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Definition 1 A hyperkähler manifold M is a compact complex Kähler irre-
ducible holomorphic symplectic manifold, i.e., π1(M) = 0 and H2,0(M) = Cσ
with σ non-degenerate.

Examples:

• K3 surfaces

• K3[n], i.e., Hilbert schemes of points on K3 surfaces

• generalized Kummer manifolds Kn(A);

• O’Grady’s sporadic examples.

Theorem 1 (Matsushita) Consider a fibration f : M → B with 0 < dim(B) <
dim(M). Then dim(B) = 1

2
dim(M) and the generic fiber is a Lagrangian

abelian variety.

Theorem 2 (Huang) If B is smooth then B = Pn.

GivenM hyperkähler, there is the Beauville-Bogomolov-Fujiki form (H2(M,Z), q)
of signature (3, b2 − 3) satisfying the Fujiki relation∫

M

α2n = c · q(α)n for α ∈ H2(M,Z),
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with c > 0 constant depending on the topological type of M . The form is
non-degenerate, but in general it is not unimodular, although it is suspected
to be even. It generalizes the intersection pairing on K3 surfaces.

Observation: Given f : M → Pn, h the hyperplane class on Pn, and α =
f ∗h, then α is nef and q(α) = 0.

Conjecture 1 (SYZ) If L is a nef line bundle on M with q(L) = 0 then L
induces a Lagrangian fibration, as above.

This conjecture is known for deformations of K3[n] (Bayer–Macr̀ı; Mark-
man), and for deformations of Kn(A) (Yoshioka).

Definition 2 The Kobayashi pseudometric on M is the maximal pseudo-
metric dM such that all f : (D, ρ)→ (M,dM) are distance decreasing, where
(D, ρ) is the disk with the Poincaré metric.

A manifold is Kobayashi hyperbolic if dM is a metric.

Theorem 3 (Brody) Let M be a compact complex manifold. Then M fails
to be Kobayashi hyperbolic if and only is there exists an entire curve C→M .
The failure of Kobayashi hyperbolicity is preserved on taking limits.

Conjecture 2 (Kobayashi)

1. For S a K3 surface we have dS ≡ 0.

2. For M hyperkähler we have dM ≡ 0.

3. A hyperkähler manifold M is Kobayashi non-hyperbolic.

Mori-Mukai ’82: The first conjecture holds for projective K3 surfaces,
using dominating families of (singular) elliptic curves.

K-Verbitsky ’12: All known hyperkähler manifolds are Kobayashi non-
hyperbolic. In 2013, Verbitsky extended this to all hyperkähler’s.

Theorem 4 Let S be a K3 surface. Then dS ≡ 0.

Theorem 5 Let M be hyperkähler with ρ < b2−2 and deformation equivalent
to a Lagrangian fibration. Then dM ≡ 0.
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Theorem 6 Let M be hyperkähler with ρ = b2 − 2 and b2(M) ≥ 7. Assume
the SYZ conjecture holds for all deformations of M . Then dM ≡ 0.

Consider the Teichmüller space

Teich := Complex structures/Diff0(M)

which admits an action by the mapping class group

Γ := Diff+(M)/Diff0(M).

The Teichmüller space is finite-dimensional for M Calabi-Yau. An element
I ∈ Teich is ergodic if the orbit Γ · I is dense in Teich, where

Γ · I = {I ′ ∈ Teich : (M, I) ∼ (M, I ′)}.

Theorem 7 (Verbitsky) If M is hyperkähler and I ∈ Teich then I is er-
godic if and only if ρ(M, I) < b2 − 2.

Proposition 1 Let (M,J) denote a complex manifold with d(M,J) ≡ 0. Let
I ∈ Teich be deformation equivalent to J . Assume I is ergodic. Then d(M,I) ≡
0.

Indeed, consider
diam : Teich→ R≥0,

the maximal distance between two points. This is upper semi-continuous.
Then

0 ≤ diam(I) ≤ diam(J) = 0.

Proof of Theorem 4
Case I: ρ = b2 − 2

Then S is projective and dS ≡ 0.
Case II: ρ(S, I) < b2 − 2

Then I is ergodic and we deform (S, I) to a projective (S, J) whence d(S,I) ≡
0.

We turn to Theorem 5. This will use:

Theorem 8 Let M be hyperkähler, admitting two Lagrangian fibrations as-
sociated to non-proportional nef parabolic classes. Then dM ≡ 0.
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Proof: Suppose we have

πi : M → Xi, i = 1, 2

with hi ample on Xi and αi its pull back to M . Then q(αi) = 0 and the
lattice 〈α1, α2〉 has signature (1, 1). Since q(α1, α2) 6= 0 we can compute as
follows: Let Fi denote a fiber of πi, i.e., [Fi] = αn

i . Then

[F1][F2] =

∫
M

αn
1 ∧ αn

2 = cq (α1, α2)
n 6= 0.

Note pseudodistances of points in a fiber is zero. Use this to connect arbi-
trary pairs of points in M using the two fibration structures.

Idea of Theorem 5: The locus of Teich consisting of Lagrangian fibrations
self-intersects. In the intersection one can choose a deformation with two
Lagrangian fibrations as in Theorem 8, hence dM ≡ 0. Since the original
complex structure is ergodic (ρ < b2 − 2) and deformation equivalent to one
with vanishing Kobayashi pseudometric, we use Proposition 1 in order to
complete the proof.

Idea of Theorem 6: If ρ = b2 − 2 ≥ 5 then there exists z ∈ Pic(M) with
q(z) = 0, z 6= 0 (by Meyer’s theorem for indefinite latices of rank at least 5).
The SYZ conjecture says z gives rise to a Lagrangian fibration. Consider

γ ∈ Γ1 := Aut(Pic(M))

with z′ = γ(z) 6= z. This way we get a second Lagrangian fibration. Apply
Theorem 8.
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