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The efficiency with which an incompressible flow mixes a passive scalar field that is continuously
replenished by a steady source-sink distribution has been quantified using the suppression of the
mean scalar variance below the value it would attain in the absence of the stirring. We examine the
relationship this mixing measure has to the effective diffusivity obtained from homogenization
theory, particularly establishing precise connections in the case of a stirring velocity field that is
periodic in space and time and varies on scales much smaller than that of the source. We explore
theoretically and numerically via the Childress—Soward family of flows how the mixing measures
lose their linkage to the homogenized diffusivity when the velocity and source field do not enjoy
scale separation. Some implications for homogenization-based parametrizations of mixing by flows

with finite scale separation are discussed. © 2010 American Institute of Physics.

[doi:10.1063/1.3456726]

I. INTRODUCTION

Mixing phenomena are the object of active and ubiqui-
tous study in physics, engineering and the geosciences, and a
major branch of fluid-dynamical research is concerned with
the archetypal mixing problem: that of passively advected
scalar fields in turbulent and chaotic flows.'™® Characterizing
the relevant mixing properties of a flow is a highly contex-
tual exercise, but a great deal of insight can be gained from
the study of fluctuations of a passively advected scalar field
injected into the flow. For example: mixing in microfluidic
devices,’ anthropogenic and controlled-release tracers in the
ocean,'’ observed temperature, chlorophyll and bio-
geochemical distributions,” or offline advection of “virtual”
tracers.'”

When a passive scalar field 6(x,7) is continually replen-
ished by a temporally steady, spatially inhomogeneous dis-
tribution of sources and sinks, the variance of the fluctua-
tions in the scalar field can attain a statistically steady
balance between injection and dissipation. Doering and
Thiffeault'? propose a natural mixing diagnostic using such a
replenishing passive scalar field: the mixing efficiency of the
flow is defined as the suppression of the equilibrium variance
of the scalar field (%) below the value it would attain in the
absence of the stirring field (0%),

N
Ey:= <02>’ (1a)

where angle brackets denote spatiotemporal averaging and
mean stirred and unstirred tracer concentrations are assumed
to be zero. Information about mixing on small and large
scales is obtained in a similar way by weighting the sums of
the Fourier components of the stirred and unstirred scalar
fields to microscales and macroscales, respectively, viz.,
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with |k|>=k%. The Fourier series of a function g(x) with pe-
riod L in each of d spatial dimensions is given by

. 1 )
g(x) — 2 gkeik-x/L’ i=— g(x)e—ikx/de, (2)

d
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so that the “antigradient” operator V~!' has, in a periodic
domain, the unambiguous interpretation as the Fourier trans-
form of the vector —iLk/k*. Another multiscale mixing mea-
sure which can be shown to be equal to similar fractional
Sobolev norms has been developed by Mathew et al”™

Part of the power of the multiscale mixing efficiency
formulation lies in its amenability to rigorous analysis in
terms of upper and lower bounds and the asymptotic depen-
dence of these bounds on the shape of the source function
and the strength of the stirring field, the latter being quanti-
fied by the Péclet number,

u¢
Pe:= —, (3)
K

where U and ¢ are the velocity and length scale of the
energy-containing eddies. Under the condition that the veloc-
ity field is incompressible and the scale separation 6 between
the source and the stirring fields is a fixed finite quantity,
Thiffeault ef al."” and Doering and Thiffeault'® obtained up-
per and lower bounds for the multiscale mixing efficiencies.
For large Péclet number, these bounds scale as
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A"=E,<A"Pe“, 4)

where the exponent 0=« =1 depends on the shape of the
source. For each p, the A~ are O(1) coefficients and A* is a
function of the scale separation. These bounds are sharp in
the sense that they are very nearly saturated for certain
source-flow combinations.'®!”

A natural question is how the mixing measures are re-
lated to the effective diffusivity obtained in homogenization
theory.z’lgf22 Lin er al.” clarified this through a detailed ex-
amination of a stirring field with a shear flow structure,
showing that the mixing efficiencies (for p=0 and p=-1)
and homogenized effective diffusivity have the same scaling
with respect to Pe when the ratio 6 of the scale of the stirring
velocity field to that of the source/sink field is sufficiently
strong so that 5<Pe”!. When §=Pe!, the mixing measures
are in general found to be distinct from that of homogeniza-
tion theory and to scale differently with respect to Péclet
number. The bounds (4) on the mixing measures only apply
to the case where the stirring and source/sink fields have the
same length scales; Lin et al? generalize this bound to the
case of arbitrary scale separation and show that the effective
diffusivity of homogenization theory satisfies these modified
bounds.

Here we complement the findings of Lin et al” by ap-
proaching the question from the general homogenization
framework rather than a detailed study of a particular ex-
ample. We will establish in Sec. II the general connection
between the mixing measures and homogenization theory
when the scale separation condition §<Pe™! is satisfied. In
Sec. III, we illustrate the behavior and relationship of ho-
mogenized effective diffusivity and mixing measures nu-
merically on the Childress—Soward class of flows, which
comprises examples with a wide range of mixing effective-
ness. Finally, we offer some concluding remarks and practi-
cal implications for homogenization-based parametrizations
of mixing in Sec. IV.

Il. RELATIONSHIP BETWEEN MULTISCALE MIXING
EFFICIENCIES AND HOMOGENIZED DIFFUSIVITY
IN FLOWS WITH SCALE SEPARATION

Consider a passive scalar field 6(x,7) evolving as

a6
— +LO=s(x),

P L=v-V-KA, (5)

where s(x) is a steady source/sink term, v(x,7) is an incom-
pressible stirring velocity field, and « the molecular diffusiv-
ity. We restrict attention here to steady sources for the sake
of simplicity; however, much of our discussion carries over
to the case of a time-dependent source.'® For brevity, we will
simply refer to s(x) as the source field, understanding that
negative values of s correspond to sinks of the passive scalar
field. Both the source and stirring fields will be assumed to
be periodic in space with period lengths L and ¢ along each
Cartesian direction, respectively, and the velocity field will
be assumed to be periodic in time with period 7, although the
same formal arguments apply for the case where the source
and stirring fields are homogeneous and stationary random
fields with these length and time scales associated with finite
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correlation lengths.'®'*?*® The unstirred field 6,(x,7) is the
solution to the analogous, unstirred diffusion equation, with
the same diffusivity and source,

36,
— + L6 =s(x),
ot 000 =s(x)

EO =— KA. (6)
We will assume the spatial average of the source is zero, so
that it does not drive an indefinite growth in the passive
scalar field. One can straightforwardly show that in this case
the passive scalar field itself will also settle into a zero spa-
tial average state,

(s)=0=(6). (7)

As is well-known, the gross effect of the stirring field
can be parametrized in terms of an effective diffusivity ten-
sor on length scales large compared to that of the stirring €.
In particular, when the length scale of the source is large
compared to that of the velocity field (6=¢/L<1), the
advection-diffusion operator in Eq. (5) can be replaced by an
effective diffusion opemtor,18

a0
ot

99

d
+L"0= +0(8), L'=- 2, D; .
s(x) +0(9) > 53, 35,

ij=1

(8)

The effective diffusivity tensor D;; represents, in terms of a
bulk diffusivity, the effect of the rapidly evolving stirring
field on the large-scale evolution of the passive scalar field,
and can be expressed as

D;;= k(5;+ Eij)v )

where I_(,-j is the enhancement of the diffusivity above its
isotropic molecular value «.

Homogenization theory provides a rigorous framework
within which the coefficients of the effective diffusivity ten-
sor can be calculated exactly in the limit of asymptotically
strong scale-separation 5<% ] 21822 Concretely, the effective
diffusivity tensor is expressed in terms of the solution to an
associated cell problem involving functions of the small-
scale variables alone. The small-scale velocity field is then
said to be “homogenized” over its periodic cell, and its effect
upon the passively advected scalar field appears as an en-
hancement of the bare, molecular diffusivity.

We note that homogenization theory is usually formu-
lated in the context of freely evolving passive scalar turbu-
lence, and that the presence of a small-scale component of
the source can introduce some nontrivial coupling with the
small-scale velocity field that can give rise to an effective
large-scale production of scalar concentration.'® However,
the homogenization proceeds more straightforwardly for the
case described above, where the source field varies on a
single length scale L large compared to the single length
scale € of variation of the velocity field.

The homogenized diffusion Eq. (8) is linear and can be
straightforwardly solved on a periodic domain for each
Fourier mode, to give, in the limit t— oo,
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The multiscale mixing efficiencies E, and E_; can then be
calculated as

POAARTS
EZ = 2.2 k2|Sk| i 7 2 (11a)
Sls ke +Ei,j=lKi.ikik.i)
Sl Sl 2kt
E(z): el Skl . (11b)

Ek|§k|2/ (k2 + Eij=ll?ijkikj)2

The expression for the microscale-weighted mixing effi-
ciency E,; is somewhat different from those given in Eqs.
(11a) and (11b) because a naive application of homogeniza-
tion theory can be shown to be theoretically invalid in de-
scribing this microscale-weighted mixing efficiency even at
strong scale separation. This may be understood by examin-
ing the multiscale expansion in the derivation of homogeni-
zation theory,z’l&22 where one can check that the gradient of
the true passive scalar field is approximated, in the strong
scale separation limit, by the sum of the gradient of the ho-
mogenized passive scalar field and a nontrivial corrector
term that is closely connected to the solution of the cell
problem (15). A careful examination of homogenization
theory (described in the Appendix) shows that the
microscale-weighted mixing efficiency should actually take
the form

X PAAR S

(11¢)

1= _ .
Ek|§k|2/ (k2 + Eﬁl,j=1Kijkikj)
The mixing efficiencies £, assume a particularly simple
form when the source function s(x) is monochromatic, with
wavenumber k,, say. In that case, the spectral sums in Eqs.
(11a)—(11c) are easily carried out and the mixing efficiencies
reduce to

where 7 is the unit vector directed along k,. Notice that when
the source is monochromatic the macroscale-weighted and
unweighted mixing efficiencies E_; and E, take the same
value, equal to the square of the microscale-weighted mixing
efficiency E,,. Equation (12) relates the mixing efficiencies
directly to the component of the effective diffusivity tensor
aligned with the source field. Thus, we see that, for this
special combination of a monochromatic source with a
small-scale flow, the mixing efficiencies and the effective
diffusivity tensor are related in a simple and intuitive man-
ner, except that the small-scale mixing efficiency scales as
the square root rather than in simple proportion to the effec-
tive diffusivity.

For broader spectrum sources, the precise relationship
between the mixing efficiencies and the effective diffusivity
depends in a nonuniversal way on the detailed spatial struc-
ture of the source. We can show, however, that we can expect
similar scaling for the mixing measures E, and E_; with
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respect to Péclet number as for the effective diffusivity in the
regime 1 <Pe< §°!. We note first that the enhanced diffusiv-
ity K(h)=3{,_,
from homogenization theory:

I?iiﬁ,-ﬁj obeys the following rigorous bounds
o 25,2930

0 < K(i#) = C*(i)Pe?, (13)

where 72 is an arbitrary unit vector and C*(i2) is some
bounded function depending on the structure of the velocity
field. Moreover, shear flows can be shown to saturate the
upper bound along the shearing direction and the lower
bound in the cross-shear direction. Intermediate scalings can
be achieved by a variety of other flows.>*'3 Now, if the

flow exhibits minimally enhanced diffusion™~* so that ||K]|
remains bounded with respect to increasing Péclet number,
then clearly the mixing efficiencies E, and E_; (11c) will

also remain bounded. If, on the other hand, ||K]|~ ord(Pef)
with 0<=2, then a direct asymptotic calculation on Eq.
(11) shows that the multiscale mixing efficiencies will ge-
nerically exhibit the same scaling E,,E_, ~ord(Pe®) pro-
vided the interval 1<Pe< 57! is broad enough. By similar
reasoning, the microscale-weighted mixing efficiency will
exhibit the scalings E,;~ord(1) and E,,~ord(Pe??) for
minimally and maximally diffusive flows, respectively. Now,
if the homogenized diffusivity has different scalings with
respect to Péclet number along different directions (as most
notably illustrated by the shear flow), the multiscale mixing
efficiency will reflect the scaling of the homogenized diffu-
sivity along the strongest direction of transport, provided that
the source field has nontrivial variation along that direction.
The constant prefactor of the scaling in the multiscale mixing
measures, though, depends not only on the scaling prefactor
in the effective diffusivity but also on the structure of the
source term.

lll. NUMERICAL SIMULATIONS

We now explore the relationship between the multiscale
mixing measures and homogenized diffusivity through nu-
merical simulations of passive scalar advection in the
Childress—Soward flow, described by the one-parameter fam-
ily of streamfunctions™

w:F(sinfsinX+ ecosfcosz), (14)
NN AN

where 27\ denotes the period length and I is chosen so that
the velocity u=(d,,—d,) has a root-mean-square value of
unity. This family of steady, two-dimensional flows is a par-
ticularly useful one for studying the effect of changes in
streamline topology on the transport properties of the flow, as
the parameter € can be varied between zero, corresponding to
cellular flow, and one, corresponding to a simple shear flow.
For values of 0<e<1 the flow is a combination of cat’s-eye
vortices and open channels, the width of the vortices decreas-
ing with increasing e. Streamline patterns for various values
of € are depicted in Fig. 1.

Despite its relative simplicity, the Childress—Soward
flow exhibits several novel features of interest here. In par-
ticular, when €>0 we expect scalar advection to be en-
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FIG. 1. Sample streamfunctions for the Childress—Soward flow (14) with values of €=0, 0.25, 0.5, and 1.0 and \=1.

hanced along the direction of the open channels but blocked
in the direction orthogonal to the channels. Indeed, the re-
sults of detailed analysisSO’35 and numerical computations3 436
confirm this intuition, showing maximally enhanced diffu-
sion (Pe? scaling of the enhanced diffusivity) along open
channels and streamline blocking in the orthogonal direction.
Figure 2 plots the Pe-scaling of the diffusivity enhance-
ment K(74) in the along-channel direction 7i=(%—-y)/ V2 for
stirring fields with €=0.0, 0.25, 0.5, and 1.0. (A similar fig-
ure appears in Majda and McLaughlin.34) The values of K(#i)
were calculated by solving the following cell problem over a
spatial period domain of the velocity field on a 1282 grid,

dx+u-Vy=rkAx-u, (15)

with periodic boundary conditions for )y, and then computing
the period average

K=-xku® y). (16)

Only the symmetric part of K contributes to diffusive trans-
port. Note that as the cell problem (15) only involves the
single scale of the stirring field it can be solved numerically
for moderate Péclet numbers with a relatively low spatial
resolution of 1282 grid points. Direct calculations for the

Along—channel diffusivity enhancement

0.125¢

4 8 16 32
Peclet number Pe
FIG. 2. Log-log plot of the along-channel diffusivity enhancement vs Péclet
number for Childress—Soward flows with €=0.0 (cellular flow), 0.25, 0.5,

and 1.0 (shear flow). Dotted lines indicate scalings of Pe? and Pe!? for
comparison.

original partial differential Eq. (5) must resolve both the stir-
ring and source field and thus require a commensurately
more expensive computation when the scales of these fields
are substantially separated.

A clear Pe’-scaling is seen for a shear flow (e=1.0),
decreasing to a rough Pe!’? scaling for the case of a cellular
flow (€=0.0). The physical mechanism underlying the ob-
served Pe’-scaling is well understood as a consequence of
Taylor shear dispersion,37 whereby particles of tracer are
transported coherently and ballistically along streamlines.
The effect of molecular diffusion is to randomly kick par-
ticles onto neighboring streamlines, leading to rapid decorre-
lation of particle pairs and a decrease in the net tracer trans-
port. As a linear scaling of K with respect to Pe corresponds
to an insensitivity of the turbulent diffusivity D (9) with
respect to molecular diffusion, we therefore expect and ob-
serve a faster-than-linear scaling with respect to Péclet num-
ber, and in fact the enhanced diffusivity of the shear flow has
the maximal scaling with respect to Péclet number.** On the
other hand, the sublinear Pe!/ 2—scaling for cellular flows is a
consequence of trapping within cells, and the need for mo-
lecular diffusion to assist in moving the passive scalar field
from cell to cell >*31-4736

In computing the multiscale mixing measures (1) for the
Childress—Soward flows, we solve the advection-diffusion
Eq. (5) with steady source s(x)=cos(x—y)/L varying on the
length scale L and oriented orthogonally to the direction of
the open channels. We use a pseudospectral code with
N=1024 grid points in each of the two dimensions. We
present our results nondimensionally in terms of the Péclet
number Pe and length scale ratio § between the variation in
the stirring and source fields,

\NU N
Pe=—, 6=—, (17)
K L

where U=1 through our choice of I" in Eq. (14). As we shall
always take &' to be an integer, it suffices to solve the
advection-diffusion equation over a single period domain of
the source (which may contain many periods of the stirring
velocity field). Our resolution requirements restrict the range
of parameters we can explore as follows: the diffusion
scale of the passive scalar field, which we must resolve,
can be estimated by A=(\«/U)"?. We therefore require
L/N=<A. Noting that we can express the Péclet number as
Pe=(\/A)?, we infer the condition
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FIG. 3. Log-log plot of (left) unweighted mixing efficiency E, and macroscale- weighted mixing efficiency E_; and (right) microscale-weighted mixing
efficiency E,; vs Péclet number Pe calculated for simulated Childress—Soward flows with monochromatic source s(x)=cos(x—y)/L with d=N/L=1/128.
Dashed lines plot the homogenization theory prediction for these mixing efficiencies (11a)—(11c). Dotted lines indicate predicted large Péclet number scalings

for comparison.

51pel2=<N. (18)

We choose to explore the parameter ranges 1/128=6=1
and 4 =Pe=64. This will allow us to observe how the mix-
ing measure behavior changes as the scales of the velocity
and source field separate, and the relatively modest range of
Pe is still wide enough (for these flows) to observe nontrivial
scaling behavior [which actually seems to already be in the
large Pe asymptotic regime for Pe=64 (Ref. 34)].

The only potentially significant numerical error in our
simulations arises from the fact that, due to the smoothness
of the source and the stirring field, the scalar variance (as
well as the gradient and antigradient variances) approaches
its asymptotic value very slowly so that it is necessary to end
the simulation before the variance has reached its true
t— o0 value. To minimize this source of error we evolved the
scalar field until the variance changed by less than 0.01%
over the diffusion time scale 7g=1/ ka or longer.

First we explore the behavior of the mixing efficiencies
when 6=$, so that the source length scale is large com-
pared to the stirring length scale, and homogenization theory
can be expected to be relevant in describing the passive sca-
lar dynamics. The equilibrium tracer variance, antigradient
variance, and gradient variance thus obtained were used to
calculate the multiscale mixing efficiencies (1), which are
plotted against Péclet number in Fig. 3. In the case of a shear
flow (e=1.0) both the macroscale-weighted mixing effi-
ciency E_; and unweighted mixing efficiency E, exhibit ap-
proximately Pe?-scaling for large Péclet number. This scaling
decreases with decreasing €, corresponding to narrower
channels and increased cross-channel blocking. For cellular
flows (€=0.0) the E_, and E, scale as Pe!’?. Also shown is
the homogenization theory prediction (1la) and (11b),

which, for the monochromatic source considered here, re-

duces to 1+K(74). Thus, the scalings of the mixing efficien-
cies for these Childress—Soward flows are in agreement with
the high Péclet number scaling of the homogenized diffusiv-

ity K(#i) along channels, the most efficient transport direction
(Fig. 2).

Also shown in Fig. 3 is the microscale-weighted mixing
efficiency E, |, which shows a shallower scaling with Pe than
that of the other mixing efficiencies, namely, Pe for shear
flows (e=1.0) and Pe* for cellular flows (€=0.0). Superim-
posed on this figure is the homogenization theory prediction
(11c), which, for monochromatic sources as here reduces to

(1+K(#))"?. Again, homogenization theory successfully
captures the high Péclet number scaling of the microscale-
weighted mixing efficiency, although the scaling is different
from what a direct application of the homogenization theory
result would imply. The fit is also not quite as good as for the
larger scale mixing efficiencies E, and E_;, presumably be-
cause the smaller-scale mixing efficiency E,; is more sensi-
tive to the finite scale separation between the source and
stirring fields.

To probe the role played by scale separation in altering
the scaling behavior of the mixing efficiency, we repeated the
numerical experiments for more moderate scale separation,
with values of & varying between 1/12 and 1 (the case of no
scale separation between source and stirring field). Our re-
sults are shown in Fig. 4. The smaller scale separation here
allows one to explore higher Péclet numbers while still sat-
isfying the resolution condition (18). Also shown are the ho-
mogenization theory predictions (11a)—(11c) in the homog-
enization limit 6=0. In all cases, the mixing efficiency is
suppressed below the homogenization theory prediction as
scale separation is weakened (86— 1). In the case of no scale
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FIG. 4. Log-log plot of unweighted mixing efficiency vs Péclet number Pe for Childress—Soward flows with monochromatic source s(x)=cos(x—y)/L. Each
figure corresponds to one of the considered flow patterns (parametrized by €), and in each figure, we examine different ratios of the scale separation parameter
5=4/L between the length scale of the stirring velocity field and the source. Dashed lines indicate the theoretical predictions (11a)—(11c) in the homogeni-

zation limit 6=0.

separation, the mixing efficiency plateaus for e<<1, remain-
ing constant as Pe increases. This behavior is hardly a sur-
prise: unlike chaotic advection, wherein a large-scale, time-
varying velocity field can strongly mix a passive scalar
field," the time-independent laminar flows we consider are
unable to generate the small scales necessary for efficient
mixing unless the scale of the source is much larger than that
of the stirring field, as shown in Fig. 5. We recall that ho-
moggr}iszation theory is only expected to be valid in the
limit™

5§<1,Pe!. (19)

This is consistent with the results in Fig. 3, which shows
parameter ranges satisfying these conditions as well as
agreement with the predictions of homogenization theory.
Homogenization theory is shown by Lin et al.” to work well
for the mixing of a source with a shear flow precisely when
condition (19) is met, and fails to be relevant as soon as this
condition is violated.

IV. CONCLUSIONS

We have examined the multiscale mixing efficiencies of
Doering and Thiffeault" through the lens of homogenization
theory by considering situations in which the length scale of
the passive scalar source/sink field is large compared to the
length scale of the stirring velocity field. For simplicity, we
have considered periodic velocity fields, although the ma-
chinery of homogenization theory and our analysis can also
be developed for velocity fields and source fields that are
modeled as homogenous random functions (a more plausible
model of real-world turbulence) provided the correlations in
the flow are sufficiently short—range.z’18’19’24_28 The required
small parameter for the validity of homogenization theory
would then be the ratio of the correlation length of the stir-
ring velocity field to that of the source field.

We have derived theoretical expressions for the mixing
efficiencies when the conditions for homogenization theory
are satisfied, and showed that they imply that the mixing
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FIG. 5. Snapshots of source function s(x) and scalar concentration 6(x,7) at various time-steps for a stirring shear flow with no scale separation (5=1.0 and
€=1.0). The stirring field is unable to generate the small scales in the scalar concentration necessary for efficient mixing.

efficiencies should thereby scale in a similar way to the ho-
mogenized diffusivities at large Péclet numbers, provided the
mixing efficiency does not weigh the small scales too much.
We have examined how the small-scale fluctuations gener-
ated by the velocity field affect the mixing measures in ways
that differ from the direct homogenization prediction, but can
be reconciled with a more careful application of homogeni-
zation theory. Through numerical experiments with the
Childress—Soward family of flows, we show how the homog-
enization predictions for the mixing measures deteriorate as
the length scales of the stirring and force field approach each
other, complementing the study of this phenomenon through
shear flows in Lin et al.”

One consequence of our above considerations is that,
when the source scale is large compared to the stirring scale,
the flows which maximize or minimize mixing [as quantified
by the multiscale mixing measures (1)] are the same as those
which maximize or minimize turbulent transport, provided
the flow is oriented appropriately with respect to the source-
sink distributions. The issue of optimal mixing for the case
when the source and velocity field have the same length
scale of variation is explored in Refs. 9 and 38.

Finally we note an interesting practical implication of
some of the results presented in this study. The usual
advection-diffusion equation for a scalar field with an im-

posed slowly varying background gradient Vé(x,7) can be
written as

a8

- +L0=—-v(£7D-VO, L=v(£D -V-kKA,

(20)

where (&, 7) and (x,) are the fast and slow space-time vari-
ables, respectively. By comparison with Eq. (5) it can be
seen that Eq. (20) is equivalent to the evolution equation for
a replenishing passive scalar field forced by the background
gradient term s(&, 7;x,1)=—v(£€,7)-V0(x,1). This term takes
the form of a rapidly varying source of scalar variance modu-
lated by a slowly varying amplitude.

The multiscale mixing efficiencies for this particular
source-flow combination are given by

E,(x,1) =D, (x.0)/k, (21)
where
Vs Pes
D=\ (ray,, 22

are the so-called equivalent diffusivities required to suppress,
by diffusion alone, the scalar variances ([V?6|?) to the same
values obtained in the presence of the stirring field v(x,?)
and the molecular diffusivity k."> [Note that the averages in
Eq. (22) are taken over the fast space and time variables
only.] In this sense, the D, can be thought of as exact char-
acterizations of the scalar dissipation by the subgrid-scale
stirring field that can be calculated for any scale separation.

Following the arguments of Sec. IL, it can be shown that,
in the limit 6—0, Dp takes the value of the enhanced diffu-
sivity D=« (1+K) projected onto the mean gradient direction

V6/|V6|. Thus, the equivalent diffusivities reproduce the
usual homogenization theory prediction in the limit of infi-
nite scale separation, while at finite scale separations they
will typically vary from this prediction. As such, they are
potentially more flexible mixing diagnostics than the homog-
enized diffusivity, providing a physically meaningful quanti-
fication of mixing for passive scalar advection problems with
finite scale separations while agreeing with the homogeniza-
tion theory prediction in the 6— 0 limit. Thus, by comparing
D, with the effective diffusivity one obtains a measure for
how well homogenization theory parametrizes subgrid-scale
mixing for flows with finite scale separation between the
stirring field and the mean scalar field. We will take up this
topic in the context of temporally unsteady velocity fields in
a future publication.
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APPENDIX: CALCULATION OF THE MICROSCALE-
WEIGHTED MIXING EFFICIENCY IN THE LIMIT
OF STRONG SCALE SEPARATION

The formal derivation of the effective diffusion equation
in the presence of a source-sink distribution is presented in
detail in Ref. 18. In the typical homogenization theory for-
mulation, one seeks to obtain a description of the long-time,
large-scale evolution of 6(x,r) by rescaling variables
x— & x, t— 6%, and then, in these new coordinates, dis-
tinguishing dynamics on small (£€=x/8,7=t/5%) and large
(x,7) space and time scales, separately, so that

VoV +68'Vy 9,—d+57%9,. (A1)

Note that in the current setup, the small spatial scale corre-
sponds to the scale of variation of the stirring field, while the
large scale corresponds to the scale of variation of the source
field. One then seeks a solution to the advection-diffusion
equation for the passive tracer via a perturbative expansion
in the small parameter 0,
(0) (1 (2

09,0 = 0(&7x.0)+ 80 (£,mx,0)+ 50

X(E,72,0) | gmpte rms2 (A2)

To calculate the microscale-weighted mixing efficiency
E,, we require the gradient of the stirred tracer field; from
Egs. (A1) and (A2) this is

(0) (1)

VI =(V, 0+ Vi 0)| ey mne + O(D). (A3)

Proceeding with the usual homogenization theory develop-
ment, we substitute the expansions (A1) and (A2) into the
advection diffusion equation and solve at each order in &,
ﬁnding2

(0)

0(& m.x,1) = O(x,1), (A4)

(1)
0 (& mx,1) = x(€,7) - V,0(x,0) + 6,(x,1).

The zeroth order solution can be interpreted as stating that
the large-scale variations of the passive scalar density are
dominant, and subsequent calculations at the second order of

(A5)

the asymptotic hierarchy show that 6 evolves according to
the effective diffusion Eq. (8) [dropping the O(8) error
terms]. The first-order solution comprises both the leading
order small-scale response of the passive scalar field and a
higher order correction 6, to the large-scale variation, the
latter of which plays no essential role to our final results. The
small-scale component is expressed in terms of a vector field
X (&, 7) that is the unique, periodic, mean-zero solution of the
auxiliary cell problem

(0:+0(&7) - Ve— kA x(£,7) =-v(£7),

and determines the enhanced diffusivity tensor via the
formula

Rij = <V§Xi : Vng>-

Substituting expressions (A4) and (A5) into the expan-
sion (A3) yields

(A6)

(A7)
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d
Ix; I
<lve|2>§,f=2(6,~+ Sl
ij=1 0751‘ ﬁfj &
36 96
Vxi- Vexde. | —— + 0(9), A8
+(Vexi gx)g,f) P (9) (A8)

where (-) , represents averaging over small-scale variables
only. From the periodic boundary conditions on & and 7, the
second term in brackets vanishes; using expression (A7) then
gives the gradient variance in the 6— 0 limit as

! 96 30
G,)= 2 (8;+K)——. (A9)
ij=1 ﬁxi (9)(:]

A direct estimation of the passive scalar gradient as the gra-
dient of 6 would neglect the K, ; term, which arises from the
fact that the small-scale gradient of the formally subdomi-
nant first-order term contributes on equal terms to the large-
scale gradient of the leading order term.

Fourier transforming Eq. (A9) with respect to the slowly
varying spatial coordinate x and substituting in the equilib-

rium solution (10) gives
o2
A N
k= % (A10)

so that the microscale-weighted mixing efficiency becomes,
in the limit 6—0,

2 =<|V00|2 —
(v
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Ek|§k|2/(k2 +3¢
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