

Integral Tate conjecture for cubic fourfolds

Alena Pirutka

March 26, 2015

Let \mathbb{F} be a finite field of characteristic p and ℓ a prime distinct from p .
Let $\bar{\mathbb{F}}$ be an algebraic closure with $G = \text{Gal}(\bar{\mathbb{F}}/\mathbb{F})$.

For X smooth and projective over \mathbb{F} , let

$$c_\ell^i: \text{CH}^i(X) \otimes \mathbb{Z}_\ell \rightarrow H_{\text{ét}}^{2i}(X, \mathbb{Z}_\ell(i))$$

be the cycle class map. Passing to algebraic closures we get maps:

$$\bar{c}_\ell^i: \text{CH}^i(\bar{X}) \otimes \mathbb{Z}_\ell \rightarrow \bigcup_{H \subset G \text{ open}} H_{\text{ét}}^{2i}(\bar{X}, \mathbb{Z}_\ell(i))^H.$$

Remark 1 If X/\mathbb{C} smooth projective then we get maps

$$c^i: \text{CH}^i(X) \rightarrow \text{Hdg}^{2i}(X, \mathbb{Z}).$$

Facts:

1. $i = 1$: The Kummer sequence gives

$$\text{coker}(c_\ell^1) \hookrightarrow T_\ell \text{Br}(X),$$

where the right-hand-side has no torsion. Then the Tate conjecture implies the integral version.

2. If $i = \dim(X)$ then the Lang-Weil estimates give a zero-cycle of degree 1.
3. If $i = \dim(X) - 1$ then Schoen shows $\bar{c}_\ell^{\dim(X)-1}$ is surjective *provided* the Tate conjecture holds for divisors on surfaces.

We turn to $i = 2$: Here we have

$$\text{coker}(c_\ell^2) = H_{\text{nr}}^3(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2))/\text{max. div. subgroup}$$

here

$$H_{\text{nr}}^3(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2)) = \varinjlim H_{\text{nr}}^3(X, \mu_{\ell^n}^{\otimes 2}).$$

which is conjecturally finite.

Theorem 1 (Parimala-Suresh) *Let S be a smooth projective surface over \mathbb{F} and $X \rightarrow S$ a conic bundle. Then $H_{\text{nr}}^3(X, \mathbb{Q}_\ell/\mathbb{Z}_\ell(2)) = 0$ for all ℓ .*

Theorem 2 (Charles, P-) *Let $X \subset \mathbb{P}_{\mathbb{F}}^5$ be a smooth cubic with $p \geq 5$. Then \bar{c}_ℓ^2 is surjective.*

It remains open whether $H_{\text{nr}}^3(X)$ is nonzero.

1. Voisin established the integral Hodge conjecture in this case, over \mathbb{C} , via normal functions of Zucker.
2. method for Theorem 2: algebraic normal functions
3. (F. Charles): the Tate conjecture holds for X .

Idea: Given X/\mathbb{F} we consider the variety of lines F . Lift to characteristic zero, to get \mathcal{X} and \mathcal{F} , where the latter is holomorphic symplectic of type $K3^{[2]}$. Under some conditions, F , being a reduction of \mathcal{F} , satisfies the Tate conjecture. Using Beauville-Donagi results on the incidence correspondence, we deduce the conjecture for X .

Proof: (1) Take $\overline{X} \subset \mathbb{P}_{\mathbb{F}}^5$ and $\alpha \in H_{\text{ét}}^4(\overline{X}, \mathbb{Z}_\ell(2))^H$. Take a Lefschetz pencil

$$\begin{array}{ccccc} \overline{X} & \leftarrow & \text{Bl}_S \overline{X} & \supset & Y \\ & & \downarrow & & \downarrow \\ & & \mathbb{P}^1 & \supset & U \end{array}$$

where U is the smooth locus of the pencil and S is a cubic surface.

Lemma 1

- i. If $\alpha|Y = 0$ then $\alpha = 0$.

ii. One can assume up to replacing α by $\alpha + b[L \times \mathbb{P}^1]$ that $\alpha|Y_t = 0$ for all $t \in U$.

Consider the incidence correspondence

$$\begin{array}{ccc}
 \{(L, x), x \in L\} & & \\
 \parallel & & \\
 V & & \\
 & \swarrow^p & \searrow^q \\
 F & & Y \\
 & \downarrow^\psi & \downarrow^\pi \\
 & U &
 \end{array}$$

where F_t is the Fano variety of lines of Y_t . The Leray spectral sequence gives

$$H^1(U, \mathbb{R}^3\pi_*\mathbb{Z}_\ell(2)) \rightarrow H^4_{\text{ét}}(Y, \mathbb{Z}_\ell(2)) \rightarrow H^0(U, \mathbb{R}^4\pi_*\mathbb{Z}_\ell(2)).$$

As $\alpha|Y_t = 0$ for all $t \in U$, the element α comes from $\beta \in H^1(U, \mathbb{R}^3\pi_*\mathbb{Z}_\ell(2))$, where this first term maps to

$$H^1(U, \mathbb{R}^1\psi_*\mathbb{Z}_\ell(1)).$$

Let γ be the image of β . Set $\mathcal{J} = \text{Pic}^0 F/U$. Then the Kummer sequence gives

$$\mathcal{J}(U) \otimes \mathbb{Z}_\ell \xrightarrow{\eta} H^1(U, \mathbb{R}^1\psi_*\mathbb{Z}_\ell(1)) \rightarrow T_\ell H^1(U, \mathcal{J})$$

where the last term has no torsion. If $\alpha = \bar{c}_\ell^2 z$ for $z \in \text{CH}^2(\overline{X}) \otimes \mathbb{Z}_\ell$ then $z' = p_*q^*z \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell$.

Fact: If α is algebraic, $\eta(z')$ coincides with the image of α along the map $H^1(U, \mathbb{R}^3\pi_*\mathbb{Z}_\ell) \rightarrow H^1(U, \mathbb{R}^1\phi_*\mathbb{Z}_\ell(1))$.

Next, for α a cohomology class as before, the ordinary Tate conjecture implies there exists $N > 0$ such that $N\alpha$ is algebraic. Thus $N\gamma \in \text{Im}(\eta)$ and $\gamma \in \text{Im}(\eta)$.

Definition 1 An element $z' \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell$ such that $\eta(z') = \gamma$ is a normal function associated with α .

(2) (Markushevich-Tikhomirov-Druel) Consider the moduli space $\mathcal{M} \rightarrow U$ of semistable torsion-free rank-two sheaves on Y with $c_2 = 0, c_1 = 2[L]$, defined in this generality by Langer. Thus we have

$$\begin{array}{c} \mathcal{M} \\ \downarrow \\ \mathcal{J} \\ \downarrow \\ U \end{array}$$

such that for any $t \in U$, $\mathcal{M}_t \rightarrow \mathcal{J}_t$ induces a birational map from at least one component of \mathcal{M}_t to \mathcal{J}_t . By (1) we get $z' \in \mathcal{J}(U) \otimes \mathbb{Z}_\ell$. It is enough to assume $z' \in \mathcal{J}(U)$, i.e., a section of $\mathcal{J} \rightarrow U$.

Let $K = \overline{\mathbb{F}}(U)$ and regard $z'_K \in \mathcal{J}(K)$ which yields $y \in \mathcal{M}(K)$. Realize $\mathcal{M}_K = \text{Quot}/\text{GL}$ and let $C \subset \text{Quot}$ denote the unique closed orbit above y , i.e., a projective homogeneous space for the action of GL . Using a result of Springer gives the rational point, i.e., $C(K) \neq \emptyset$, whence a rank two sheaf \mathcal{F} on Y , because the cohomological dimension of $\overline{\mathbb{F}}(t)$ is 1. The class

$$c_2(\mathcal{F}) - 2[L \times \mathbb{P}^1]$$

is the desired cycle of class $\alpha|Y$.

Counterexamples

1) Atiyah-Hirzebruch, Totaro, P-, Yagita: There exists $\alpha \in \bigcup_H H^4(\bar{X}, \mathbb{Z}_\ell(2))^H$ such that α is not algebraic but $\ell\alpha = 0$. Even modulo torsion it is possible to get examples. The method involves analyzing cycles on classifying spaces via approximations by quotients of linear spaces by algebraic groups.

2) Over \mathbb{C} : Kollar: $X_d \subset \mathbb{P}_d^4$ hypersurface with d sufficiently divisible (by ℓ). Then any curve class is proportional to ℓ , thus the class of 1 is not represented by algebraic cycles. This should not be possible over $\overline{\mathbb{F}}$ by Schoen's Theorem, however.

3) The map

$$\text{CH}^2(X) \otimes \mathbb{Z}_\ell \rightarrow \text{CH}^2(\bar{X})^G \otimes \mathbb{Z}_\ell$$

need not be surjective.