Numerical Methods I: Newton and nonlinear least squares

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

October 12, 2017
Newton’s method to solve $F(x) = 0$, $F : \mathbb{R}^n \rightarrow \mathbb{R}^n$
Newton’s method: Example

In one dimension, solve $f(x) = 0$ with $f : \mathbb{R} \to \mathbb{R}$:

Start with x_0, and compute x_1, x_2, \ldots from

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \ldots$$

Requires $f(x_k) \neq 0$ to be well-defined (i.e., tangent has nonzero slope).
Newton’s method

Let $F : \mathbb{R}^n \to \mathbb{R}^n$, $n \geq 1$ and solve

$$F(x) = 0.$$

Taylor expansion about starting point x^0:

$$F(x) = F(x^0) + F'(x^0)(x - x^0) + o(|x - x^0|) \quad \text{for} \ x \to x^0.$$

Hence:

$$x^1 = x^0 - F'(x^0)^{-1}F(x^0)$$

Newton iteration: Start with $x^0 \in \mathbb{R}^n$, and for $k = 0, 1, \ldots$ compute

$$F'(x^k)\Delta x^k = -F(x^k), \quad x^{k+1} = x^k + \Delta x^k$$

Requires that $F'(x^k) \in \mathbb{R}^{n \times n}$ is invertible.

Terminate iteration when $\|F(x^k)\| < \varepsilon \quad \text{or} \quad \frac{\|F(x^k)\|}{\|F(x)\|} < \varepsilon$
Newton’s method

Newton iteration: Start with $x^0 \in \mathbb{R}^n$, and for $k = 0, 1, \ldots$ compute

$$F'(x^k) \Delta x^k = -F(x^k), \quad x^{k+1} = x^k + \Delta x^k$$

Equivalently:

$$x^{k+1} = x^k - F'(x^k)^{-1} F(x^k)$$

Newton’s method is affine invariant, that is, the sequence is invariant to affine transformations:

Instead of solving $F(x) = 0$ solve $A F(x) = G(x) = 0$

Newton iteration for $G(x) = 0$:

$$\Delta x = -G'(x^k)^{-1} G(x^k) = (AF'(x^k))^{-1} AF(x^k)$$

$$= F'(x^k)^{-1} A^{-1} AF(x^k) = F'(x^k)^{-1} F(x^k) = \text{Newton step computed using } F$$
Newton's method

Intersection point between \(F(x, y) = y - x^2 + x = 0 \) parabola and \(F(x, y) = \frac{x^2}{16} + y^2 - 1 = 0 \) ellipse.

\[
F(x, y) = \begin{pmatrix} F_1(x, y) \\ F_2(x, y) \end{pmatrix} = \begin{pmatrix} y - x^2 + x \\ \frac{x^2}{16} + y^2 - 1 \end{pmatrix}, \quad F : \mathbb{R}^2 \to \mathbb{R}^2
\]

\[
F'(x, y) = \begin{pmatrix} \frac{\partial F_1(x, y)}{\partial x} & \frac{\partial F_1(x, y)}{\partial y} \\ \frac{\partial F_2(x, y)}{\partial x} & \frac{\partial F_2(x, y)}{\partial y} \end{pmatrix} = \begin{pmatrix} -2x + 1 & 1 \\ \frac{x}{8} & 2y \end{pmatrix}
\]

Newton iteration:

\(x^0 = (1, 0) \), solve

\[
\Delta x = -F'(x^0)^{-1} F(x^0)
\]

\(x' = x^0 + \Delta x \) repeat; stop if \(\| F(x^k) \| < \varepsilon \)
Convergence of Newton’s method

Assumptions on F: $D \subset \mathbb{R}^n$ open and convex, $F : D \to \mathbb{R}^n$ continuously differentiable with $F'(x)$ is invertible for all x, and there exists $\omega \geq 0$ such that

$$\| F'(x)^{-1}(F'(x + sv) - F'(x))v \| \leq s\omega \| v \|^2$$

for all $s \in [0, 1], x \in D, v \in \mathbb{R}^n$ with $x + v \in D$.

Assumptions on x^* and x^0: There exists a solution $x^* \in D$ and a starting point $x^0 \in D$ such that

$$\rho := \| x^* - x^0 \| \leq \frac{2}{\omega} \text{ and } B_\rho(x^*) \subset D$$

Theorem: Then, the Newton sequence x^k stays in $B_\rho(x^*)$ and

$$\lim_{k \to \infty} x^k = x^*$$

and

$$\| x^{k+1} - x^* \| \leq \frac{\omega}{2} \| x^k - x^* \|^2$$
Convergence of Newton’s method

\[x, y \in \mathcal{D} \]

Mean theorem for integrals:

\[F(y) - F(x) - F'(x)(y - x) = \int_0^1 (F'(x + s(y - x)) - F'(x))(y - x) \, ds \]

Take norms:

\[||F'(x)^{-1}\left[\int_0^1 \ldots \right]|| \leq \int_0^1 s \, ||y - x||^2 \, ds = \frac{w}{2} \, ||y - x||^2 \]

\[\Rightarrow \left||\int_0^1 F'(x)^{-1}(F(y) - F(x) - F'(x)(y - x))d\sigma\right|| \leq \frac{w}{2} \, ||y - x||^2 \quad (1) \]

\[\left||x^{k+1} - x^*\right|| = \left||x^k - F(x^k)^{-1}F(x^k) - x^*\right|| = 0 \]

\[= \left||x^k - x^* - F'(x^k)^{-1}(F(x^k) - F(x^*))\right|| \]

\[= \left||F'(x^k)^{-1}\left[F(x^*) - F(x^k) - F'(x^k)(x^* - x)\right]\right|| \quad (2) \]

\[\Rightarrow \left||x^{k+1} - x^*\right|| \leq \frac{w}{2} \, \left||x^k - x^*\right||^2 \rightarrow \text{Quadratic Convergence} \]
Convergence of Newton’s method

\[0 < \|x^k - x^*\| \leq 8 \]

\[\|x^{k+1} - x^*\| \leq \frac{\|x^k - x^*\|}{2} \|x^k - x^*\| \leq \frac{\|x^k - x^*\|}{2} 8 \leq 1 \]

--- I’m staying in \(B_8(x^*) \) if \(x^k \) is in \(B_8(x^*) \)

Uniqueness: \(x^* \) is a solution,

\[\|x^k - x^*\| \leq \frac{\|x^k - x^*\|}{2} \|x^k - x^*\| \leq 1 \]

\[\|x^k - x^*\| \leq \|x^k - x^*\| \]

\[\rightarrow \quad x^k = x^* \]

\(\square \)
Newton’s method—when does convergence theorem apply?

Example 1: \(f(x) = x^3 \)

- \(x^* = 0 \) solution
- \(f'(x^*) = 0 \)

n	x	
1	0.66666666666667	
2	0.44444444444444	
3	0.296296296296296	
...		
17	0.001014959227	
18	0.000676639485	
19	0.000451092990	
20	0.000300728660	

Example 2: \(f(x) = x^{3/2} \)

- \(x^* = 0 \) solution
- \(f'(x^*) = 0 \)

n	x	
1	0.33333333333333	
2	0.111111111111111	
3	0.037037037037037	
4	0.012345679012	
...		
16	0.0000000023231	
17	0.000000007744	
18	0.000000002581	
19	0.000000000860	
20	0.000000000287	
Choice of initialization x^0 is critical. Depending on the initialization, the Newton iteration might

- not converge (it could “blow up” or “oscillate” between two points)
- converge to different solutions
- fail cause it hits a point where the Jacobian is not invertible (this cannot happen if the conditions of the convergence theorem are satisfied)
- ...
Newton’s method
Convergence of Newton’s method

- The “more nonlinear” a problem, the harder it is to solve.

\[\| F'(x)^{-1}(F'(x + sv) - F'(x))v \| \leq sw\|v\|^2 \]

- Computation of Jacobian \(F'(x^k) \) can be costly/complicated

(sometimes approximations of \(F'(x^k) \) are used)
Newton’s method
Convergence of Newton’s method

- There’s no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.

- Sometimes, continuation ideas must be used to find good initializations: Solve simpler problems first and use solution as starting point for harder problems.
Newton’s method

Robustification

Monotonicity test (affine invariant):

\[\| F'(x^k)^{-1} F(x^{k+1}) \| \leq \bar{\Theta} \| F'(x^k)^{-1} F(x^k) \|, \quad \bar{\Theta} < 1 \]

Damping:

\[x^{k+1} = x^k + \lambda_k \Delta x^k, \quad 0 < \lambda_k \leq 1 \]

For difficult problems, start with small \(\lambda_k \) and increase later in the iteration (close to the solution \(\lambda_k \) should be 1).

Approximative Jacobians: Use approximative Jacobians \(\tilde{F}'(x^k) \), e.g., computed through finite differences.
“Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas.”

or (according to Stanislav Ulam):

Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals.
Nonlinear least squares—Gauss-Newton
Assume a least squares problem, where the parameters \mathbf{x} do not enter linearly into the model. Instead of

$$\min_{\mathbf{x} \in \mathbb{R}^n} \| \mathbf{A}\mathbf{x} - \mathbf{b} \|^2,$$

we have with $F : D \to \mathbb{R}^n$, $D \subset \mathbb{R}^n$:

$$\min_{\mathbf{x} \in \mathbb{R}^n} g(\mathbf{x}) := \frac{1}{2} \| F(\mathbf{x}) \|^2,$$

where $F(\mathbf{x})_i = \varphi(t_i, \mathbf{x}) - b_i, 1 \leq i \leq m$

The (local) minimum \mathbf{x}^* of this optimization problem satisfies:

$$g'(\mathbf{x}) = 0, \quad g''(\mathbf{x}) \text{ is positive definite.}$$
Nonlinear least-squares problems

\[g(x) = \frac{1}{2} \| F(x) \|^2 \]

The derivative of \(g(\cdot) \) is

\[G(x) := g'(x) = F'(x)^T F(x) \]

This is a nonlinear system in \(x \), \(G : D \to \mathbb{R}^n \). Let’s try to solve it using Newton’s method:

\[G'(x^k) \Delta x^k = -G(x^k), \quad x^{k+1} = x^k + \Delta x^k \]

where

\[G''(x) = F'(x)^T F'(x) + F''^T(x) F(x). \]
Nonlinear least-squares problems: Example

\((t_i, b_i)\) \(i = 1, 2, 3\) data points

\(\varphi(t_i x_i x_2) = \exp(x_i) t_i^2 + x_2^2 \sin(t_i) \)

\(x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \)

\(F(x) = \begin{bmatrix} \varphi(t_1 x_1 x_2) - b_1 \\ \varphi(t_2 \ldots) - b_2 \\ \varphi(t_3 \ldots) - b_3 \end{bmatrix} \)

\[\min \frac{1}{2} \| F(x) \|^2 = \frac{1}{2} \left\| \begin{bmatrix} \exp(x_1) t_1^2 + x_2^2 \sin(t_1) - b_1 \\ -t_2 - b_2 \\ -t_3 - b_3 - b_3 \end{bmatrix} \right\|^2 \]
Nonlinear least-squares problems: Example

\[G(x) = F'(x)^T F(x) = \begin{bmatrix} \text{Jacobian} \\ \in \mathbb{R}^{2 \times 3} \end{bmatrix} \]

Gauss-Newton method

\[F'(x^k)^T F(x^k) \Delta x = -F'(x^k)^T F(x^u) \]

\[x^{u+1} = x^u + \Delta x \]

linear least squares: \[A^T A x = -A^T b \]
Nonlinear least-squares problems

\(F''(x) \) is a tensor. It is often neglected due to the following reasons:

- It’s difficult to compute and we can use an approximate Jacobian in Newton’s method.
- If the data is compatible with the model, then \(F(x^*) = 0 \) and the term involving \(F''(x) \) drops out. If \(\| F(x^*) \| \) is small, neglecting that term might not make the convergence much slower.
- We know that \(g''(x^*) \) must be positive. If \(F'(x^k) \) has full rank, then \(F'(x)^T F'(x) \) is positive and invertible.

We neglect \(F''(x) F(x) \) if compatible: \(\| F(x) \| \) is small.
The resulting Newton method for the nonlinear least squares problem is called **Gauss-Newton method**: Initialize x^0 and for $k = 0, 1, \ldots$ solve

$$F'(x^k)^T F'(x^k) \Delta x^k = -F'(x^k)^T F(x^k) \quad \text{(solve)}$$

$$x^{k+1} = x^k + \Delta x^k. \quad \text{(update step)}$$
The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize x^0 and for $k = 0, 1, \ldots$ solve

$$F'(x^k)^T F'(x^k) \Delta x^k = -F'(x^k)^T F(x^k) \quad \text{(solve)}$$

$$x^{k+1} = x^k + \Delta x^k. \quad \text{(update step)}$$

The solve step is the normal equation for the linear least squares problem

$$\min_{\Delta x} \| F'(x^k) \Delta x^k + F(x^k) \|.$$
Convergence of Gauss-Newton method

Assumptions on F: $D \subseteq \mathbb{R}^n$ open and convex, $F : D \rightarrow \mathbb{R}^m$, $m \geq n$ continuously differentiable with $F'(x)$ has full rank for all x, and let $\omega \geq 0$, $0 \leq \kappa^* < 1$ such that

$$\|F'(x)^+(F'(x + sv) - F'(x))v\| \leq s\omega\|v\|^2$$

for all $s \in [0, 1]$, $x \in D$, $v \in \mathbb{R}^n$ with $x + v \in D$.

Assumptions on x^* and x^0: Assume there exists a solution $x^* \in D$ of the least squares problem and a starting point $x^0 \in D$ such that

$$\|F'(x)^+F(x^*)\| \leq \kappa^*\|x - x^*\|$$

$$\rho := \|x^* - x^0\| \leq \frac{2(1 - \kappa^*)}{\omega} := \sigma$$

Theorem: Then, the sequence x^k stays in $B_\rho(x^*)$ and

$$\lim_{k \to \infty} x^k = x^*$$

and

$$\|x^{k+1} - x^*\| \leq \frac{\omega}{2}\|x^k - x^*\|^2 + \kappa^*\|x^k - x^*\|$$
Convergence of Gauss-Newton method

- Role of κ^*: Represents omission of $F''(x)$
 - κ^* can be chosen as 0 \Rightarrow local quadratic convergence
 - $\kappa^* > 0$ linear convergence (thus we require $\kappa^* < 1$).

- Damping strategy as before (better: linesearch to make guaranteed progress in minimization problem)
- There can, in principle, be multiple solutions.
Why do outliers in data not matter when using the functional \(\sum_{i=1}^{m} |\Delta_i| \)?

Data fitting with a constant model \(q(t) = x \cdot 1 \)

Optimal model separates the points such that the same number of points is on both sides, so outliers have (almost) no influence.

If I minimize \(\sum_{i=1}^{m} \Delta_i^2 \), outliers have a big influence as we minimize the squares.