
Numerical calculation of linear quasigeostrophic
baroclinic instability

Shafer Smith
shafer@cims.nyu.edu

This document describes the numerical computation of the plane-wave solution to the
linear quasigeostrophic equations, for arbitrary mean stratification and velocity profiles,
and its implementation in the MATLAB codes qggrz.m and pv_stretch_opz.m. The code
pmodesz.m, which computes the standard vertical modes and internal deformation wavenum-
bers, is also explained.

1 Linear quasigeostrophic equations

Assume a local, slowly-varying mean stratification and horizontal flow that depend only on
z (see Pedlosky, 1984)

U = U(z)ı̂+ V (z)̂

N2 = N2(z) = − g

ρ0

dρ̄

dz

Qx = Qx(z) = ΓV

Qy = Qy(z) = β − ΓU

where the PV stretching operator is defined as

Γφ ≡ ∂

∂z

(
f 2

N2

∂φ

∂z

)
.

Consistent with slowly-varying background assumption, assume horizontally periodic bound-
ary conditions. The quasigeostrophic equations linearlized about this mean state are then

qt +U · ∇q + u · ∇Q = 0, q = ∇2ψ + Γψ

where u = −ψy ı̂+ψx̂ is the eddy velocity field expressed in terms of the horizontal stream-
function, ψ = ψ(x, y, z, t).

1



Numerical solution of the linear (or nonlinear) problem proceeds by first discretizing in
the vertical. We use a vertical finite-difference grid defined as in Figure 1. On this grid, the
discrete stretching operator Γij is

Γijψj =
f 2

gδi

(
ψi−1 − ψi

ri−1

− ψi − ψi+1

ri

)
, where ri =

ρ̄i+1 − ρ̄i

ρ0

, (1)

with ρ̄i the background potential density at level i and ρ0 the average density (not density
at i = 0).

i 1

i

i

i 1

zi

zi 1

i+1

i

zi+1 X

X

X

Figure 1: The grid used to represent vertical structure. ∆i is the spacing between ψi and
ψi+1, while δi is the distance between half spaces: δi = (∆i−1 + ∆i)/2.

The vertical boundary conditions in quasigeostrophic flow — w = 0 at the upper and
lower surfaces — are related to the time-dependent advection of eddy buoyancy at the
surfaces. The linearized equations are

bTt + uT · ∇BT +UT · ∇bT = 0

bBt + uB · ∇BB +UB · ∇bB = 0

where
b = fψz

and the superscripts T and B indicate evaluation at the upper and lower boundaries, z = zT

and z = zB, respectively.
On the grid defined in the figure, the buoyancy at any half level (indicated by dashed

lines) is

bi = f0
ψi−1 − ψi

∆i−1

.

We will incorporate the buoyancy boundary conditions by (1) writing the top-most PV
and buoyancy values in terms of a streamfunction value ψ0 at a ghost point z0, then (2)

2



eliminating ψ0 by subtracting the tendency equations for top-most PV and buoyancy values.
Setting ∆0 = ∆1 = δ1 and r0 = r1, the top-most PV and buoyancy values are then

q1 = ∇2ψ1 +
f 2

gδ1r1
(ψ0 − 2ψ1 + ψ2) and b1/2 =

f

δ1
(ψ0 − ψ1)

Defining a new variable

q̃1 = q1 −
f

gr1
b1/2 = ∇2ψ1 +

f 2

gδ1r1
(ψ2 − ψ1)

eliminates the streamfunction at the ghost point, ψ0. To form the tendency equation for q̃1,
we form the sum

[Tendency equation for q1]−
(
f

gr1

)
[Tendency equation for b1]

which gives at level 1,

∂tq̃1 +
f 2

gδ1r1

[
u1(V2 − V1)− v1(U2 − U1)

]
+U 1 · ∇q̃1 = 0,

where we have used thermal wind balance for the upper level mean buoyancy gradient

∇B1 =
f

δ1

[
(V1 − V2)ı̂+ (U2 − U1)̂

]
.

We proceed similarly at the bottom boundary, but omit the details.
The vertical boundary conditions are thus incorporated into the problem entirely through

the construction of the stretching matrix, Γ. Specifically, we augment the definition (1) at
the top (i = 1) and bottom (i = N) as follows,

Γ1jψj =
f 2

gδ1r1
(ψ2 − ψ1), (2)

ΓNjψj =
f 2

gδNrN−1

(ψN−1 − ψN). (3)

In MATLAB, the stretching operator matrix Γij is constructed in the function
pv_stretch_opz, which requires as its inputs one-dimensional arrays z containing the co-
ordinates of the grid, and rho containing the background potential density values at these
coordinates. The input parameter F = f^2*rho0/g (or its nondimensional equivalent — see
the header to the function for more details). The output is the matrix G that corresponds
to Γij.

3



2 The plane-wave solution and eigenvalue problem

Substitution of a plane-wave solution of the form

ψ = ψ̂(z) ei(k+`y−ωt)

where ψ̂ is the complex amplitude, into the equations of motion gives

ω (Γ−K2) ψ̂ =
[
kQy − `Qx + (kU + `V )(Γ−K2)

]
ψ̂

where K = k2 + `2. Letting ψ̂i be the discrete amplitude vector, the generalized eignevalue
problem may then be written

ω Bij ψ̂j = Aij ψ̂j (4)

where

Bij = Γij −K2δij,

Aij = (kQy,m − `Qx,m) δijm + (kUm + `Vm) δinm Bnj,

and the δs are Kronecker tensors, equal to unity when all indeces are equal, and zero oth-
erwise. The tensor products with δ in the second line generate diagnoal matrices with the
vectors kQy,i − `Qx,i and kUi + `Vi on the diagonals, respectively.

In the discrete problem with N levels, there will be N eigenvectors ψ̂ and eigenvalues ω.
In order to avoid unneccesary complexification, I neglected the index for these above.

The generalized eigenvalue problem (4) is computed in qggrz, the header of which con-
tains all the details for the inputs. Note that pv_stretch_opz is called directly by qggrz.
A snippet from qggrz is shown below, where U and V are the background state zonal and
meridional velocity vectors, Q_x and Q_y are the background PV gradients, (k,l) is the
wavenumber and G is the stretching operator matrix:

Q_y = beta - G*U(:);

Q_x = G*V(:);

K2 = k^2+l^2;

KdotU = k*U(:) + l*V(:);

KxdelQ = k*Q_y(:) - l*Q_x(:);

B = G - K2*eye(nz);

A = diag(KxdelQ) + diag(KdotU) * B;

[evec,D] = eig(A,B);

w = diag(D);

Since there are nz eigenvectors ψ̂ and eigenvalues ω, evec has size nz × nz, and the MAT-
LAB function eig returns the eigenvaules on the diagonal of D. One must next choose the
eigenvalue with the largest imaginary part (and its corresponding eignevector) to find the
effective growth rate at this wavenumber. In the MATLAB code I do this as follows:

4



if max(abs(imag(w))) > eps

[wi_max(kc,lc),ind] = max(imag(w));

wr_max(kc,lc) = real(w(ind));

else

[wr_max(kc,lc),ind] = max(real(w));

wi_max(kc,lc) = imag(w(ind));

end

psiv(kc,lc,:) = evec(:,ind);

where kc and lc are the loop indeces for the current wavenumber. Thus if a given wavenum-
ber is unstable, I choose the real eigenvalue and eigenvector corresponding with the largest
growth rate; if the wave at that wavenumber is stable, I instead choose the mode correspond-
ing to the largest real frequency (change this however you see fit).

3 Vertical modes and internal deformation radii

The matrix eigenvalue problem
ΓΦ = −ΦΛ2

defines the vertical modes φj (the columns of Φ), and the internal deformation wavenumbers,
λj (the diagonal elements of the diagonal matrix Λ). Clearly, given Γ (or G in MATLAB),
all one needs to do is call the MATLAB function eig. The function pmodesz does this,
and returns as output a matrix pm, equivalent to Φ, and vector kz, containing λj, where the
columns of pm are normalized such that sum(dz.*pm(:,i))/sum(dz) is 0 for any valid i, and
sum(dz.*pm(:,i).*pm(:,j))/sum(dz) is 1 if i = j and 0 (to machine accuracy) otherwise.

5


