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Idea

• Must resolve generation and transfer scales

• Dissipation range must be at sufficiently small hor-
izontal scale to allow enstrophy to cascade away
from these scales

• If generation is baroclinic instability, then vertical
structure of shear determines highest mode one
must resolve

• In other words, increasing vertical structure implies
need to resolve smaller horizontal scales.
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Experimental Design

• Idealized flat-bottom channel simulations using HIM

• 3 and 6 layer, 1/5◦ − 1/80◦, 12◦ × 12◦ domain, de-
formation radii R1 = 38 km, R2 = 17 km at center
of channel

• Forced by relaxation of zonal mean interface heights
toward initial baroclinically unstable condition

hi
x
(y, t+∆t) = hi

x
(y, t)+[hi

x
(y,0)−hi

x
(y, t)](1−e−∆t/trelax)

where hi
x
(y,0) ∝ tanh(πy/L) (no outcropping, no

shear near side-walls)

• Dissipate with linear bottom drag for energy re-
moval and Smagorinsky + small background bihar-
monic viscosity for enstrophy removal

• Stratification in center of domain is exponential
density profile

• Mean shear in center of domain projects only onto
first two baroclinic modes — there are only two BC
modes in 3 layer case, but 6 layer case uses identical
stratification and shear.

• Future runs will test more complex vertical shear



Initial Conditions
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Initial Conditions
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Energy Evolution
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Vorticity



Spectra of velocity variance
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Spectra of U2 and V2 at top for 1/5 and 1/80 deg 3 layer runs
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Time averaged zonal spectra of velocity variance in top
layer at center of domain for 3-layer runs with 1/10◦ and
1/80◦ horizontal resolutions



Spectra of zonal velocity variance for all cases
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Spectra of U2 at top for all 3 layer runs
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Time averaged zonal spectra of zonal velocity variance
in top layer at center of domain for 3-layer runs



The effects of the viscosity operator
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Spectra of U2 at top for 1/20 deg, 3 layer run with biharmonic and Laplacian viscosity

Smagorinsky Biharmonic
Smagorinsky Laplacian + Biharmonic

Time averaged zonal spectra of zonal velocity variance
in top layer at center of domain for 3-layer runs with
1/20◦ horizontal resolution, one using Biharmonic Smagorin-
sky viscosity and the other using Laplacian Smagorinsky
viscosity



Conclusions

• Experiments ambiguous but suggestive that increas-
ing vertical resolution requires higher horiziontal res-
olution for smooth vertical profiles

• Ongoing simulations using QG model are being per-
formed simultaneously to compare results in homo-
geneous and inhomogeneous domains

• Future studies will examine required resolution with
more structure in vertical shears


