖ dB

≥ −! ‖G(0) − H(0)‖
∫ C

0

cosh

(√
!B

)
dB

= −
√
! ‖G(0) − H(0)‖ sinh

(√
!C

)
.
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Thus, we obtain

‖G(C) − H(C)‖ = ‖G(0) − H(0)‖ +
∫ C

0

(
d

dB
‖G(B) − H(B)‖

)
dB

≥ ‖G(0) − H(0)‖ −
√
! ‖G(0) − H(0)‖

∫ C

0

sinh

(√
!B

)
dB

= ‖G(0) − H(0)‖
(
2 − cosh

(√
!C

))
≥ 1√

2

‖G(0) − H(0)‖ ,

where we use 2 − cosh(
√
!C) ≥ 2 − cosh(1/2) ≥ 1/

√
2. �

3 Lower bound for ideal HMC

In this section, we show that the relaxation time of ideal HMC can be Θ(�) for some �-strongly
convex and !-smooth function for any step-size ), and thus prove Theorem 1.4.

Consider the following one-dimensional quadratic function:

5 (G) = G2

2�2

, (3.1)

where 1/
√
! ≤ � ≤ 1/√�. Thus, 5 is �-strongly convex and !-smooth. The probability density �

proportional to e
− 5

is the Gaussian distribution: for G ∈ ℝ,

�(G) = 1√
2��

exp

(
− G

2

2�2

)
. (3.2)

The following lemma shows that, for certain choice of �, ideal HMC for the Gaussian distribution

� can have relaxation time Ω(�). Theorem 1.4 then follows immediately.

Lemma 3.1. For any ) > 0 there exists 1/
√
! ≤ � ≤ 1/√� such that the relaxation time of ideal HMC

for sampling from � with step-size ) is at least �/(8�2).
Proof. The Hamiltonian curve for 5 is given by the ODE

G′′(C) = − 5 ′(G(C)) = −G(C)
�2

with initial position G(0) ∈ ℝ and initial velocity G′(0) drawn from the standard Gaussian #(0, 1).
Solving the ODE and plugging in the step-size C = ), we get

G()) = G(0) cos()/�) + E(0)� sin()/�).

Consider first the case that ) > 4�/
√
!. We may assume that ! ≥ 4� (i. e., � ≥ 4), since

otherwise the lemma trivially holds. Pick a positive integer : such that

)
√
�

2�
≤ : ≤ )

√
!

2�
.
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Note that such : exists as
)
√
!

2�
−
)
√
�

2�
≥ )
√
!

4�
> 1.

We then choose � = )/(2:�), which satisfies 1/
√
! ≤ � ≤ 1/√�. Observe that for such a choice

HMC becomes degenerate: we have G()) = G(0), meaning that the chain does not move at all.

Thus, in this extremal case the relaxation time becomes infinity and the lemma holds.

Next we consider the case that ) ≤ 4�/
√
!. We shall pick � = 1/√�. Let % denote the

transition kernel of ideal HMC. Then for G, H ∈ ℝ we have

%(G, H) = 1√
2�� sin()/�)

exp

(
−(H − G cos()/�))2

2�2
sin

2()/�)

)
.

Namely, given the current position G, the next position H is from a normal distribution with

mean G cos()/�) and variance �2
sin

2()/�). Denote the spectral gap of % by �. Let ℎ(G) = G and

note that ℎ ∈ !0

2
(�). Using the properties of spectral gaps, we deduce that

� = 1 − sup

5 ∈!0

2
(�)

| 〈% 5 , 5 〉 |
‖ 5 ‖2

≤ 1 − | 〈%ℎ, ℎ〉 |
‖ℎ‖2

.

Since we have

‖ℎ‖2 =
∫ ∞

−∞
�(G)ℎ(G)2dG = �2

and

〈%ℎ, ℎ〉 =
∫ ∞

−∞
�(G)%(G, H)ℎ(G)ℎ(H)dGdH = �2

cos()/�),

we then get

� ≤ 1 − | cos()/�)| ≤ )2

2�2

≤ 8�2 ·
�

!

where the last inequality is due to our assumption ) ≤ 4�/
√
!. Hence, �rel = 1/� ≥ �/(8�2).

This completes the proof of the lemma. �

4 Convergence rate of discretized HMC

In this section, we show how our improved contraction bound (Lemma 2.1) implies that HMC

returns a good enough sample after $̃((�3)1.5) steps. We will use the framework from [14] to

establish Theorem 1.5.

We first state the ODE solver from [14], which solves an ODE in nearly optimal time when

the solution to the ODE can be approximated by a piece-wise polynomial. We state here only for

the special case of second order ODEs for the Hamiltonian system. We refer to [14] for general

:th order ODEs.
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Theorem 4.1 ([14, Theorem 2.5]). Let G(C) be the solution to the ODE

G′′(C) = −∇ 5 (G(C)), G(0) = G0 , G′(0) = E0. (4.1)

where G0 , E0 ∈ ℝ3
and 0 ≤ C ≤ ). Suppose that the following conditions hold:

1. There exists a piece-wise polynomial @(C) such that @(C) is a polynomial of degree � on each interval

[)9−1 , )9] where 0 = )0 < )1 < · · · < )< = ), and for all 0 ≤ C ≤ ) we have

‖@(C) − G′′(C)‖ ≤ �

)2

; (4.2)

2. {)9}<9=1
and � are given as input to the ODE solver;

3. The function 5 has a !-Lipschitz gradient; i. e., for all G, H ∈ ℝ3
,

‖∇ 5 (G) − ∇ 5 (H)‖ ≤ ! ‖G − H‖ . (4.3)

If

√
!) ≤ 1/16000, then the ODE solver can find a piece-wise polynomial G̃(C) such that for all 0 ≤ C ≤ ),

‖ G̃(C) − G(C)‖ ≤ $(�). (4.4)

The ODE solver uses $(<(� + 1) log(�)/�)) evaluations of ∇ 5 and $(3<(� + 1)2 log(�)/�)) time

where

� = $ (‖E0‖ + ) ‖∇ 5 (G0)‖) . (4.5)

The following lemma, which combines Theorem 3.2, Lemma 4.1 and Lemma 4.2 from [14],

establishes the conditions of Theorem 4.1 in our setting. We remark that Lemmas 4.1 and 4.2

hold for all ) ≤ 1/(8
√
!), and Theorem 3.2, though stated only for ) ≤ $(�1/4/!3/4) in [14],

holds in fact for the whole region ) ≤ 1/(2
√
!)where the contraction bound (Lemma 2.1) is true.

We omit these proofs here and refer the readers to [14] for more details.

Lemma 4.2. Let 5 be a twice differentiable function such that �� � ∇2 5 (G) � !� for all G ∈ ℝ3
.

Choose the starting point G(0) = arg minG 5 (G), step-size ) = 1/(16000

√
!), and ODE error tolerance

� =
√
�)2�/16 in the HMC algorithm. Let {G(:)}#

:=1
be the sequence of points we get from the HMC

algorithm and {E(:)
0
}#
:=1

be the sequence of random Gaussian vector we choose in each step. Let � ∝ e
− 5

be the target distribution and let �hmc be the distribution of G(#), i. e., the output of HMC. For any

0 < � <
√
3, if we run HMC for

# = $

(
log(3/�)
�)2

)
= $

(
� log(3/�)

)
(4.6)

steps where � = !/�, then:
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1. ([14, Theorem 3.2])We have that

,2(�hmc ,�) ≤
�√
�

; (4.7)

2. ([14, Lemma 4.1]) For each :, let G:(C) be the solution to the ODE (1.3) in the :th step of HMC.

Then there is a piece-wise constant function @: of <: pieces such that



@:(C) − G′′: (C)

 ≤ �/)2
for

all 0 ≤ C ≤ ), where
<: =

2!)3

�

(


E(:−1)
0




 + ) 


∇ 5 (G(:−1))



) ; (4.8)

3. ([14, Lemma 4.2])We have that

1

#
E

[
#∑
:=1




∇ 5 (G(:−1))



2

]
≤ $(!3). (4.9)

Proof of Theorem 1.5. The convergence of HMC is guaranteed by part 1 of Lemma 4.2. In the

:th step, the number of evaluations of ∇ 5 is $(<: log(�:
√
�/�)) by Theorem 4.1 and part 2 of

Lemma 4.2, where

<: = $

(√
�

�

) (


E(:−1)
0




 + ) 


∇ 5 (G(:−1))



)

and

�: = $
(


E(:−1)

0




 + ) 


∇ 5 (G(:−1))



) .

Thus, the average number of evaluations of ∇ 5 per step is not greater than

1

#
E

[
#∑
:=1

$(<: log(�:
√
�/�))

]
≤ 1

#
E

[
#∑
:=1

$(<: log<:)
]
≤ 1

#
$

(
E

[
" log"

] )
,

where " =
∑#
:=1

<: . Since each E
(:−1)
0

is sampled from the standard Gaussian distribution, we

have E
[ 


E(:−1)

0




2
]
= 3. Thus, by the Cauchy–Schwarz inequality and part 3 of Lemma 4.2, we

get

E
[
"2

]
≤ #

#∑
:=1

E
[
<2

:

]
≤ $

(
#�

�2

) #∑
:=1

E

[


E(:−1)
0




2

]
+ )2E

[


∇ 5 (G(:−1))



2

]
≤ $

(
#2�3

�2

)
.

We then deduce again from the Cauchy–Schwarz inequality that(
E[" log"]

)
2 ≤ E

[
"2

]
· E

[
log

2 "
]
≤ E

[
"2

]
· log

2 (E") ≤ E["2] · log
2

(√
E ["2]

)
,
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where the second inequality is due to Jensen’s inequality and the fact that log
2(G) is concave

when G ≥ 3 (note that we can assume " ≥ 3 by making # ≥ 3). Therefore, the number of

evaluations of ∇ 5 per step, amortized over all steps, is

1

#
$

(√
E["2] log

(√
E ["2]

))
≤ $

(√
�3
�

log

(
�3
�

))
.

Using a similar argument we have the bound for the expected running time per step. This

completes the proof. �
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