AIM OPEN PROBLEM SESSION

Contents

Problem 1. Browning: Can we develop a version of the circle method over $\mathbb{Q}(t)$? Wooley: The major arcs are difficult to understand.
Browning: For example, consider the diagonal quadratic form

$$
\begin{equation*}
A_{1} x_{1}^{2}+\cdots+A_{s} x_{s}^{2}=0 \tag{1}
\end{equation*}
$$

with $A_{j} \in \mathbb{Q}(t)$. There are "obvious" local conditions, namely arising from discrete valuation rings for $\mathbb{Q}(t)$. Does the Hasse principle hold?

Wooley: If A_{j} are linear, say $A_{j}=c_{j}+t d_{j}$ with $c_{j}, d_{j} \in \mathbb{Q}$, then (1) is equivalent to the system of equations

$$
\begin{equation*}
\sum_{j=1}^{s} c_{j} x_{j}^{2}=\sum_{j=1}^{s} d_{j} x_{j}^{2}=0 \tag{2}
\end{equation*}
$$

by Amer-Brumer, which defines a quartic del Pezzo surface over \mathbb{Q}. Do the "obvious" local obstructions over $\mathbb{Q}(t)$ for (1) capture the Brauer-Manin obstruction over \mathbb{Q} for (2)?

Harari: We may ask these questions over $\mathbb{Q}_{p}(t)$; see work of Harari-Szamuely.
Problem 2. Cheltsov: What is the "right" assumption on a variety V for considering height zeta functions? Definitely smooth V with ample anticanonical sheaf ω_{V}^{-1} should be allowed. How about klt (i.e., Kawamata log terminal) V ? Or V of Fano type (i.e., there is an effective \mathbb{Q}-divisor Δ such that (V, Δ) is ample and $-\left(K_{V}+\Delta\right)$ is ample $)$?

An example for the latter: A hypersurface $V \subset \mathbb{P}\left(a_{0}, \ldots, a_{n}\right)$ in weighted projective space, of degree $\operatorname{deg}(V)<a_{0}+\cdots+a_{n}$. The cone over V in \mathbb{A}^{n+1} has only an isolated singularity in 0 .

Problem 3. Skorobogatov: Does Bhargava's machinery have implications for the Hasse principle for special surfaces?

For example, let $F, G \in \mathbb{Q}[x, y]$ be homogeneous polynomials of degree 3. Consider the cubic surface

$$
S=\{F(x, y)=G(z, w)\} \subset \mathbb{P}_{\mathbb{Q}}^{3}
$$

The definition equation is equivalent to the system of equations

$$
\left\{u^{3}=t F(x, y), v^{3}=t G(z, w)\right\}
$$

This defines a family of cubic twists of curves of genus 1 over the t-line. SwinnertonDyer has discussed how to search for t such that this system is solvable over \mathbb{Q} in the diagonal case [Ann. Sci. ENS]. Can we extend his work beyond the diagonal case?

Simiarly, consider Kummer K3 surfaces defined by

$$
z^{2}=f(x) g(y)
$$

where f, g are quartic separable polynomials. This is equivalent to the family of quadratic twists of curves of genus 1 defined by

$$
u^{2}=t f(x), v^{2}=t g(y)
$$

The goal is to eliminate the condition in Swinnerton-Dyer's work that (the 2primary part of) \amalg has finite order for quadratic twists, using the recent work presented in Bhargava's talk.

Problem 4. Viray: Let $\phi: X \rightarrow E$ be a fibration over an elliptic curve of positive rank over \mathbb{Q} whose generic fiber is smooth and geometrically irreducible. Let

$$
Z=\left\{p \in E(\mathbb{Q}) \mid X_{p}=\phi^{-1}(p) \text { has points everywhere locally }\right\}
$$

What can we say about Z ? Is $|Z|<\infty$ with $Z \neq \emptyset$ possible?
The motivation is that work of Poonen, Skorobogatov-Harpaz and Colliot-Thélène-Pal-Skorobogatov constructs X failing the Hasse principle such that none of the known obstructions apply. All these use a map $X \rightarrow C$ to a curve with $0<$ $|C(\mathbb{Q})|<\infty$.

Browning: The case where ϕ is a conic bundle may already be interesting.
Problem 5. Harari: The following question is due to Borovoi: Consider weak approximation for $X=\mathrm{SL}_{n} / G$ over \mathbb{Q}, where G is a finite group scheme that is not necessarily constant. For example, is $X(\mathbb{Q})$ dense in $X(\mathbb{R})$? If G is constant, this is known to be true.

A variant is the following. Given $X=\mathrm{SL}_{n} / G$ with a constant finite group scheme G over a number field K with $r \geq 2$ real places v_{1}, \ldots, v_{r}. Is $X(K)$ dense in $\prod_{j=1}^{r} X\left(K_{v_{r}}\right)$?

A formulation via non-abelian Galois cohomology is given in the case $K=\mathbb{Q}$ as follows: Is

$$
H^{1}(\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}), G(\overline{\mathbb{Q}})) \rightarrow H^{1}(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), G(\mathbb{C}))
$$

surjective?
Lucchini Arteche: The algebraic Brauer-Manin obstruction says nothing for this problem.

Skorobogatov: The result is known for abelian G, due to Borovoi.
Problem 6. Wittenberg: Let X be a smooth variety over a number field K, let S be a finite set of places. Assume that X satisfies strong approximation outside S. Take a closed subvariety $Z \subset X$ of codimension two. Does $X \subset Z$ satisfy strong approxmation outside S ?

Tschinkel: We can also ask for Zariski density.
Wittenberg: The result is known for $X=\mathbb{A}^{n}$ and arbitrary Z of codimension 2 . Interesting cases are:

- Wittenberg: affine quadric hypersurfaces $X \subset \mathbb{A}^{4}$, for example, defined by $q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c$ for a quadratic form q and a constant c.
- Harari: X a simply connected linear algebraic group
- Wooley: is this true by the circle method for hypersurfaces of fixed degree as soon as the dimension is large enough? Heath-Brown: for example, is this true for quadrics $X \subset \mathbb{A}^{5}$?
Harari: If X is algebraically simply connected, then $X \subset Z$ is also simply connected, hence considering π_{1} should not be helpful to get a counterexample to the problem. Also Brauer groups are not expected to be helpful.

Heath-Brown: Can we drop the condition that $Z \subset X$ has codimension ≥ 2 ? Check the topology.

Colliot-Thélène: Can the circle method be used to prove that $\pi_{1}(X)$ is trivial? For example, the circle method handles

$$
x_{1}^{r_{1}}-x_{2}^{r_{2}}+x_{3}^{r_{3}}-\cdots \pm x_{n}^{r_{n}}=c \in \mathbb{Z}
$$

in sufficiently many variables. Can we show that $\pi_{1}(X)$ is trivial without the circle method?

Problem 7. Heath-Brown: Can you construct a sequence of smooth projective varieties $X_{k} \subset \mathbb{P}_{\mathbb{Q}}^{k}$ with $X_{k}\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all places p but $X_{k}(\mathbb{Q})=\emptyset$ such that $\frac{\operatorname{dim}\left(X_{k}\right)}{\operatorname{deg}\left(X_{k}\right)}$ is unbounded? Browning-Heath-Brown have given a sequence where $\frac{\operatorname{dim}\left(X_{k}\right)}{\operatorname{deg}\left(X_{k}\right)}$ tends to $\frac{1}{3}$ and $\operatorname{dim}\left(X_{k}\right)$ is tends to ∞.

Wooley: How about removing the requirement of smoothness and considering the singular norm forms

$$
N_{K / \mathbb{Q}}\left(x_{1} \alpha_{1}+\cdots+x_{d} \alpha_{d}\right)=c t^{d}
$$

where $d=[K: \mathbb{Q}]$?
Heath-Brown: What happens when $X_{k} \subset \mathbb{P}^{k}$ is a hypersurface? Is there any example of a smooth hypersurface of dimension ≥ 3 failing the Hasse principle?

Colliot-Thélène: Sarnak-Wang have shown that the Bombieri-Lang conjecture would imply that there are many such examples of general type.

Wooley: An analytic attack to show that there exist some such varieties could be as follows. Choose a locally soluble smooth hypersurface $Y \subset \mathbb{P}^{N}$ of degree $d \gg N$. The determinant method implies that the number of points in a large box grows slowly. Intersect with linear subspaces to maintain local solubility. Use a counting argument to find a linear section without rational points.

Colliot-Thélène: Won't this just force the coefficients to be large?
Harari: Does $\frac{\operatorname{dim}\left(X_{k}\right)}{\operatorname{deg}\left(X_{k}\right)} \rightarrow \infty$ imply that X_{k} is geometrically rationally connected? Note that if X over \mathbb{Q} is a geometrically rationally connected complete intersection, then the Hasse principle is hard to obstruct cohomologically.

Browning: A conjecture of Hartshorne implies that if $Y \subset \mathbb{P}^{N}$ is smooth, nondegenerate, with $\operatorname{dim}(Y) \geq 2 \operatorname{deg}(Y)+1$, then Y is a complete intersection, hence rationally connected Therefore, it might be easier to look for examples with

$$
\frac{1}{3}<\frac{\operatorname{dim}\left(X_{k}\right)}{\operatorname{deg}\left(X_{k}\right)} \leq 2
$$

in Heath-Brown's original question.
Tschinkel: Let X be a Fano variety over \mathbb{C}. Can we have $\operatorname{Br}(X)=H^{3}(X, \mathbb{Z})_{\text {tors }} \neq$ 0 in all dimensions ≥ 4 ?

Problem 8. Várilly-Alvarado: Skorobogatov has asked whether a K3 surface X over \mathbb{Q} can have odd order torsion in $\operatorname{Br}(X)$ obstructing the Hasse principle? Even in $\operatorname{Br}(X)_{\text {alg }}$?

Skorobogatov: For example, for quartics $X \subset \mathbb{P}^{3}$ and $\alpha \in \operatorname{Br}(X)[u]$ for u odd: For each place v, there exists a zero cycle over \mathbb{Q}_{v} of degree one such that α is orthogonal to Z_{v}. Then a conjecture of Colliot-Thélène implies that X has zero cycles of degree one over \mathbb{Q}. Will there be a rational point? So given a quartic surface $X \subset \mathbb{P}^{3}$ with $(\operatorname{Br}(X) / \operatorname{Br}(\mathbb{Q}))[2]=0$, does the Hasse principle hold?

Tschinkel: What about weak approximation? Skorobogatov: This will probably fail.

Hassett: How about $X \subset \mathbb{P}^{4}$ of degree six?
Problem 9. Wooley: Consider the set

$$
Q_{k}:=\left\{Q\left(y_{1}^{k}, \ldots, y_{s}^{k}\right) \in \mathbb{Q}\left[y_{1}, \ldots, y_{s}\right] \mid Q \in \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right] \text { quadratic form }\right\}
$$

of certain forms of degree $2 k$. Fixing k, how large must s be in order for the Hasse principle to hold? Let

$$
h(k):=\inf _{s \in \mathbb{N}}\left\{s \mid \text { the Hasse principle holds for all } Q \in Q_{k} \text { in } s \text { variables }\right\} .
$$

Challenge: prove that $\log h(k)=o(k)$ as $k \rightarrow \infty$.
By Birch's result on forms in many variables, we know that $h(k) \leq 2 k \cdot 2^{2 k}$. On the other hand, for diagonal forms of degree k (i.e., $Q\left(y_{1}^{k}, \ldots, y_{s}^{k}\right)$ with linear $Q \in \mathbb{Q}\left[x_{1}, \ldots, x_{s}\right]$, we have the much stronger bound $h(k) \sim 2 k(\log k)$.

Browning: Replace k-th powers by norm forms from fixed extensions of degree k.

Problem 10. Peyre: Back to quartic surfaces $X \subset \mathbb{P}^{3}$. Let U be the complement of all rational curves over \mathbb{Q}. Assume $U(\mathbb{Q}) \neq \emptyset$. There is numerical evidence that

$$
\#\{u \in U(\mathbb{Q}) \mid H(u) \leq B\} \sim c(\log B)^{\rho(X)}
$$

where $\rho(X)$ is the rank of the Picard group of X and c is the product of local densities. Can such a formula hold without weak approximation being valid?

Tschinkel: Given a quartic K3 surface $X \subset \mathbb{P}^{3}$, with $x \in X(\mathbb{Q})$. Is there a procedure for deciding whether x lies on a rational curve over \mathbb{Q} ?

Skorobogatov: What about removing elliptic curves?
Browning: Is there any numerical evidence? (See van Luijk's work.) What is the Peyre freedom of rational curves of small degree on K3 surfaces?

Colliot-Thélène: Given a K3 surface X over \mathbb{Q} and $x \in X(\mathbb{Q}) \neq \emptyset$, does there exist a rational curve $R \subset X$ over \mathbb{Q} ? Does there exist a rational curve $R \subset X$ over \mathbb{Q} containing x ?

Tschinkel: How about finite fields? Let X be a K3 surface over \mathbb{F}_{q} and $x \in X\left(\mathbb{F}_{q}\right)$. Does there exist rational curves $R \subset X$ defined over \mathbb{F}_{q} containing x ? Are there any rational curves $R \subset X$ defined over \mathbb{F}_{q} ? Bogomolov-Tschinkel show for Kummer surfaces X that we can find rational curves over $\overline{\mathbb{F}}_{q}$ for most $x \in X$.

Skorobogatov / Testa: Are there K3 surfaces X over \mathbb{Q} with infinitely may rational curves over \mathbb{Q} and $\operatorname{Pic}\left(X_{\mathbb{C}}\right) \cong \mathbb{Z}$?

