

Curves and cycles on K3 surfaces

Daniel Huybrechts

March 23, 2015

1 Introduction

Let X be a K3 surface over a field k . We can write

$$\mathrm{CH}^*(X) = \mathrm{CH}^0(X) \oplus \mathrm{CH}^1(X) \oplus \mathrm{CH}^2(X) \simeq \mathbb{Z} \oplus \mathbb{Z}^{\rho(X)} \oplus \mathrm{CH}^2(X).$$

Theorem 1 (Roitman-Bloch-Milne-Voisin) *Let k be algebraically closed. Then*

$$\mathrm{CH}^2(X)_0 := \ker(\deg \mathrm{CH}^2(X) \rightarrow \mathbb{Z})$$

is divisible and torsion free.

Examples:

1. When $k = \bar{\mathbb{F}}_p$, we have $\mathrm{CH}^2(X)_0 = 0$, as $\mathrm{Pic}^0(C)$ is torsion for a curve over a finite field.
2. Let $\mathcal{X} \subset |\mathcal{O}(4)| \times \mathbb{P}^3$ be the universal quartic with generic fiber \mathcal{X}_η . Then $\mathrm{CH}^2(\mathcal{X}_\eta) = \mathbb{Z}$. This uses the localization exact sequence for $U \subset |\mathcal{O}(4)|$, which gives

$$\mathrm{CH}^2(\mathcal{X}_\eta) = \lim \mathrm{CH}^2(\mathcal{X}_U).$$

We don't expect $\mathrm{CH}^2(\mathcal{X}_{\bar{\eta}}) = \mathbb{Z}$.

Question 1 *What about the universal K3 surface $\mathcal{X} \rightarrow \mathcal{K}_g$ over the moduli space of K3 surfaces of degree $2g - 2$?*

This should be compared to the Franchetta conjecture, where

$$\mathrm{Pic}(\mathcal{C}/\mathcal{M}_g) = \mathbb{Z}\omega_{\mathcal{C}/\mathcal{M}_g}.$$

More examples:

- 3. Take a general Lefschetz pencil of quartics

$$\begin{array}{ccc} \mathcal{X} & \subset & \mathbb{P}^1 \times \mathbb{P}^3 \\ & \downarrow & \\ & & \mathbb{P}^1 \end{array}$$

so that $\mathcal{X} = \mathrm{Bl}_C(\mathbb{P}^3)$ where C is a complete intersection curve and $\mathrm{CH}^2(\mathcal{X}) = \mathbb{Z} \oplus \mathrm{Pic}(C)$. For all $U = \mathbb{P}^1 \setminus \{t_1, \dots, t_m\}$ we get

$$\oplus_j \mathrm{CH}^1(\mathcal{X}_{t_j}) \rightarrow \mathrm{CH}^2(\mathcal{X}) \rightarrow \mathrm{CH}^2(\mathcal{X}_U) \rightarrow 0$$

and thus over \mathbb{C}

$$\mathrm{CH}^2(\mathcal{X}_\eta)_0 \neq 0.$$

What about countable fields?

2 Background and conjectures

Recall the following:

- Mumford in 1968 showed that $\dim \mathrm{CH}^2(X) = \infty$ over $k = \mathbb{C}$, i.e., there is no curve C such that $\mathrm{Pic}(C) \rightarrow \mathrm{CH}^2(X)$.
- Bloch-Beilinson conjecture: For $k = \overline{\mathbb{F}_p(t)}, \overline{\mathbb{Q}}$, we expect $\mathrm{CH}^2(X) = \mathbb{Z}$. Not a single example is known other than isotrivial families over $\overline{\mathbb{F}_p(t)}$.
- Bloch: For X/k and an extension of fields $k \subset K$ we have

$$\mathrm{CH}^2(X) \rightarrow \mathrm{CH}^2(X_K)$$

with torison kernel. The diagonal $\Delta \subset X \times X$ yields $\eta \in X \times k(\eta)$ and

$$[\eta] \notin \mathrm{Im}(\mathrm{CH}^2(X) \rightarrow \mathrm{CH}^2(X \times k(\eta)))$$

if X is not supersingular.

For all $k \subset K = \overline{K}$, with transcendence degree ≥ 2 , X not supersingular, the map

$$\mathrm{CH}^2(X) \otimes \mathbb{Q} \rightarrow \mathrm{CH}^2(X_K) \otimes \mathbb{Q}$$

fails to be surjective. Green-Griffiths-Paranjape in characteristic zero get the same result for extensions of transcendence degree one. The idea is to use the generic point of some curve $C \subset X$.

Remark 1 *For all k algebraically closed, if $\mathrm{CH}^2(X) \neq \mathbb{Z}$ then the map*

$$\mathrm{CH}^2(X) \rightarrow \mathrm{CH}^2(X \times K)$$

is not surjective for algebraically closed extensions of positive transcendence degree.

Conjecture 1 *(Easier than Bloch-Beilinson?) Given X/k with k algebraically closed of characteristic zero and positive transcendence degree, then*

$$\mathrm{CH}^2(X)_0 \neq 0.$$

The Beauville-Voisin ring is relevant: there exists $c_X \in \mathrm{CH}^2(X)$ such that decomposable cycles in the image of the map

$$\mathrm{CH}^1(X) \rightarrow \mathrm{CH}^1(X) \rightarrow \mathrm{CH}^2(X),$$

are proportional to c_X over algebraically closed fields. The resulting ring $R(X)$ injects into cohomology.

3 Curves

Given X/k and a mapping $f : C \rightarrow X$ from a curve, the kernel of the map

$$\mathrm{Pic}^0(C) \rightarrow \mathrm{CH}^2(X)_0$$

is a union of translates A_i of abelian varieties. What can we say about the dimensions of A_i ? For general C , we expect $\dim A_i = 0$. The most special case will correspond to the constant cycle curves, which we know define.

Definition 1 *A curve $C \hookrightarrow X$ is a constant cycle curve (CCC)*

- over \mathbb{C} : if the image of $\mathrm{Pic}^0(C) \rightarrow \mathrm{CH}^2(X)$ is trivial.

- For arbitrary fields k : if there exists $d > 0$ and $x_0 \in X$ such that

$$d[\Delta_C - C \times x_0]$$

is supported in $Z \subset X \times C$ with $\pi(Z) \neq C$.

By Bloch-Srinivas the two definitions are equivalent over \mathbb{C} .

There is a localization exact sequence

$$\bigoplus_{t_i \in C} \mathrm{CH}^1(X \times t_i) \rightarrow \mathrm{CH}^2(X \times C) \rightarrow \mathrm{CH}^2(X \times k(C)) \rightarrow 0,$$

and the class of $\Delta_C - C \times x_0$ in $\mathrm{CH}^2(X \times C)$ maps to a d -torsion class. The *order* of C is defined as the order of the image in $\mathrm{CH}^2(X \times k(C))$.

Remark 2 The two definitions differ over small fields like $\overline{\mathbb{Q}}$. While $\mathrm{CH}^2(X)_0$ is expected to be trivial, most curves are not constant cycle curves.

Conjecture 2 (cf. Bloch-Beilinson, Bogomolov) Given $X/\overline{\mathbb{Q}}$ and $x \in X(\overline{\mathbb{Q}})$, there exists a curve $x \in C \subset X$ that is CCC.

4 Theorems and examples

Remark 3 Let X be a K3 surface over $k = \overline{\mathbb{F}_p}$. Then $\mathrm{CH}^2(X \times \overline{\mathbb{F}_p(t)}) = 0$ (cf. Bloch-Beilinson) if and only if every $C \hookrightarrow X$ is CCC.

Over finite fields, every point is contained in a CCC.

Remark 4 Rational curves $C \hookrightarrow X$ are CCC of order one.

There exist examples of genus one curves that are CCC of order one.

There exist examples of genus 201 curves that are CCC of order at most four.

Let $X \rightarrow \mathbb{P}^2$ be a double cover ramified over a sextic curve. Then the ramification curve is CCC of order at most two.

Theorem 2 Let X be defined over an algebraically closed field k of characteristic zero. Let L be ample and $d > 0$. Then the number of CCC curves in $|L|$ of order d is finite.

Can they be enumerated? How do they behave under deformations?

Theorem 3 (Voisin) *There exist a non-empty Zariski open $U \subset \mathcal{K}_g$ and $d > 0$ such that*

$$\bigcup_{\text{CCC of order } d} C \subset X$$

is dense for all $X \in U$.

Distribution of points: Fix $\alpha \in \text{CH}^2(X)$ and set

$$X_\alpha := \{x \in X : [x] = \alpha\}$$

over k algebraically closed. Then X_α is dense if non-empty (McLean).

- $\alpha \neq c_X$: $X_\alpha = \bigcup_{i=1}^{\infty} x_i$
- $\alpha = c_X$: $X_\alpha = \bigcup_{i=1}^{\infty} C_i \cup (\bigcup_{i=1}^{\infty} x_i)$ where the C_i are CCC and the last piece can be taken to be empty by Conjecture 1.