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Definition 1 A hyperkdahler manifold M is a compact complex Kdhler irre-
ducible holomorphic symplectic manifold, i.e., 7 (M) = 0 and H*°(M) = Co
with o non-degenerate.

Examples:
e K3 surfaces
o K3l ie. Hilbert schemes of points on K3 surfaces
e generalized Kummer manifolds K,,(A);

e O’'Grady’s sporadic examples.
Theorem 1 (Matsushita) Consider a fibration f: M — B with 0 < dim(B) <
dim(M). Then dim(B) = 1 dim(M) and the generic fiber is a Lagrangian
abelian variety.

Theorem 2 (Huang) If B is smooth then B = P".

Given M hyperkéhler, there is the Beauville-Bogomolov-Fujiki form (H?(M,Z), q)
of signature (3, by — 3) satisfying the Fujiki relation

/ o =c-qla) for « € H*(M,7Z),
M



with ¢ > 0 constant depending on the topological type of M. The form is
non-degenerate, but in general it is not unimodular, although it is suspected
to be even. It generalizes the intersection pairing on K3 surfaces.

Observation: Given f: M — P" h the hyperplane class on P", and a =
f*h, then « is nef and g(a) = 0.

Conjecture 1 (SYZ) If L is a nef line bundle on M with q(L) = 0 then L
induces a Lagrangian fibration, as above.

This conjecture is known for deformations of K3 (Bayer—Macri; Mark-
man), and for deformations of K, (A) (Yoshioka).

Definition 2 The Kobayashi pseudometric on M is the mazximal pseudo-
metric dy; such that all f: (D, p) — (M,dyr) are distance decreasing, where
(D, p) is the disk with the Poincaré metric.

A manifold is Kobayashi hyperbolic if dy; is a metric.

Theorem 3 (Brody) Let M be a compact complex manifold. Then M fails
to be Kobayashi hyperbolic if and only is there exists an entire curve C — M.
The failure of Kobayashi hyperbolicity is preserved on taking limits.

Conjecture 2 (Kobayashi)
1. For S a K3 surface we have dg = 0.
2. For M hyperkahler we have dy; = 0.

3. A hyperkdahler manifold M is Kobayashi non-hyperbolic.

Mori-Mukai '82: The first conjecture holds for projective K3 surfaces,
using dominating families of (singular) elliptic curves.

K-Verbitsky '12: All known hyperkahler manifolds are Kobayashi non-
hyperbolic. In 2013, Verbitsky extended this to all hyperkahler’s.

Theorem 4 Let S be a K3 surface. Then dg = 0.

Theorem 5 Let M be hyperkdahler with p < by—2 and deformation equivalent
to a Lagrangian fibration. Then dy; = 0.



Theorem 6 Let M be hyperkahler with p = by — 2 and by(M) > 7. Assume
the SYZ conjecture holds for all deformations of M. Then dy; = 0.

Consider the Teichmiiller space
Teich := Complex structures/Diff’(M)
which admits an action by the mapping class group
I := Diff* (M) /Diff°(M).

The Teichmiiller space is finite-dimensional for M Calabi-Yau. An element
I € Teich is ergodic if the orbit I' - I is dense in Teich, where

.1 ={I'¢€ Teich: (M,I)~ (M,I)}.

Theorem 7 (Verbitsky) If M is hyperkdihler and I € Teich then I is er-
godic if and only if p(M,I) < by — 2.

Proposition 1 Let (M, J) denote a complex manifold with dy,y) = 0. Let
I € Teich be deformation equivalent to J. Assume I is ergodic. Then dy =
0.

Indeed, consider
diam : Teich — R,

the maximal distance between two points. This is upper semi-continuous.
Then
0 < diam(/) < diam(J) = 0.

Proof of Theorem 4

Case I: p=10by — 2
Then S is projective and dg = 0.

Case II: p(S,1) < by —2
Then I is ergodic and we deform (S, I) to a projective (S, J) whence d(g1) =
0.

We turn to Theorem 5. This will use:

Theorem 8 Let M be hyperkahler, admitting two Lagrangian fibrations as-
sociated to non-proportional nef parabolic classes. Then dy = 0.
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Proof: Suppose we have
VT M—>X7,,Z: 1,2

with h; ample on X; and «; its pull back to M. Then ¢(c;) = 0 and the
lattice (o, ap) has signature (1,1). Since g(ay, a2) # 0 we can compute as
follows: Let F; denote a fiber of m;, i.e., [F;] = o. Then

[F\]|[Fy] = /Mo/f Aol = cq(ag,a)" # 0.

Note pseudodistances of points in a fiber is zero. Use this to connect arbi-
trary pairs of points in M using the two fibration structures.

Idea of Theorem 5: The locus of Teich consisting of Lagrangian fibrations
self-intersects. In the intersection one can choose a deformation with two
Lagrangian fibrations as in Theorem 8, hence dy; = 0. Since the original
complex structure is ergodic (p < by — 2) and deformation equivalent to one
with vanishing Kobayashi pseudometric, we use Proposition 1 in order to
complete the proof.

Idea of Theorem 6: If p = by — 2 > 5 then there exists z € Pic(M) with
q(z) =0,z # 0 (by Meyer’s theorem for indefinite latices of rank at least 5).
The SYZ conjecture says z gives rise to a Lagrangian fibration. Consider

v € T'y := Aut(Pic(M))

with 2/ = v(z) # z. This way we get a second Lagrangian fibration. Apply
Theorem 8.



