Beyond NP: The Work and Legacy of Larry Stockmeyer

Lance Fortnow University of Chicago

Larry Joseph Stockmeyer

1948 – Born in Indiana

- 1974 MIT Ph.D.
- IBM Research at Yorktown and Almaden for most of his career
- 82 Papers (11 JACM)
 - 49 Distinct Co-Authors
- 1996 ACM Fellow
- Died July 31, 2004

The Universe

Computer of Protons

The Universe

Computer of Protons

Radius 10⁻¹⁵ Meters

- Universe can only have 10¹²³ proton gates.
 Consider the true sentences of weak monadic second-order theory of the natural numbers with successor (EWS1S).
 ∃A ∀B ∃x (x ∈ A → x+1 ∈ B)
- Cannot solve EWS1S on inputs of size 616 in universe with proton-sized gates.
 - Stockmeyer Ph.D. Thesis 1974
 - Stockmeyer-Meyer JACM 2002

The Universe

The Universe

Universe can have 10¹²³ proton gates.

Universe can have 3.5*10¹²⁵ proton gates.

Universe can have 3.5*10¹²⁵ proton gates.
 Cannot solve EWS1S on inputs of size 616 in universe with proton-sized gates.

Universe can have 3.5*10¹²⁵ proton gates.
 Cannot solve EWS1S on inputs of size 619 in universe with proton-sized gates.

Science Fiction?

The complexity of algorithms tax even the resources of sixty billion gigabits---or of a universe full of bits; Meyer and Stockmeyer had proved, long ago, that, regardless of computer power, problems existed which could not be solved in the life of the universe.

Evolution of Complexity Turing-Church-Kleene-Post 1936

Computably Enumerable

Computably Enumerable

Evolution of Complexity Kleene 1956

Computably Enumerable

Regular Languages Finite Automata

Evolution of Complexity Chomsky Hierarchy 1956

Computably Enumerable

Regular Languages Finite Automata

Evolution of Complexity Chomsky Hierarchy 1956

Computably Enumerable Unrestricted Grammars

Context-Sensitive Grammars Linear-Bounded Automata

Context-Free Grammars Push-Down Automata

Regular Languages Finite Automata Regular Grammars

Real Computers

Faster Computers

Computably Enumerable

Evolution of Complexity Hartmanis-Stearns 1965

Evolution of Complexity Hartmanis-Stearns 1965

Computable

TIME(n²)

Evolution of Complexity Hartmanis-Stearns 1965

Computable

TIME(2ⁿ)

TIME(n⁵)

TIME(n²)

Evolution of Complexity Hartmanis-Stearns 1965 Computable

Limitations of DTIME(t(n))

- Not Machine Independent.
- Separations are by diagonalization and not by natural problems.
- No clear notion of efficient computation.

Evolution of Complexity Cobham 1964 Edmonds 1965

Evolution of Complexity Cobham 1964 Edmonds 1965

Evolution of Complexity Cobham 1964 Edmonds 1965

Computable

 $P = \cup DTIME(n^k)$

Evolution of Complexity Cook 1971 Levin 1973 Karp 1972

State of Complexity 1972

Enter Larry Stockmeyer

January 1972 – Bachelors/Masters at MIT

- Bounds on Polynomial Evaluation Algorithms
- Can we find natural hard problems?
 - Diagonalization methods do not lead to natural problems.
 - There are natural NP-complete problems but cannot prove them not in P.
 - With Advisor Albert Meyer

Regular Expressions with Squaring

(0+1)*00(0+1)*00(0+1)*

- All strings with two sets of consecutive zeros.
- Allow Squaring operator: r²=rr
- $(0+1)^*(0^2(0+1)^*)^2$
- No more expressive power but can be much shorter when used recursively.

Meyer-Stockmeyer 1972 REGSQ = { R | L(R) $\neq \Sigma^*$ }

Computable

EXPSPACE

Regular Expressions with Squaring

 Meyer and Stockmeyer, "The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space" – SWAT 1972

MINIMAL

 Set of Boolean formulas with no smaller equivalent formula.

Meyer-Stockmeyer 1972 Complexity of MINIMAL

Computable

MINIMAL

 Set of Boolean formulas with no smaller equivalent formula.

MINIMAL in NP?

- Can't check all smaller formulas.

Meyer-Stockmeyer 1972 Complexity of MINIMAL

Computable

MINIMAL

 Set of Boolean formulas with no smaller equivalent formula.

MINIMAL in NP?

- Can't check all smaller formulas.

MINIMAL in NP?

- Can't check equivalence.

MINIMAL

- Set of Boolean formulas with no smaller equivalent formula.
- MINIMAL in NP?
 - Can't check all smaller formulas.
- MINIMAL in NP?
 - Can't check equivalence.
- MINIMAL is in NP with an "oracle" for equivalence.

MINIMAL in NP with Equivalence Oracle $(x \lor y) \land (x \lor y) \land z$ Equivalence

Guess: $x \land z$

$(x \land z, (x \lor y) \land (x \lor \overline{y}) \land z)$ —

EQUIVALENT -

 MINIMAL is in NP with an "oracle" for equivalence or non-equivalence.

MINIMAL is in NP with an "oracle" for equivalence or non-equivalence.
Since non-equivalence is in NP we can solve MINIMAL in NP with NP oracle.

MINIMAL is in NP with an "oracle" for equivalence or non-equivalence.
Since non-equivalence is in NP we can solve MINIMAL in NP with NP oracle.
Suggests a "hierarchy" above NP.

NPNP MINIMAL

NP

Ρ

NPNP

 $NP = \Sigma_1^p$

 $NP^{\Sigma}3^{p} = \Sigma_{4}^{p}$

 $NP^{\Sigma_2^p} = \Sigma_3^p$

 $NP^{NP} = \Sigma_2^{p}$

 $NP = \Sigma_1^p$

 Σ_{4}^{p}

 Σ_3^{p}

 Σ_2^{p}

 $\Sigma_1^p = NP$

 $\overline{\text{co-NP}}_{3^{p}} = \Pi_{4^{p}}$

 $\text{co-NP}^{\Sigma_2 p} = \Pi_3^p$

°MINIMAL CO-NP^{NP}=∏₂^p

co-NP=∏₁^p

Ρ

- Meyer-Stockmeyer, "The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space", SWAT 1972
- Stockmeyer, "The Polynomial-Time Hierarchy", TCS, 1977.
- Wrathall, "Complete Sets and the Polynomial-Time Hierarchy", TCS, 1977.

Properties of the Hierarchy If P = NP

PSPACE

Quantifier Characterization

A language L is in Σ_3^P if for all x in Σ^* x is in L $\Leftrightarrow \exists u \forall v \exists w P(x,u,v,w)$

A language L is in Π_3^P if for all x in Σ^* x is in L $\Leftrightarrow \forall u \exists v \forall w P(x,u,v,w)$

Complete Sets

We define B₃ by the set of true quantified formula of the form

 $\exists \mathbf{x}_1 \exists \mathbf{x}_2 \cdots \exists \mathbf{x}_n \forall \mathbf{y}_1 \cdots \forall \mathbf{y}_n \exists \mathbf{z}_1 \cdots \exists \mathbf{z}_n$ $\phi(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{y}_1, \dots, \mathbf{y}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$

Complete Sets in the Hierarchy

Natural Complete Sets

N-INEQ – Inequivalence of Integer Expressions with union and addition. $(50+(40\cup 20\cup 15))\cup((2\cup 5)+(7\cup 9))$ Meyer-Stockmeyer 1973 Stockmeyer 1977 – N-INEQ is Σ_2^{p} -complete Umans 1999 – Succinct Set Cover is Σ_2^{p} -complete Schafer 1999 – Succinct VC Dimension is Σ_3^{p} -complete

The ω -jump of the Hierarchy

- Meyer-Stockmeyer 1973, Stockmeyer 1977 $B_{\omega} = \bigcup B_{k}$

 Quantified Boolean Formula with an unbounded number of alterations.
 Now called QBF or TQBF.

Complexity of ω -jump

Alternation

Chandra-Kozen-Stockmeyer JACM 1981
 Chandra-Stockmeyer STOC 1976
 Kozen FOCS 1976

 ∇

 \forall

 \bigtriangledown

 \forall

 ∇

 \forall

 ∇

 $\overline{7}$

 ∇

 \forall

 \forall

Alternation Theorems

Chandra-Kozen-Stockmeyer
 ATIME(t(n)) ⊆ DSPACE(t(n))
 NSPACE(s(n)) ⊆ ATIME(s²(n))
 ASPACE(s(n)) = ∪DTIME(c^{s(n)})

Alternate Characterization of Σ_2^p Η -

Other Alternating Models Chandra-Kozen-Stockmeyer 1981 Log-Space Hierarchy - Collapses to NL (Immerman-Szelepcsényi '88) Alternating Finite State Automaton - Same power as DFA but doubly exponential blowup in states. Alternating Push-Down Automaton - Accepts exactly $E=DTIME(2^{O(n)})$ - Strictly stronger than PDAs - Inclusion due to Ladner-Lipton-Stockmeyer '78

Alternation as a Game

-

-

Ξ

Alternation as a Game Э -

Alternation as a Game Η -

Alternation as a Game Η -

Complete Sets Via Games

- Stockmeyer-Chandra 1979
- Can use problems based on games to get completeness results for PSPACE and EXP.
- Create a combinatorial game that is EXPcomplete and thus not decidable in P.
- First complete sets for PSPACE and EXP not based on machines or logic.

Generalized Checkers

Generalized Checkers

PSPACE-hard

 Fraenkel et al. 1978

 EXP-complete

 Robson 1984

Approximate Couting

- #P Valiant 1979 - Functions that count solutions of NP problems. - Permanent is **#P-complete** Stockmeyer 1985 building on Sipser 1983 - Can approximate any #P function f in polytime with an oracle for Σ_2^p . - Toda 1991
 - Every language in PH reducible to #P

Complexity of #P

Legacy of Larry Stockmeyer

Circuit Complexity
Infinite Hierarchy Conjecture
Probabilistic Computation
Interactive Proof Systems

Circuit Complexity

Baker-Gill-Solovay '75: Relativization Paper - Open: Is PH infinite relative to an oracle? Sipser '83: Strong lower bounds on depth d circuits simulating depth d+1 circuits. Yao '85: "Separating the Polynomial-Time Hierarchy by Oracles" Led to future circuit results by Håstad, Razborov, Smolensky and many others.

Infinite Hierarchy Conjecture

- Is the Polynomial-Time Hierarchy Infinite?
 Best Evidence: Yao's result shows
 - alternating log-time hierarchy infinite.
- Many complexity results

 If PROP then the polynomial-time hierarchy collapses.
 - If PH is infinite then NOT PROP.
- Gives evidence for NOT PROP.

If Hierarchy is Infinite ...

SAT does not have small circuits. – Karp-Lipton 1980 Graph isomorphism is not NP-complete. - Goldreich-Micali-Wigderson 1991 - Goldwasser-Sipser 1989 – Boppana-Håstad-Zachos 1987 Boolean hierarchy is infinite. - Kadin 1988

Boolean Hierarchy

BH₁ = NP
BH_{k+1} = { B-C | B in NP and C in BH_k}
{ (G,k) | Max clique of G has size k} in BH₂
Kadin: If BH_k=BH_{k+1} then PH=Σ₃^p.

Probabilistic Computation

Probabilistic Computation Sipser-Gács-Lautemann 1983

Interactive Proof Systems

 Papadimitriou 1985 – Alternation between nondeterministic and probabilistic players
 Interactive Proof Systems

 Public Coin: Babai-Moran 1988
 Private Coin: Goldwasser-Micali-Rackoff 1989
 Equivalent: Goldwasser-Sipser 1989

Interactive Proof Systems Babai-Moran 1988

Interactive Proof Systems LFKN, Shamir 1992

Interactive Proof Systems

Hardness of Approximation - Feige-Goldwasser-Lovász-Safra-Szegedy 1996 Probabilistically Checkable Proofs - NP in PCPs with O(log n) coins and constant number of queries. - Arora-Lund-Motwani-Sudan-Szegedy 1998 Interactive Proofs with Finite State Verifiers - Dwork and Stockmeyer

Other Work

- Larry Stockmeyer contributed much more to complexity and important work in other areas including automata theory and parallel and distributed computing.
- Most Cited Article (CiteSeer):
 - Dwork, Lynch, and Stockmeyer, "Consensus in the presence of partial synchrony" JACM, 1988.

Conclusion

- What natural problems can't we compute?
- Led to exciting work on polynomial-time hierarchy, alternation, approximation and much more.
- These idea affect much of computational complexity today and the legacy will continue for generations in the future.

Remembering

Other members of our community that we have recently lost...

George Dantzig

Shimon Even

Seymour Ginsburg

Frank Harary

Leonid Khachiyan

Clemens Lautemann

Carl Smith

Larry Stockmeyer

