PART 1. Given values f_i, $i = 0, \ldots, N$ for corresponding x-values x_i (all x_i's distinct), define the interpolating polynomial $p(x)$ as the polynomial of at most degree N ($p(x) \in \Pi_n$), that obeys

$$p(x_i) = f_i, \ i = 0, \ldots, N.$$

a) Show that $p(x)$ is unique.

b) We can find the interpolating polynomial, for example by determining the coefficients a_0, \ldots, a_N in the ansatz

$$p_1(x) = a_0 + a_1 x + a_2 x^2 + \ldots a_N x^N$$

or the coefficients c_0, \ldots, c_N in Newton's ansatz

$$p_2(x) = c_0 + c_1 (x - x_0) + c_2 (x - x_0)(x - x_1) + \ldots c_N (x - x_0)(x - x_1) \ldots (x - x_{N-1}).$$

Let $x_i = x_0 + ih$, with $h = 1.0/N$, $i = 0, \ldots, N$ (such that $x_N = x_0 + 1$, i.e the length of the total interval is 1).

To compute the maximum error in the interpolation, we define $NL + 1$ control points $\xi_j = x_0 + jh_F$, $j = 0, \ldots, NL$ with $h_F = 1.0/NL$, with $NL = 200$.

i) Write down the two system of equations to be solved to determine the coefficients for $p_1(x)$ and $p_2(x)$ and comment on their structure.

ii) With $f(x) = \sin(2\pi x)$ such that $f_i = \sin(2\pi x_i)$, $i = 0, \ldots, N$ and with $x_0 = 0$, determine the coefficients in the ansatz for $p_1(x)$ and $p_2(x)$ for $N = 4$ and $N = 8$.

What is the maximum absolute error in the interpolation over the control points for $N = 4$ and $N = 8$? What is the maximum absolute difference between $p_1(x)$ and $p_2(x)$ at the same points? (In exact arithmetic, $p_1(x) \equiv p_2(x)$).

iii) Now, repeat the exercise in ii) with $x_0 = 1000$. What is the maximum absolute error in $p_1(x)$ compared to $f(x)$ over the control points for $N = 4$ and $N = 8$? And for $p_2(x)$? What is the maximum absolute difference between $p_1(x)$ and $p_2(x)$? Explain the results.

iv) Now, let $f(x) = \sin(10\pi x)$, and $x_0 = 0$. Compute the interpolating polynomial using Newton's ansatz for $N = 4, 8$ and 16. Comment on the results.
v) Let us now go back to the case in \(ii \), i.e. \(f(x) = \sin(2\pi x) \), and \(x_0 = 0 \). We want to see what the quality of the interpolating polynomial is outside of \(x \in [0, 1] \). Now, define \(NL + 1 \) control points in the interval \([-0.25, 1.25] \). Plot \(f(x) \) and \(p_2(x) \) in this interval. What is the maximum difference? Comment on the results.

PART 2. The problem encountered in \(iv \) in part 1 illustrates the need of interpolation by a piecewise polynomial. That is, the interval \([a, b] \) is divided into \(N \) subintervals, and different polynomials are used for interpolation on each subinterval. Here, let us consider a cubic spline interpolation.

We introduce a partitioning of the interval \(a = x_0 < x_1 < \ldots < x_N = b \). Let us here assume equidistant points, i.e. \(x_j = x_0 + jh, \) \(h = (b - a)/N, \) for \(j = 0, \ldots, N \). Given values \(f_j, j = 0, \ldots, N \), we require that the interpolating spline function obeys

\[S(x_j) = f_j, \quad j = 0, \ldots, N. \]

On each interval, for \(x_j \leq x \leq x_{j+1}, j = 0, \ldots, N - 1 \), \(S(x) = S_j(x) \), where

\[S_j(x) = \alpha_j + \beta_j(x - x_j) + \gamma_j(x - x_j)^2 + \delta_j(x - x_j)^3. \]

We require that \(S(x) \in C^2([a, b]) \), i.e. that

\[S_j(x_{j+1}) = S_{j+1}(x_{j+1}), \quad S_j'(x_{j+1}) = S_{j+1}'(x_{j+1}), \quad S_j''(x_{j+1}) = S_{j+1}''(x_{j+1}), \]

\(j = 0, \ldots, N - 1 \).

In addition we assume that we have periodic boundary conditions, such that

\[S_{N-1}(x_N) = S_0(x_0), \quad S'_{N-1}(x_N) = S'_0(x_0), \quad S''_{N-1}(x_N) = S''_0(x_0). \]

i) Given values \(f_j, j = 0, \ldots, N \) (with \(f_N = f_0 \)), describe how to compute the coefficients \(\alpha_j, \beta_j, \gamma_j \) and \(\delta_j \).

Remember: in doing this, it is convenient to define

\[M_j = S''_j(x_j), \]

\(j = 0, \ldots, N - 1 \). and form the system of equations to solve for the \(M_j \)’s.

From the values of \(M_j \) and \(f_j, j = 0, \ldots, N - 1 \), one can then compute the coefficients \(\alpha_j, \beta_j, \gamma_j \) and \(\delta_j \) for all \(j \).

Write a program that computes the interpolating cubic spline.

ii) For \(f = \sin(10\pi x) \) on the interval \([0, 1]\) \((a = 0, b = 1 \) above\), compute the interpolating cubic spline for \(N = 2^k, k = 2, \ldots, 8 \).
Define \(NL + 1 \) control points \(\xi_j = jh_F, j = 0, \ldots, NL \) with \(h_F = 1.0/NL \) and \(NL = 2000 \). For each value of \(N \), compute the maximum error of the interpolation over the control points. Plot the error as a function of \(N \). With what factor does the error decrease for each doubling of \(N \)? What would you expect? Discuss the results.

PART 3. Introduce a partitioning of the interval \(a = x_0 < x_1 < \ldots < x_N = b \).

Let \(S(x) \) be the cubic spline function as above, but replace the periodic condition with the boundary conditions

\[
S'(x_0) = f'_0, \quad S'(x_N) = f'_N,
\]

for given values \(f'_0 \) and \(f'_N \).

Let \(g(x) \) be any twice continuously differentiable function on \([a, b]\) that obeys the same interpolating condition as \(S(x) \), i.e.

\[
g(x_j) = f_j, \quad j = 0, \ldots, N,
\]

and

\[
g'(x_0) = f'_0, \quad g'(x_N) = f'_N.
\]

Show that the spline function \(S(x) \) satisfies the optimality property

\[
\int_a^b |S''(x)|^2 \, dx \leq \int_a^b |g''(x)|^2 \, dx,
\]

i.e. \(S(x) \) "oscillates the least" of all smooth functions satisfying the interpolating condition. (Equality occurs only when \(g(x) \equiv S(x) \).)

Hint: Introduce the function \(k(x) = S(x) - g(x) \), expand the integral over \(g''(x) \) in terms of \(S''(x) \) and \(k''(x) \). Then use integration by parts, the interpolating conditions above, and the properties of the spline function.