

Derived Torelli and applications

Martin Olsson

March 23, 2015

This is joint with Max Lieblich.

1 Statement of result

Let k be field and X a smooth projective scheme over k . Let $D(X)$ denote the bounded derived category of coherent sheaves. Let $K(X)_{\mathbb{Q}}$ denote the Grothendieck group of $D(X)$ tensored with \mathbb{Q} . The Riemann-Roch theorem gives an identification

$$K(X)_{\mathbb{Q}} \simeq A^*(X)_{\mathbb{Q}}$$

which gives a filtration by on $K(X)_{\mathbb{Q}}$ by codimension.

Thus each X yields a pair (D, F) where D is a triangulated category and F is a filtration on $K(D)_{\mathbb{Q}}$. Given two such pairs (D, F) and (D', F') , an equivalence is an equivalence of triangulated categories $\sigma : D \xrightarrow{\sim} D'$ such that $K(\sigma) : K(D)_{\mathbb{Q}} \xrightarrow{\sim} K(D')_{\mathbb{Q}}$ respects the filtrations.

Example. Let X be a K3 surface over $k = \bar{k}$. Then

$$F^2 = A^2(X)_{\mathbb{Q}}, \quad F^1 = \text{NS}(X)_{\mathbb{Q}} \oplus A^2(X)_{\mathbb{Q}}, \quad F^0 = A^*(X)_{\mathbb{Q}}.$$

Theorem 1 *Let X be a K3 surface over $k = \bar{k}$ and Y/k a smooth projective scheme such that $(D(X), F_X) \simeq (D(Y), F_Y)$. Then $X \simeq Y$.*

This is a well-known statement in characteristic zero; but in positive characteristics we need a mechanism that plays the role of the Hodge structure.

[Question: Does this yield a new proof of the Torelli Theorem? Answer: No, we have to lift to characteristic zero and use Torelli there to obtain our result.]

2 Fourier-Mukai transforms

Let X, Y be smooth and projective over k and $P \in D(X \times Y)$. Consider the Fourier-Mukai transform

$$\begin{aligned}\Phi^P : D(X) &\rightarrow D(Y) \\ K &\mapsto Rp_{2*}(Lp_1^*K \otimes^{\mathbb{L}} P)\end{aligned}$$

Theorem 2 (Orlov) *If $F : D(X) \xrightarrow{\sim} D(Y)$ is an equivalence of triangulated categories then $F = \Phi^P$ for some $P \in D(X \times Y)$.*

Write $A^*(X)_{num} = A^*(X)_{\mathbb{Q}} / \sim_{num}$,

$$\beta(P) = \text{ch}(P) \sqrt{\text{Td}_{X \times Y}} \in A^*(X \times Y)_{num},$$

and consider

$$\Phi_{A^*}^P : A^*(X)_{num} \rightarrow A^*(Y)_{num}$$

using the same formula as above. Instead of the identification coming from Riemann–Roch, we will use the isomorphism

$$\sqrt{\text{td}_X} \cdot \text{ch}(-) : K(X)_{\mathbb{Q}} \xrightarrow{\sim} A^*(X)_{\mathbb{Q}}.$$

For a surface X we have a pairing on $A^*(X)_{num}$

$$\langle (a, b, c), (a', b', c') \rangle = bb' - ac' - a'c$$

and Φ^P is compatible with this pairing.

Corollary 1 $F_{A^*(X)_{num}}^1 = (F_{A^*}^2)^{\perp}$ and Φ^P preserves the codimension filtration on $A^*(X)_{num}$ if and only if $\Phi^P(F^2) = F^2$.

Alternate formulation:

Theorem 3 *Let X and Y be K3 surfaces over $k = \bar{k}$. Let $P \in D(X \times Y)$ be an object such that*

$$\Phi^P : D(X) \xrightarrow{\sim} D(Y)$$

and

$$\Phi_{A^*}^P : A^*(X)_{num} \rightarrow A^*(Y)_{num}$$

preserves the codimension filtration. Then $X \simeq Y$.

3 Moduli spaces of sheaves

Let X/k be a K3 surface and $E \in D(X)$ and consider the Mukai vector

$$v(E) = (\mathrm{rk}(E), c_1(E), \mathrm{rk}(E) + \frac{c_1(E)^2}{2} + c_2(E)) \in A^*(X)_{\mathrm{num}}.$$

Let h be a polarization on X and $\mathcal{M}_h(v)$ the stack of Gieseker semistable sheaves on X with Mukai vector v .

Theorem 4 (Mukai) *For suitable v , every semistable sheaf is stable, and $\mathcal{M}_h(v)$ is a \mathbb{G}_m -gerbe over $M_h(v)$ and $X \times M_h(v)$ carries a universal family:*

$$\begin{array}{ccc} & X \times M_h(v) & \\ & \swarrow \quad \searrow & \\ X & & M_h(v) \end{array}$$

Theorem 5 *Let X, Y be K3 surfaces over $k = \bar{k}$ with $D(X) \simeq D(Y)$. Then after composing $D(X) \xrightarrow{\sim} D(M_h(v))$ then you can arrange for*

$$D(Y) \simeq D(X) \simeq D(M_h(v))$$

to respect filtrations, whence $Y \simeq M_h(v)$.

4 Idea of proof

Given X, Y, Φ_P respecting filtrations:

1. We can arrange that $\Phi^P(1, 0, 0) = (1, 0, 0)$ and that $\Phi^P(\text{ample cone}) = \pm(\text{ample cone})$.
2. Consider the deformation functor

$$\mathrm{Def}_X : \mathrm{Art}_W \rightarrow \mathrm{Set}$$

where the former is the category of Artinian local W -algebras with residue field k . Here $W = W(k)$ is the Witt vectors.

Proposition 1 *There is an isomorphism of deformation functors*

$$\delta : \mathrm{Def}_X \rightarrow \mathrm{Def}_Y$$

such that for each $L \in \mathrm{Pic}(X)$

$$\delta(\mathrm{Def}_{(X, L)}) = \mathrm{Def}_{(Y, \Phi(L))}.$$

Idea: Let $\mathcal{D}(X)$ denote the stack of perfect complexes on X which are simple and universally gluable. Simple means $\text{Aut}(E) = \mathbb{G}_m$ and universally gluable means $\text{Ext}^i(E, E) = 0$ for $i < 0$. Without the latter condition, you will not get a stack structure. This was worked out by Lieblich previously.

We can think of $P \in D(X \times Y)$ as

$$\begin{array}{ccc} Y & \rightarrow & \mathcal{D}_X \\ y & \mapsto & P_y \end{array}$$

The fact that P is an FM equivalence means the image lands in a special open set.

Picture: $Y \rightarrow \mathcal{D}_X$ is an open immersion.

$$\begin{array}{ccc} Y & \hookrightarrow & Y \\ P_A \downarrow & & \downarrow P \\ \mathcal{D}_{X_A} & \hookrightarrow & \mathcal{D}_X \\ \downarrow & & \downarrow \\ \text{Spec}(A) & \hookrightarrow & \text{Spec}(k) \end{array}$$

induces

$$\begin{array}{ccc} \delta : \text{Def}_X(A) & \rightarrow & \text{Def}_Y(A) \\ X_A & \mapsto & Y_A \end{array}$$

In fact, δ identifies Def_X and Def_Y but P deforms to $X_A \times_A \delta(X_A)$.

3 Choose L ample and lift X, Y, P to characteristic 0.

5 Realizations

Consider a Weil cohomology theory

$$H^* : (\text{sm. proj. var.}/k)^{op} \rightarrow \text{gr. v. spaces}/K$$

with X even dimensional. Consider

$$\tilde{H}(X) = \bigoplus_{i=-\delta}^{\delta} H^{d+2i}(X)(i)$$

and assume it is pure. For example, when X is a surface take

$$H^0(X)(-1) \oplus H^2(X) \oplus H^4(X)(1).$$

The transform $\Phi^P : D(X) \rightarrow D(Y)$ yields $\Phi_{\tilde{H}}^P : \tilde{H}(X) \xrightarrow{\sim} \tilde{H}(Y)$ with the same formula.

Corollary 2 (Huybrechts) *Let X and Y be K3 surfaces over \mathbb{F}_q with $D(X) \simeq D(Y)$. Then $\#X(\mathbb{F}_q) = \#Y(\mathbb{F}_q)$.*

Two more results

1. If X is a K3 surface over $k = \bar{k}$ then X has only finitely many FM-partners.
2. If X is supersingular and $D(X) \simeq D(Y)$ then $X \simeq Y$.

Katrina Honigs obtained analogous statements for abelian varieties over finite fields.