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Geostrophic turbulence near horizontal surfaces on which the vertical velocity van-
ishes exhibits a forward cascade of buoyancy variance, characterized by a shallow
energy spectrum, secondary roll-up of filaments, and a fat-tailed vorticity probabil-
ity distribution. Such surfaces occur at rigid boundaries, but also at discontinuous
jumps in stratification. Here we relax this mathematical idealization and investigate
geostrophic turbulence near a rapid but smooth jump in stratification, modeled by
N(z) = No[1 + atanh (z/h)]. The rapidity of change is controlled by the length scale A
and the profile approaches a step function as # — 0. The approximated Green’s func-
tion for the quasigeostrophic potential vorticity (PV) is used to predict the spectral
PV-streamfunction relationship, under various assumptions about the distribution of
the initial PV. Numerical simulations of freely-evolving quasigeostrophic turbulence
in the presence of the model stratification support the predictions and reveal that
the jump has two effects: it alters the Green’s function in the region of the jump
and it produces a peak in PV near the jump, approaching a Dirac delta-function as
the jump scale 7 — 0. When the Green’s function is integrated against this sharp
PV distribution, contributions far from the jump (|z| > h) are suppressed and the
flow in a region |z| < O(h) exhibits surface effects. This occurs for horizontal scales
L Z Nohlf, the deformation scale associated with the jump. These results have im-
plications for geostrophic turbulence near the tropopause in the atmosphere and
the base of the mixed layer in the ocean. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4799470]

. INTRODUCTION

Charney’s theory of geostrophic turbulence' predicts that a quasigeostrophic system forced
by narrow-band stirring will exhibit an inverse cascade of total energy above the forcing scale
and a forward cascade of potential enstrophy below it, with a wavenumber energy spectrum with
spectral slopes of —5/3 and —3, respectively. The theory is based on the close analogy between the
two-dimensional vorticity equation and the quasigeostrophic (QG) equations, which are

2
dqq+J(,q)=0, where ¢=V>y+0. (%w) (1)

is the QG potential vorticity (PV), f is the Coriolis parameter, N(z) is the buoyancy frequency,
VZ=09, + 0yy, and ¥ is the horizontal streamfunction. Charney was careful, however, to point out
that this theory applies only to flows far removed from boundaries and in which variations in the
buoyancy frequency N are relatively small. At rigid upper and lower boundaries, the no-normal-flow
condition yields a time-dependent conservation equation for buoyancy; when the PV in the interior
is assumed to be constant, this boundary condition completely determines the flow, yielding the
Surface Quasigeostrophy (SQG) model first discussed by Blumen.?
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At first considered a rather exotic special case, a number of studies have since shown SQG (or
variants thereof) to be a relevant model for real atmospheric and oceanic flows. In an atmospheric
context, treating the tropopause as a near-rigid lid, Juckes® argued that synoptic-scale tropospheric
motions are largely determined by temperature anomalies on the tropopause, the latter being well-
described by a modified version of SQG. Muraki and Hakim* later showed that a next-order extension
of SQG may explain observed asymmetries of waves and vortices on the tropopause. Tulloch and
Smith’ constructed a model that includes both surface and interior dynamics and showed that it
may explain the atmospheric energy spectrum results of Nastrom and Gage.® In an oceanic context,
Lapeyre and Klein’ and, independently, LaCasce and Mahadevan® used combined SQG-QG models
to reconstruct the three-dimensional interior structure of mesoscale and submesoscale eddying flow
from sea surface measurements. Methods of this type have been further explored, developed, and
demonstrated in a number of settings.®!!

The SQG approach, however, formally applies to surfaces on which the vertical velocity exactly
vanishes, yielding (in the quasigeostrophic approximation) a conservation equation for the buoyancy
on this two-dimensional surface. Neither the atmospheric tropopause, nor the base of the oceanic
mixed layer (to which the SQG-based models apply) are truly rigid surfaces; rather, they are
characterized by rapid jumps in stratification N. In the limit of a true discontinuous jump in N (or
the vertical shear of the mean horizontal velocity d,u), the vertical velocity at the jump will vanish,
and SQG dynamics will apply; this was shown explicitly by Juckes® and Held et al.'* Specifically,
if N is taken to be a step function, with the value N_ for z < 0 and N, for z > 0, and if the PV
q = 0 everywhere except at z = 0, then integration of (1) across the discontinuity in ¢ results in the
conservation law

2o (0
B+ J(, B) =0, where B = <m8ﬂ[/> — (mfizw)
In a periodic or infinite domain, the Fourier-transformed elliptic equations given by setting ¢ = 0
at wavenumber modulus x may be solved separately for positive and negative z. Requiring that i
— 0 as z - Foo yields decaying exponential functions with scale depths kN, /f for z > 0 and
kN_/f for z < 0. This gives the relationship, in Fourier space, between the conserved quantity and

streamfunction,
f f
B=—x|—+— tz =0,
K <N+ + N Yatz

where « is the modulus of the horizontal wavenumber. With the linear proportionality to «, the
relationship between B and i is exactly analogous to that between the buoyancy b = fd.y and
streamfunction i in the standard SQG model. This should be contrasted with two-dimensional
vorticity dynamics, in which the ratio of the conserved quantity (vorticity) to the streamfunction is
proportional to k>—the difference in the power of the wavenumber is at the heart of the distinct
character of flows in the two models.'>!* Finally, one may be surprised to notice that B does not
vanish when N, = N_; it is the assumption of a discontinuity in ¢, rather than in N (although the
former presumably follows from the latter) that results in a linear-in-« relation between conserved
quantity and streamfunction. This is related to a central point of this paper, discussed below and in
Sec. I1I.

Here we consider geostrophic turbulence in the presence of a rapid but continuous change in
stratification and ask

¢ How sharp must a jump in N be to generate SQG-like dynamics?
* What are the spatial limits of the SQG-like behavior?

The essence of the effect can be understood by considering the form of the PV with non-constant
N =N(2),

2 2N/
S

q = Vzlﬁ + N2 Y — Ffzazw- ()

Downloaded 11 Apr 2013 to 91.230.41.81. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



046601-3 K. S. Smith and E. Bernard Phys. Fluids 25, 046601 (2013)

At a vertical level z = z;, where N experiences a sharp jump of width 4, the derivative N’ will be
very large, and the buoyancy term will dominate the PV. In some vicinity of this level and some
range of horizontal scales, the PV will be negligible compared to its buoyancy-dominated value at
z7, and will be determined by the first derivative of vy and thus proportional to k. Scaling then
implies that the remaining terms in the expression for the PV will become important at wavenumbers
k 2, fI(Nh), which may be thought of as an inverse deformation scale for the jump-width. In other
words, no matter how sharp the jump is, so long as it is smooth, there will always be horizontal
scales with associated vertical scales that are small compared to the jump.

We quantify these effects by considering the model stratification N(z) = Ny[1 + « tanh (z/h)].
The control parameter / sets the width of the jump; the model stratification approaches Ny as
h — oo and a stepfunction as 7 — 0, with values N. = Ny(1 + «) for z > 0 and N_ = Ny(1 — «) for
z < 0. The effects of the model stratification on the dynamics are investigated first by considering the
Green’s function for the PV inversion, for which both approximate analytical and numerical forms
are constructed. The Green’s function is used to make inferences about the vertical and horizontal
structure of the energy spectrum under certain assumptions and these predictions are then tested
against numerical simulations of the nonlinear equations of motion in the presence of the model
stratification and an initial PV anomaly.

Plougonven and Vanneste'> also considered the effects of a finite-thickness jump in stratification,
using a complementary but distinct approach, and addressing a slightly different set of questions.
Specifically, they used a matched-asymptotic expansion about the jump region and included the
effects of a mean shear, but restricted their attention to linear waves and vanishing PV outside the
jump layer. Still, some results in their paper tie directly to results in the present manuscript, as noted
in the body of the text.

This paper is organized as follows. In Sec. II we introduce a general Green’s function approach
to PV inversion and consider closed and approximated forms for a few specific stratification profiles.
Section III applies these Green’s functions to a set of initial PV distributions, ranging from two ex-
treme limiting cases (height-independent and delta-function) to a specific form that is consistent with
the stratification, with ¢ dominated by the third term in (2). Numerical simulations of freely-evolving
turbulence, initialized from the latter PV distribution, in the presence of our model stratification, are
presented in Sec. IV. Implications and conclusions are discussed in Sec. V.

Il. AGREEN’S FUNCTION APPROACH TO PV INVERSION

To facilitate the analysis, we nondimensionalize the buoyancy frequency N(z) by its average N,
lengths (horizontal and vertical) by a scale H, and define the ratio

No

7
Unless otherwise noted, all quantities are nondimensional from here forward. Upon Fourier trans-
forming in the horizontal, the PV inversion relation may be written

o

L,d 1 4
— — -k
dz N%2(z) dz

LY (z) = q(z), where L=o0 (3)
is a self-adjoint operator, ¥, and g, are the Fourier amplitudes of 1 and ¢ at horizontal wavenumber
k, and k = |k|. The Green’s function associated with the inversion problem (3) is the two-variable
function G(z, &) that satisfies

LG(z,§) =08(z — §) “

with § the Dirac function. In an infinite domain, we demand that as z — 00, the streamfunction
Y, — 0 and thus G(z, §) — 0. It is straightforward to consider finite boundaries, as is done in
Tulloch and Smith,> but here we wish to focus on the effects of a jump in the stratification at scales
removed from the boundaries (nevertheless, some boundary effects will have to be taken into account
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for the numerical simulations). In this case, the solution of the inversion is

+o0
Vie(2) = / 9:c(§)G(z, §)dE. ®)

oo

The Green’s function can be written G(z, £) = A(§)¢,(z) for z > & and G(z, £) = B(§)¢_(2)
for z < &, where ¢, and ¢_ are homogeneous solutions for the regions above and below z = £,
respectively, that satisfy

LPpi(z) =0 with ¢1(z) > 0 as z — Foo. (6)
The prefactors A(§) and B(§) are determined by demanding continuity of G(z, &) at z = & and that
its derivative 9.G(z, &) at z = £ has a finite jump. The general solution is then
o?N2(E) |9+ (2D)9-(§), z=>&
WE) |ps@E)p-(2), z<§&’

where W (&) = ¢/ (§)p (&) — ¢;(é)¢_(§) is the Wronskian and primes denote derivatives with
respect to the independent variable.

For constant N = 1, the homogeneous problem (6) is trivial to solve and the Green’s function
takes the form

G(z,8) = (M

__ 9 okl
Go(z,&) = P . (8)

For arbitrary N(z), a general closed form for G cannot be found and so we turn to a Wentzel-
Kramers-Brillouin (WKB) solution, which will be appropriate when (cx)~! < 1; dimensionally,
this is equivalent to assuming horizontal scales small compared to the deformation radius NoH/f.
Because our problem is posed for an infinite domain, this limit is only meaningful once a height
scale H is chosen. In practice H can be thought of as the distance to physical boundaries or changes
in environment, thus the condition is simply that we consider vertical scales small compared to
the vertical extent of the fluid. The WKB solution is described in the Appendix and the resulting
approximate Green’s function is

GGz, &)~ — NN @ ] ©)
Note that taking N = 1 above recovers the constant-N form Gy given in (8).

Substitution of the model stratification profile

N(z) = 1 + o tanh(z/ h) (10)

into (9) gives the WKB-approximated Green’s function
Gz, &) ~ —21\/N(Z)N(E)e‘”h”e(z/h)_e(é/h”, 0(z) = z + a Incosh z. (11)
K

When & — oo, the function #6(z/h) — z, and G, reduces to Gy in (8), the form for N = 1. In the
opposite limit, when 7 — 0, the stratification N becomes a step-function, equal to 1 + « for z > 0
and 1 — « for z < 0. Considering the positive and negative planes separately, we find G again reverts
to its constant-N form Gy, but with o replaced by o (1 + «) for z > 0 and o (1 — «) for z < 0; e.g.,
the only changes are the scaling of the horizontal wavenumber and the associated decay scale from
z=0.

lll. THE EFFECT OF INITIAL PV DISTRIBUTIONS ON INVERSION

Given the Green’s function, determined entirely by the stratification N(z), the g- relationship
depends, of course, on the initial PV; consider first the two extreme cases of constant and delta-
function PV distributions.

Constant PV distribution: First, consider the extreme example of an initial PV distribution that
is independent of z, given by ¢, = Q,, a constant that depends only on «. Along with the
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constant-N Green’s function (8), the inversion (5) gives

= O«

0e(2) = O, / Gotz, £)dg = — == (12)

—00
Here the streamfunction results from an integration of G over all space, resulting in the
PV-streamfunction relationship expected for barotropic flows.

We may also consider the case of the z-independent PV distribution with our model
stratification (10), though the result is essentially the same. The streamfunction is determined
by the integral ffooc Gn(z, E)dE, with G, from (11). This integral doesn’t seem to have a
closed form, but because N'?(&) is O(1) for all £, and In cosh (&/h) ~ |£/h| — In 2, the integral
turns out to be proportional to 1/k, and so the streamfunction goes like 1/«k2, just as before.
Thus a height-independent PV distribution will result in a barotropic-like PV-streamfunction
relationship, independent of the stratification.

Delta-function PV distribution: Next consider the case where ¢, is sharply peaked at z = 0, e.g.,
take ¢, (z) = A,68(z), with A, a constant depending only on the wavenumber, so that (5) with
(8) gives

* AKU —ok|z|
Vie(z) = AK/ 8(6)G(z,86)dE = 5 ¢ - (13)

In this case, the streamfunction picks out the value of the Green’s function at the position of
the peak in g, and thus is proportional to the inverse wavenumber, « ~!, rather than its square.

With the model stratification (10) and a delta-function PV distribution, the result is again
the same—the delta-function picks out G,,(z, 0) and no factors of « are brought down, so the
streamfunction goes like 1/k, as with constant stratification.

The differences in these two extreme cases of peaked- versus constant-PV illustrate that regard-
less of the form of the stratification, it is the structure of the initial PV distribution that fundamentally
changes the character of the relationship between the PV and the streamfunction. In the case of a
sharply-peaked initial PV signal, the streamfunction is dominated by the Green’s function at the
position of the spike in ¢, and its response over all space is slaved to the relationship at this position
— this is just what happens in the SQG model. By contrast, when ¢, is independent of z, the
streamfunction results from an integration of G over all space, resulting in the relationship between
the two fields expected for barotropic flows.

A. PV distribution consistent with model stratification

In the examples above we have taken the PV distribution to be independent of the stratification,
but as pointed out in the Introduction, sharp jumps in N(z) will directly affect the PV itself, leading
to a dominance of the 9.y term in the PV-streamfunction relationship. Accordingly we consider a
sharply-peaked initial PV distribution with vertical structure given by the third term in (2),

A, 2N'(z)
(7)) = ——% ., 14
WD =~ (14)
where N'(z) = (a/h)sech?(z/h) is the derivative of the nondimensional buoyancy and A, is an
initial height-independent spectral distribution.'® The streamfunction, found by integrating the PV
distribution against the Green’s function in (11), is

Ay
Vie(z) = —3 L (z/ h), (15)
OK
where
z o0
[.(2) = ¢ 0@ / F(x)e™@ gy 4 <0G / F(x)e 9™ qx (16)
—0Q0 z
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(which arises after the substitution x = &£/h has been made), £ = o/ is a deformation scale for the
jump,

—2asech’x

Flr) = — 205y
W) = T & anhn?

and 6(x) = x 4+ alIncoshx.
While there is no closed form for the integral, it is useful to analyze its behavior in the limits of
small and large wavenumbers.

Small-x limit: When ¢k < 1, the sharp peak in F(x) near x = 0 means that the integrands are
significant only in a small neighborhood around the origin, thus all the exponential factors are
approximately 1. When |z| 2 O(h), only the integral that includes 0 inside its limits of integra-
tion will contribute to /(z/h) and, in this case, the integral that includes z = 0 is approximately
[ F(x)dx = (4/3) [(1 + &)™** — (1 — @)73/?]. The integration is performed by writing
F(x) = —2N'(x)N~>2(x) = (4/3)[N~*?(x)]’ and noting that N(x) — 1 £ « as x — =£o0. Finally,
noting that 6(z) ~ z 4+ «|z|, the approximate streamfunction in the small-wavenumber limit is

1, lz| < h,

-3/2 _ _ -3/2
R | P

2A,
30k

Y (z) &

a7
where the plus in the exponential applies when z > 0 and the negative when z < 0. Thus
for horizontal disturbance scales large compared to the jump deformation scale £ = o/ (and
hence vertical disturbance scales large compared to the jump width #), the PV-streamfunction
relationship is similar to that for the delta-function PV distribution (13), with SQG-like
behavior near z = 0, and exponential decay with e-folding scales ~[ox (1 £ a)]~! above
(positive) and below (negative) the jump. The important difference here is that the exponential
decay starts only for |z| 2 h, with the streamfunction (and hence the kinetic energy) nearly
constant in a neighborhood about z = 0; the region of active surface dynamics is thus spread
out over the thickness of the jump.
Large-x limit: In the opposite limit, when £« > 1, we take advantage of the fact that the integrals
in (16) are of the Laplace type. Integration by parts gives

b b
1 . d F
== / eSS (x)dx
a

b
./ F(x)e* 00y = + —F(x) e
. Lk dx 6'(x)

p L6’ (x)

and, because 6'(x) # 0 and F(x) # 0 for finite x, the integral on the right is asymptotically
smaller than the boundary terms as £x — o0.!” The boundary terms evaluated at z/A for
the two integrals in (16) will add, while the boundary terms at £oo vanish, so that 1, (z/h)
~ —2F(z/h)/[£x6'(z/h)]. In the large-wavenumber limit, then, the streamfunction at z = 0 is
approximately

20\,
(oKk)2h’

At z away from O, the expression that arises using the approximation above is less accurate;
we neglect the details here, but a full numerical solution to the integral is shown below. The
main point is that, at horizontal scales small compared to the jump deformation scale (or
vertical scales small compared to /), the wavenumber-dependence of the PV-streamfunction
relationship reverts to that for barotropic flow.

Ve (0) = for Lk > 1. (18)

Atz =0, approximation (17) gives ¥, (0) ~ 2a A /(o k) and (18) gives ¥ (0) ~ 2 A, /(c%k2h),
implying a transition wavenumber

Kk = (oh)~L. (19)

Thus, given a finite, smooth jump in background stratification, this is the wavenumber below which
the wavenumber dependence of the streamfunction-PV relationship is expected to revert back to
its standard 1/« form, providing a small-scale limit on the applicability of SQG-theory in realistic
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FIG. 1. The spectrum okl (z/h), with « = 1/3, plotted against o« on log-log axes. Upper panel: z = 0 and % set to the
values in the legend. The approximations of /, that lead to (17) and (18) are shown as dashed lines with circles and triangles,
respectively, and arrows denote the transition wavenumber, , from (19). Lower panel: the spectrum for 7 = 0.03, at vertical
levels listed in the caption.

flows. This small-scale limit of applicability is equivalent to the asymptotic limitation of small
perturbation parameter discussed in Plougonven and Vanneste.'?

Finally, we compute the expected streamfunction for all wavenumbers by numerically integrat-
ing (16). The upper panel of Fig. 1 shows o« (z/h), with « = 1/3, plotted against ok on log-log
axes, for a range of i; multiplication by ok compensates the (ox)~! dependence at small wavenum-
ber. The approximations of I, (z/h) that lead to (17) and (18) are shown as dashed lines with circles
and triangles, respectively. The lower panel shows the same spectrum, for the case # = 0.03, for a
range of vertical levels extending above the jump. At small wavenumbers, as expected, the spectrum
barely changes; however, at large wavenumbers, the spectrum drops off over a broad transition range,
returning to a k! slope at a reduced magnitude. The main effect of moving away from the jump
is an effective decrease in the transition wavenumber. More importantly, at wavenumbers a decade
below the transition number, the SQG-like spectrum remains unchanged for vertical levels of O(h)
and beyond, above, and below the jump location.

IV. NONLINEAR NUMERICAL SIMULATIONS

Using a dealiased spectral quasigeostrophic model with 512% equivalent horizontal points and
400 vertical levels, three numerical simulations of freely-evolving turbulence were conducted on a
domain 0 < x,y < 2w, —1 < z < 1, in the presence of background stratification given by (10) and
initial PV distributions given by (14), with o = 1. The three simulations differed only in the value
of the jump thickness; the values used were 7 = 0.01, & = 0.03, and 4 = 0.1. The wavenumber-
dependent constant A, is set so that the initial energy is 1, distributed isotropically in a gaussian
shell about wavenumber x = 5, with half-width width 2. The stratification and mean square initial
PV and streamfunction are plotted in Fig. 2.

Figure 3 shows snapshots of the PV a few eddy-turnover times after the initial instability, at
z = 0, for each of the three cases. Close inspection shows a decrease in small-scale structure as A
increases, while the flow remains “SQG-like” in all cases; specifically, even for a relatively gentle
jump in N, with & = 0.1, buoyancy filaments remain unstable to secondary roll-up.
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0.8f 1
p(2) N(2)

0.4} 1

0.2} : 1

1 i i i
0 0.5 1 1.5 2

FIG. 2. (Left) Stratification N(z) (black) and density p(z) (gray) with 2 = 0.03. (Right) Initial mean square PV profile (black)
and streamfunction profile (gray) for case with 7 = 0.03.

For each case, one may also consider how the flow varies as one moves away from the jump
position z = 0. Figure 4 shows snapshots of the PV at the same point in time, for the case with
h=0.03 and z = 0, h, 2h, 4h, 8h, 16h. As expected, the flow becomes less locally-controlled and
takes on the appearance of a tracer in the Batchelor regime. This effect is similar to that described
by both Scott'® and Sukhatme and Smith."”

Figure 5 shows the horizontal kinetic energy spectra at various vertical levels, for the simulation
performed with 2 = 0.03 (see caption for details). The light gray dashed lines represent the predicted
spectrum, as follows. Given the streamfunction (15), the azimuthally-averaged horizontal kinetic
energy spectrum is

12(z/ h)

Kk, z) = <£>2/2” e Pc3do = “““L—B(x) (20)
e ) Sy ‘ T 402 ’

L 2 2T
B(x) = (-) f |Ac*kdO
271' 0

is the azimuthally-averaged spectrum of |A,|?. Recall that the form of the initial PV distribution
in (14) is based on the third term in (2) and so A, & 9.V, the buoyancy, thus B(k) is effectively

where

FIG. 3. Horizontal PV slices at z = 0 for each of the three simulations.
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z=rh

z = 16h

FIG. 4. Horizontal PV slices for the case with 2 = 0.03, at vertical levels from z = 0 to z = 16A.

the azimuthally-averaged spectrum of the buoyancy variance. At the initial wavenumber, the PV-
streamfunction relation is SQG-like (|g, | ~ «|¥,|) and so the ensuing forward cascade of buoyancy
variance will yield'? B(k) ~ k3. The theoretical lines in Fig. 5 are thus given by (20), with
B(«) assumed proportional to k ~>3, and the entire spectrum normalized to match the energy of the
simulated spectrum. The closeness of the fit is remarkable, capturing both the details of the transition
to a steeper spectrum at high wavenumbers and the asymmetry above and below z = 0.

FIG. 5. Kinetic energy spectra at various vertical levels for the simulation with 27 = 0.03 (solid black curves), and the
theoretical spectra given by (20) (light gray dashed curves), normalized by the value of the simulated spectra at « = 1, and
with B(k) ~ k=5/3. (Upper panel) z = 0, h, 2h, 3h, 4h. (Lower panel) z = 0, —h, —2h, —3h, —4h (the z = 0 and z = —h
curves are on top of each other).
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10° ' ‘ :
10° 10’ 10°

oK

FIG. 6. Horizontal kinetic energy spectra at z = 0 for each of the three simulations. The dashed lines are for visual reference,
with slopes indicated in the figure.

Finally, Fig. 6 shows horizontal kinetic energy spectra for each of the three cases, at z = 0. One
can see that, as predicted, and consistent with the visual impression in Fig. 3, the transition to a
steeper slope occurs at an increasingly large wavenumber as / decreases.

V. DISCUSSION AND CONCLUSIONS

In quasigeostrophic dynamics, appropriate to small-Rossby-number motions near the deforma-
tion scale, the stratification is constant on the timescale of eddies and acts to constrain their nature.
Sharp changes in the buoyancy frequency suppresses vertical motions; a discontinuous jump at, say,
z =0 yields

1 Db 0
w|z=0 - N2 Dt o =Y,
so that the eddy buoyancy, b = fd.v, is laterally conserved at the height of the jump. Coupled
with the presence of constant PV above and below the jump, the SQG model arises. Neither true
discontinuities nor exactly constant PV are found in real geophysical fluids, yet, as described in the
Introduction, evidence indicates that behaviors consistent with the SQG model arise in the upper
ocean and near the tropopause. Here we have explored an idealization of these regions, with a rapid
but continuous change in N(z) and non-constant PV. The goal of the study is to delineate whether,
why, where, and on what scales SQG dynamics emerge in such an environment.

The main results follow from the fact that a sharp jump in N(z) yields a peak in the PV and this
peak dominates the PV-streamfunction inversion. Considering an initial PV distribution consistent
with a jump over a vertical scale 4 in N(z), we find the following: (1) SQG behavior occurs on
lateral scales larger than Nh/f (a deformation scale associated with that jump); (2) at these lateral
scales, SQG dynamics is spread vertically over a region proportional the thickness of the jump,
and the exponential decay associated with SQG behavior begins only at |z| 2 A; (3) at lateral scales
smaller than the jump deformation scale, the PV-streamfunction relation reverts to that for barotropic
flow.

The stratification profile (10) is too idealized to be applied literally to the atmosphere or ocean.
For example, at both the atmospheric tropopause?’ and the base of the oceanic mixed layer,?! profiles
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of N(z) exhibit not just a smooth transition between higher and lower values, but a peak near the
more stratified region. Plougonven and Vanneste'> consider the effects of more realistic profiles of
N on edge waves near the tropopause, finding ultimately that the effects of the smooth transition and
the enhanced stratospheric stratification cancel one another, strengthening the accuracy of the SQG
prediction for edge wave frequencies. We make no attempt to improve the applicability of our model
stratification, but the somewhat generic nature of our goals and results seem unlikely to be sensitive
to such details.

We consider first implications for the upper ocean. Johnston and Rudnick®' present obser-
vations of the transition region between the mixed layer and the stratified interior, from a large
database of high resolution vertical profiles of temperature and salinity. Typical scales from a
mid-latitude Pacific track yield estimates Ny = 4 x 1073 s™', & = 1/2, and h* ~ 10 m (the
hash distinguishes this dimensional value from the non-dimensional » = h*/H used throughout
the paper), thus Noh*/f ~ 200 m, so that SQG-like behavior is to be expected over the whole
submesoscale range of O (1 km) to O (100 km). Notably, the transition layer thickness is much
less than the depth of the mixed layer itself, about 100 m in these observations. Note also that,
while the assumption z — =400 is not particularly appropriate for the upper ocean, this could be
ameliorated by including a rigid upper boundary in the Green’s function inversion. Likewise, one
could consider more complex models for N(z) to provide a more realistic model for the oceanic
stratification.

As discussed in the Introduction, another application of the present study is to establish limits
on the relevance of SQG theory to turbulent dynamics on the tropopause. If, as suggested by Tulloch
and Smith,> the —5/3 mesoscale energy spectra observed in Nastrom and Gage® at the tropopause
results from a forward cascade of temperature variance, then the finite thickness of the tropopause
may limit the range of horizontal and vertical scales over which the mesoscale spectrum holds.
Concern about the vertical extent of the predicted spectrum in the model of Tulloch and Smith,
and thus its relevance to the atmosphere, led to a comment on that paper by Lindborg,?*> and a
subsequent reply by Smith and Tulloch.>* We revisit those concerns in the context of the present
results.

Observations by Birner?” indicate a near discontinuous jump in stratification at the tropopause:
from high-resolution radiosonde observations of the atmospheric stratification, averaged annually rel-
ative to the tropopause height, Birner finds an extremely sharp transition from tropospheric to strato-
spheric N2 values, occurring over distances of order the effective vertical resolution, about 150 m.
In mid-latitudes N? jumps from about 2 x 10~* s~2 in the troposphere to nearly 6.5 x 10~* s~2 at the
base of the stratosphere, then relaxing, over about a kilometer to 4.5 x 10~* s~2. One mi ght thus con-
servatively estimate the parameters for our idealized profile with Ny = 1.8 x 1072 s™!, @ = 1/4, and
h* ~ 300 m, so as an upper limit, the “jump deformation scale” L ; = Noh*/f is about 75 km, which
is close to the end of the —5/3 mesoscale energy spectra of Nastrom and Gage.® The ratio L;/Lp,
where Lp is the midlatitude atmospheric internal deformation, is equivalent to the nondimensional
tropopause thickness 4 = h*/H = L;/Lp. Taking Lp ~ 2500 km, the non-dimensional thickness
h >~ 0.03, just as for the simulation presented in Fig. 5. Dimensionally, L, is the scale associated with
k = 1inthe figure and, so, even at a distance of 41 below the “tropopause” z = 0, the spectrum retains a
—5/3 slope down to horizontal scales a decade smaller than Lp. Thus, the present model would imply
a flattened mesoscale spectrum extending at least half a kilometer below the tropopause. However,
there are far too many simplifications made in the idealized model presented here to take this estimate
seriously; we wish to point out only that, over a wide range of scales below Lp, the vertical extent
of the flattened mesoscale spectrum should be far larger than one would assume from the basic SQG
model.
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APPENDIX: WKB SOLUTION FOR THE GREEN’S FUNCTION

Expanding the derivative and multiplying by N?(z)/«x?, the homogeneous problem (6) can be
written as
2N’
g2l — &? @)
N(z)

¢, — N*(2)ps =0,

where ¢ = (ok)~! and primes denote derivatives with respect to z. A WKB solution will be
appropriate when ¢ < 1, which is equivalent to assuming horizontal scales small compared to NoH/f
(recall that H is set to 1), as discussed in Sec. II. A WKB approximation is found by expanding the
solutions ¢ (z) as

o0

1
$+(z) ~ exp ;Zy"sni(z) :

n=0

where y is a small parameter. Truncation of the expansion at n = 1 (the “physical optics” approxima-
tion), substitution into (6), and demanding dominant balance gives y = €, from which it follows that
SOi (2)=7F f  N(u)du and S;(z) = (1/2)In N(z). Application of the appropriate boundary conditions
in (6) then gives

$4(2) ~ VN @ exp [:Fax f ) N(u)du:|

and substitution into (7) gives the approximate Green’s function given in (9).
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