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1 Introduction–Tate conjecture and Picard jump-

ing

Consider first a field k ⊂ C. Given a K3 surface X, the Néron-Severi group
is given by the Lefschetz (1, 1) Theorem:

NS(X) = H2(X,Z(1)) ∩H1,1(X).

This is a free abelian group of rank ρ with

0 ≤ ρ ≤ 20 = dimH1,1(X).

Now let k = Fq and let ` be a prime not dividing q. Then we have

NS(X)⊗ Z`
c1−→ H2(Xk̄,Z`(1))Gal(k̄/k).

Theorem 1 (Maulik,C-,Madapusi-Pera) If the characteristic ≥ 3 then
c1 is onto.

Sketch assuming ρ(X) ≥ 2: This is equivalent to finiteness of the Brauer
group, the proof is a variant of Artin and Swinnerton-Dyer’s proof for elliptic
surfaces.

The group Br(X) is finite if and only if Br(X)[`∞] is finite. We can get
elements in Br(X) in the orthogonal complement of NS(X) in H2(X,Z`(1)).
Using

H2(X,Z`(1))→ H2(X,µ`n) � Br(X)[`n],
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an α ∈ H2(X,Z`(1)) yields αn ∈ Br(X)[`n]. Chern classes of αn-twisted
sheaves lie in

Nαn = {(r`n, D + rα, cω)} ⊂ H0(Xk̄,Z`)⊕H2(Xk̄,Z`(1))⊕H4(Xk̄,Z`(2))

with D ∈ NS(X) and r, c ∈ Z.
Starting with v ∈ Nαn , consider moduli Mv of twisted sheaves with Mukai

vector v. Then, assuming some conditions on v (cf. Yoshioka’s work): If
v2 = 0 then Mv is a K3 surface and

NS(Mv) = v⊥/Zv

up to some p-groups.
Since ρ(X) ≥ 2, we can pick two divisors D1, D2 on X with D2

1 > 0, D2
2 <

0, and D1D2 = 0. If the Tate conjecture is false for X, find `, α such that
α2 = −D2

2 and α · NS(X) = 0. Set

v = (`n, α +D2, 0), v2 = 0,

then Mv is a K3 surface and (0, D1, 0) ∈ NS(Mv). Results of Saint Do-
nat imply there are finitely many possibilities for Mv but the discriminant
disc NS(Mv)→∞ as n→∞.

Remark 1 Assuming the Tate conjecture, the rank of NS(Xk̄) is even ≥ 2.
Indeed, for surfaces Shioda shows

rank(NS(Xk̄)) = b2(X) (mod 2).

2 K3 surfaces over one-parameter base

Question 1 Consider X π→ S a smooth projective family of K3 surfaces over
one-dimensional base. As s varies through the geometric points of S, what
can we say about ρ(Xs)?

Suppose S = ∆ is the complex unit disk and π is not isotrivial. For s
very general ρ(Xs) is constant. The Noether-Lefschetz locus

NL(π) = {s : ρ(Xs) > ρgen}
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is dense in ∆. This is due to Green and Oguiso; and also Borcherds,
Katzarkov, Pantev, Shepherd-Barron using arguments with automorphic forms.
The latter is more complicated and delicate but will be more useful for our
purposes.

Now take S ⊂ SpecOK where K is a number field (some primes should
be inverted to get a smooth π). There is a parity issue: if ρ(Xη̄) is odd then
all closed points of S belong to the Noether Lefschetz locus of π. We can
work out what happens for ‘most’ closed points, e.g., a set of density one.

Question 2 What about the ‘Noether-Lefschetz locus’, i.e., s ∈ S such that
ρ(Xs̄) is bigger than usual?

Expectation: There are infinitely many s with ρ(Xs̄) > ρ(Xη̄). This is
known if ρ(Xη̄) is odd by Remark 1 and the Tate conjecture.

3 Statement of the main result

Theorem 2 Let E1 and E2 be two elliptic curves over a number field K.
Then the set of s ∈ Spec(OK) such that E1,s̄ and E2,s̄ are isogenous is infinite.

The corresponding K3 surface X is the Kummer surface associated with
E1 × E2.

Remark 2 (On the heuristic) Suppose that K = Q and E1, E2 are ellip-
tic curves over Q that are not CM or isogenous. Here s corresponds to a
prime p. The isogeny condition is equivalent to equality of the traces Tr of
Frobenius on

H1(E1,s,Z`) and H1(E2,s,Z`).

Since |Tr| ≤ 2
√
p by the Weil conjectures, the probability of having an isogeny

at p is ' 1/
√
p, assuming some equidistribution. This sum diverges.

Corollary 1 Let K be a number field and E/K an elliptic curve. Then one
of the following holds

1. E has infinitely many supersingular primes;

2. for all k quadratic imaginary field, E has infinitely many primes with
complex multiplication by k.
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This should be compared with Elkies’ Theorem. Note that his method gives
quite few supersingular primes, far fewer than the Lang-Trotter heuristic
would predict.

Idea of the proof. The curves E1, E2 yield OK-points of the modular curve
X(1), say Y, Z. Interpret these as two arithmetic curves on an arithmetic
surface. We have the Hecke correspondences

TN ↪→ X(1)×Z X(1)

where
TN = {E → E ′ cyclic isogeny of degree N}.

Our goal is to show that
⋃
N(Y ∩ TN∗Z) is infinite, as a set. This splits into

two statements:

1. consider the zero-cycle Y · TN∗Z: we want d̂eg(Y · TN∗Z) to be big

2. local degrees, i.e., multiplicies of intersections, are not too large.

The first estimate concerns te height of the Hecke correspondences – it cor-
responds to the result of Borcherds mentioned above. In our context, one
uses Hecke equidistribution results of Clozel and Ullmo.

Here are the precise estimates: First the height of TN is on the order of
N log(N). Second, the local degrees should be � N logN .

Example: Consider the Archimedean term, which is controlled by∑
cyclic subgroup C⊂E2,|C|=N

log |j(E1)− j(E2/C)|.

This is large if E1 and E2/C are ‘close’ in the upper half plane. Look at
the structure of the corresponding Hecke orbit. Note that the sum ‘looks
like’ the Riemann sum for an integral, which actually converges giving the
estimate.

To complete the argument, we need to do some Diophantine approxima-
tion.

Question: Is there a plausible Sato-Tate hypothesis that would give re-
sults of this kind for a large class of situations. Answer: M. Harris has proven
Sato-Tate equidistribution results for products of elliptic curves but these do
not yield our theorem as a corollary.
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