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1 Introduction

It has been known since the 19th century that if X is a cubic threefold over a
field K of characteristic zero and X ⊗ K has just d isolated singularities, then
d ≤ 10. Coray [C] has shown that if d is prime to 3, then X(K) is non–empty,
while Colliot–Thélène and Salberger [CT–Sal] have shown that if d = 3 and K
is a number field then X satisfies the Hasse principle. More recently Coray et
al. [C–L–SB–SD] have proved the Hasse principle if d = 6. This paper fills
the gap, as far as singular cubic threefolds are concerned, by showing that if
d = 9, then (Theorem 4.5 below) the only obstruction to the Hasse principle is
the Brauer–Manin obstruction described in [CT–San2]. We do this by descent.
More precisely, we show first that, provided that X has points everywhere locally,
universal torsors over the smooth locus X0 of X exist, that they are K–birational
to cones over certain singular cubic 7–folds and that all of them satisfy the Hasse
principle.

We also prove (Theorem 7.5) that on 10–nodal cubic threefolds the only
obstruction to weak approximation is the Brauer–Manin one, and prove a partial
such result (Proposition 5.2) in the 9–nodal case.

As mentioned, the proofs depend on the consideration of various torsors,
under tori. What often makes various such torsors computable is that the base
variety is given by particularly simple (for example, linear) equations inside some
torus embedding, or rather an equivariant compactification of some torsor under
a torus. 9–nodal cubic threefolds follow this pattern: they turn out to be hyper-
plane sections of some Galois twist of the Perazzo cubic 4–fold P , defined in P5

by x1x2x3 = y1y2y3. However, 10–nodal cubic 3–folds X are different. They are
not, apparently, usefully embeddable in a toric variety, and yet universal torsors
over X0 are simple; they are birational to cones over the Grassmannian G(2, 6).

I am grateful to Professors Browning, Colliot–Thélène, Coray, Lewis, Sko-
robogatov and Swinnerton–Dyer for their valuable conversation, correspondence
and encouragement. It is also a pleasure to acknowledge the overwhelming influ-
ence of Professor Manin on this area of mathematics.
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2 Universal torsors over the smooth locus of a
Perazzo cubic

The object that renders 9–nodal cubic threefolds tractable is the Perazzo cubic
fourfold P [S–R]. This is given by the equation x1x2x3 = y1y2y3. It contains nine
3–planes Lij, given by xi = yj = 0. The complement P 0 = P − ∪Lij is a torsor
under a trivial 4-dimensional torus T , so P is, by abuse of language, a torus
embedding. This makes it easy to compute universal torsors over it and those
of its twists that are also torus embeddings (i.e., those that have K–points); we
shall do this explicitly in the next section.

Note that the nine 3–planes Lij are conjugate under the wreath product
Γ = S3 oS2; this is the subgroup of the symmetric group S6 generated by S3×S3

and the involution ι of S3 × S3 that switches the two factors. The first factor
S3 permutes the xi, the second permutes the yi and ι switches xi with yi. The
singular locus Sing(P ) consists of nine lines lpq, where lpq is given by xi = yj = 0
for i 6= p, j 6= q. The six points w1 = (1, 0, . . . , 0), . . . , w6 = (0, . . . , 0, 1) are Γ-
conjugate; note that under the subgroup S3 × S3 of Γ of index two they fall into
two orbits. Because the complement T of the 3–planes is a 4–dimensional torus
and the embedding T ↪→ P is T–invariant, the class group PicP 0 = Cl(P ⊗K)
is torsion–free of rank 9 − dimS = 5; it is generated by the classes Lij, subject
to the relations of the form

0 = (x1/y2) = L11 + L13 − L22 − L32.

Lemma 2.1 The automorphism group scheme G = Aut(P,O(1)) over Q is a
split extension of Γ by T .

PROOF: The six points wi are distinguished as those points where two or more
of the lpq meet. So the connected component Aut0(P,O(1)) preserves each of
them, and so preserves the 3–planes Lij. Now the result is obvious, with T being
the complement in P of ∪Lij.

More generally, we define a Perazzo cubic fourfold to be a cubic 4–fold Y
that is a GalK–twist of P . Its smooth locus will be denoted by Y 0.

Proposition 2.2 Every Perazzo cubic Y satisfies the Hasse principle.

PROOF: Quadratic base extensions are harmless, so that we can assume that
the 6 distinguished points fall into two Galois orbits of three points each. Since it
is known [CT–Sal] that cubics with 3 conjugate nodes satisfy the Hasse principle,
we are done.

Definition 2.3 A double–three is a configuration of six 2–planes Li,Mj in P8,
where i, j = 1, 2, 3, such that ∪Li and ∪Mj each span P8 and each intersection
Li ∩ (∪Mj) and Mj ∩ (∪Li) consists of three non–collinear points.
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Note that any double–three has a unique decomposition into the union of
two threes, where the 2–planes in each three are mutually disjoint.

Proposition 2.4 Suppose that Y is a Perazzo cubic with a K–point.
(1) There exist universal torsors over Y 0.
(2) Every such universal torsor is K–birational to A9

K .
(3) The corresponding rational map A9

K− → Y factors through the stan-
dard projection A9− → P8

K .
(4) The rational map P8

K− → Y ↪→ P5 is given by a linear system of cubics
passing doubly through a double–three.

PROOF: We know that Y 0 is a torus embedding S1 ↪→ Y 0, where S1 is the
complement of nine 3–planes in Y and a torsor under the torus S = Aut0(Y ), and
that K[Y 0]∗ = K

∗. Hence universal torsors over Y 0 exist and can be constructed
according to the procedure described in [CT–San1]. That is, there is an exact
sequence

1→ S0 →M → S → 1

of tori, where Ŝ0
∼= Pic(Y 0) as GalK–modules and M̂ is the free module spanned

by the classes of the 3–planes. The coboundary map S(K) → H1(K,S0) is
surjective and the universal torsors over Y 0 form a torsor under this H1, so any
universal torsor T → Y 0 has the property that T |S → S is the pull–back of
α : M → S via the translation φx by −x, for some x ∈ S(K).

It therefore remains to describe the map M → S. We first do this in the
untwisted case, where Y = P and S = T .

The group Pic(P 0) is generated by the planes Lij subject to the relations∑
q Liq −

∑
p Lpj = (xi/yj) ∼ 0. Introduce nine new variables zij; then there is a

morphism π : A9
K = SpecK[{zij}] → P defined by xi =

∏
q ziq and yj =

∏
p zpj.

Identify M with the open subset of A9 given by
∏
zij 6= 0; then π restricts to α.

Consider the variables zij as the entries of a 3× 3 matrix. Then there are
six triples of variables zab, zcd, zef such that no two of any triple lie in the same
row or the same column. For each such triple, let Lab,cd,ef be the 2–plane defined
by the vanishing of the other variables. Then every cubic in the linear system
defining P8− → Y is double along each Lab,cd,ef ; it is clear that these 2–planes
form a double–three, with L11,22,33, L23,12,31 and L21,32,13 forming one three.

For the general case, note that S is the twist of T by some cocycle (in fact,
homomorphism) GalK → Γ. The action of Γ on T lifts to a π–equivariant linear
action on A9; taking the twists gives the results.

3 Geometry

In this section we investigate the basic geometry of 9–nodal cubic threefolds.
Some of this material can also be found in [C–T–Z].
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We letK denote a perfect field of characteristic zero, K an algebraic closure
of K and X a cubic threefold over K whose singular locus SingX consists of
exactly nine K-points. We also assume that every Galois–conjugate subset of
SingX has at least 2 members, for else X is K-rational and there is nothing
more to be said. The smooth locus of X will be denoted by X0.

Lemma 3.1 (1) Every singularity of X is an ordinary node.
(2) X contains just nine 2–planes.
(3) The 2–planes in X and the points of SingX form a (9, 4)-configuration

G which is the 1–skeleton of the cell decomposition of the 2–torus formed as the
product of two triangles.

(4) The symmetry group of G is Γ.

PROOF: For (1), we can assume that K = C.
Since cubic surfaces have at most 4 isolated singularities, X is not a cone

and so, by I, Theorem 1.7 of [Z], the dual variety X∨ of X is a hypersurface.
Moreover,

degX∨ = 3.23 −
∑

v∈Sing(X)

m(v),

where the class m(v) of the singularity (X, v) has the property that m(v) ≥ 2
and m(v) = 2 if and only if v is an ordinary node. Precisely, m(v) = µ(v)+µ′(v),
where µ is the Milnor number of an isolated hypersurface singularity (X, v) and
µ′ is the Milnor number of a general hyperplane section [T]. If (X, v) is defined
locally analytically (or formally) in Cn by f(x1, . . . , xn) = 0, then

µ(v) = dimCOCn/(∂f/∂x1, . . . , ∂f/∂xn).

If µ(v′) ≥ 2 for some v then m(v) ≥ 4 for at least two points v, so that

degX∨ ≤ 24− 7× 2− 2× 4 = 2.

But degX∨ ≥ 3, by the biduality theorem, so that µ(v′) = 1 for all v; this means
that every v′ is simple, of type A1, and v is simple of type A.

Say that X has nr points of type Ar, so that
∑
nr = 9. Note that m(Ar) =

r + 1, so that
3 ≤ 24−

∑
r≥1

nr(r + 1) = 6−
∑
r≥2

(r − 1)nr.

This gives nr = 0 for all r ≥ 5 and n2 + 2n3 + 3n4 ≤ 3, so that n1 ≥ 6.
Choose an A1-point P . Projecting from P identifies BlP X with BlC P3,

where C is a reduced curve of bidegree (3, 3) on a smooth quadric with n1 − 1

points of type A1 and nr of type nr for all r ≥ 2. Suppose that C̃ = tC̃j → C is
the normalization; then∑

χ(OC̃j
) = χ(OC) + (n1 − 1).1 + n2.1 + n3.2 + n4.2 = 5 + n3 + n4.
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So, if n3+n4 > 0, then C is the transverse union of six lines, and then n3 = n4 = 0,
contradiction. Therefore n3 = n4 = 0, so that C =

∑5
1Cj where C5 is a conic

and the other components are lines. Then also n2 = 0 and (1) is proved.

Remark: If there is a tenth singular point, then it is known classically that X
is a form of the Segre cubic.

For (2), note that the description of the curve C in the proof of (1) shows
that there are exactly four 2–planes on X through each node. Each plane in X
contains 4 nodes of X, so that there are just 9 planes in X.

(3): From the description of C it also follows that through each node of X
there are 4 lines in X that pass through a further node and every such line is the
intersection of a unique pair of 2–planes in X. Each of the 4 nodes in a 2–plane
L lies on two lines of the form L∩M , since each line in C meets two others. This
proves (3).

(4): it is clear that the symmetry group of G is isomorphic to S3 ∼ S2.

Remark: We can also view G as a graph whose vertices are the planes in X and
whose edges are the pairs of planes that meet in a point.

Proposition 3.2 Any 9–nodal cubic 3–fold X over K is K–isomorphic to a
hyperplane section of some Perazzo 4–fold.

PROOF: Assume first K = K. By 3.1 there are nine 2–planes in X; denote them
by Lij, where i, j ∈ Z/3 and Lij meets Li±1,j and Li,j±1, each in a line. So for all
i and j,

∑
i Lij and

∑
j Lij are hyperplane sections. Say

∑
j Lij = (xi = 0) and∑

i Lij = (yj = 0). Then
∑

ij Lij is the complete intersection
∏
xi =

∏
yj = 0,

so that X is a member of the pencil |3H −
∑

ij Lij|. Hence the equation of X is
α
∏
xi = β

∏
yj, as required.

Next, we check (still assumingK = K) that ifX,X ′ are isomorphic sections
of P , then there is an automorphism of P taking X to X ′.

There exists σ ∈ PGL6 such that σ(X) = X ′. Put P ′ = σ(P ); then there
is a hyperplane H such that P.H = P ′.H, and it is enough to find τ ∈ PGL6

such that τ(P ) = P ′ and τ |H = 1. Put G = {τ ∈ PGL6|τ |H = 1}; then G acts
transitively on P5 −H.

Both P and P ′ contain nine 3–planes Mij,M
′
ij, respectively; we can take

them to be ordered so that Mij.H = M ′
ij.H for all i, j. Suppose that P , resp. P ′,

is given by F = 0, resp. F ′ = 0, where F = x1x2x3 − y1y2y3; then we can take
Mij to be given by xi = yj = 0. Put v = (1, 0, 0, 0, 0, 0), so that v = ∩i 6=1Lij. So,
after applying a suitable τ ∈ G, we have ∩i 6=1Lij = ∩i 6=1L

′
ij. Since Lij.H = L′ij.H,

we now have Lij = L′ij for all i 6= 1. So F ′ ∈ ∩i 6=1(xi, yj) = (x2x3, y1y2y3); the
equality of these two ideals is verified by noting that both define subschemes
of codimension 2 and degree 6 and that obviously (x2x3, y1y2y3) ⊆ ∩i 6=1(xi, yj).
Hence F ′ = lx2x3 + αy1y2y3, where α ∈ K and l is linear. Say that H is defined
by m = 0; it is then easy to see, since X is irreducible, that, after rescaling,
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m = l − x1 and F ′ = (x1 +m)x2x3 − y1y2y3. Then τ ∈ GL6 given by

x1 7→ x1 +m,xi 7→ xi for i 6= 1, yj 7→ yj

has the required effect.
Now drop the assumption that K = K. There is an embedding φ : XK ↪→

PK with the property that for all σ ∈ GalK , there exists ψσ ∈ AutP (K) such
that φσ = ψσ ◦ φ. Then ψστφ = (ψσ)τψτφ for σ, τ ∈ GalK .

Write ω = ψ−1στ (ψσ)τψτ . So ωφ = φ. That is, ω is an automorphism of PK
that acts trivially on the hyperplane H cutting out XK .

We want to show that any such ω is the identity. For this, we can assume
once more that K = K and that ω 6= 1. After moving H by an element of S
we can suppose also that (1, . . . , 1) ∈ H. Then ω ∈ Γ0, where Γ0 ⊆ AutP is
a copy of Γ that splits the surjection AutP → Γ. Since ω is trivial on H, it
is conjugate to (s, 1) ∈ S3 × S3 ⊆ Γ0, where s is a transposition; we can take
s = (12). Then H is given by x1 = x2, which contradicts the fact that P.H has
isolated singularities. So ω = 1 and (ψσ) ∈ Z1(GalK ,AutP (K)). It is now easy
to see that X embeds into the twist of P by (ψσ).

Now suppose that X is a hyperplane section of Y and that SingX = X ∩
Sing Y . So X is a 9–nodal cubic threefold. Let X̃ → X the blow–up of the
nodes. It is then easy to see that the Betti numbers of X̃ are determined by
e(X̃) = −6 + 9.4 = 30 and b3 = 0, so that rank Cl(X ⊗K) = 5.

Lemma 3.3 (1) The natural map Cl(YK)→ Cl(XK) is a GalK–isomorphism.
(2) Cl(XK) is generated by the classes Lij subject to the relations Ri−Cj =

0, where Ri =
∑

i Lij and Cj =
∑

j Lij.

PROOF: We check first that the 2–planes on X generate Cl(X).
Fix a node P on X; then, as before, BlP X is identified with BlC P3 and

we see that Cl(BlP X) is generated by L1, . . . , L4, Q,H, where Li is the strict
transform of a plane that projects to a line Ci in C, Q the strict transform of
a quadric cone projecting to the conic C5 in C and H is the pull–back of the
hyperplane class on P3.

Let H1 be the hyperplane class on X. Then H1−E ∼ H in Cl(BlP X) and
there are 2–planes L′, L′′ on X such that H1 ∼ L1 +L3 +L′ and H1 ∼ Q+L′′ in
Cl(X). Since Cl(X) ∼= Cl(BlP X)/Z.[E], we get relations H ∼ H1 ∼ L1 +L3 +L′

and Q ∼ H1−L′′ in Cl(X), and the planes onX do generate Cl(X). The relations
Ri = Cj follow from the observation that Ri ∼ H1 ∼ Cj.

In Y , the 3–planes form the boundary Y − U , as described above, and
so generate Cl(Y ). Hence Cl(Y ) → Cl(X) is surjective. Since both groups
have rank 5, it is enough to prove that Cl(X) is torsion–free. Since X has
isolated hypersurface singularities and is 3–dimensional, π1(X0) → π1(X) is an
isomorphism. Since π1(X) = 1, we are done.
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Lemma 3.4 The image W of GalK on Cl(XK) equals its image in Γ.

PROOF: This is a consequence of the fact, which has already been remarked,
that the nine 2–planes in X generate Cl(XK).

4 The Hasse principle
Now suppose that K is a number field and that X is a 9–nodal cubic threefold
over K. We know that X is a hyperplane section of some Perazzo cubic 4-fold Y
over K.

Lemma 4.1 Suppose that T → Y 0 is a universal torsor. Then so is T ×Y 0X0 →
X0. Moreover, every universal torsor on X0 arises in this way.

PROOF: Let S0 denote the torus whose character group Ŝ0 is Pic(Y 0). There is
a commutative diagram (cf. [CT–San2])

0 // H1(K,S0) //

=

��

H1(Y 0, S0)
χ //

��

HomGalK (Ŝ0,PicY 0)

∼=
��

0 // H1(K,S0) // H1(X0, S0)
χ // HomGalK (Ŝ0,PicX0).

By definition, a torsor under S0 is universal if the image of its class under χ is
the identity, and now the result is immediate.

Now assume that X has Kv–points for all places v of K. That is, X(AK)
is not empty, where AK is the ring of adèles of K.

Proposition 4.2 There is a universal torsor over X0.

PROOF: We know that X is a section of Y ; since Y satisfies the Hasse principle
it has a K–point, and so there is a universal torsor over Y 0. Now use Lemma
4.1.

Proposition 4.3 Every universal torsor over X0 is K–birational to the cone
over a cubic 7–fold that is singular along a double–three.

PROOF: Immediate from Proposition 2.4.

Proposition 4.4 The universal torsors T over X0 satisfy the Hasse principle.

PROOF: Say that T is K–birational to the cone over the cubic 7–fold Z. Since
quadratic extensions are harmless, we can suppose that the given double–three
along which Z is singular splits into two threes. Then Z has three conjugate
singular points, and so [CT–Sal] satisfies the Hasse principle.

For any K-variety V , there is a pairing

Br(V )×
∏

V (AK)→ Q/Z
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given by
(A, (Pv)) 7→

∑
v

invv(A(Pv)).

We denote by V (AK)Br the subset of V (AK) that is the kernel of this pairing.
The set V (K) lies naturally in V (AK)Br. If the non-emptiness of V (AK)Br implies
that of V (K) then we say that “the only obstruction to the Hasse principle on V
is the Brauer–Manin obstruction”.

Theorem 4.5 The Brauer–Manin obstruction to the Hasse principle on X is
the only one.

PROOF: By definition [CT–San2], the Brauer–Manin obstruction to the exis-
tence of a K–point on X (equivalently, since X is a cubic, on X0) is the existence,
for all (xv) ∈ X0(AK), of an element A of Br(X0) such that

∑
v invv(A) 6= 0. As-

sume that this obstruction vanishes; then the proof of Théorème 3.8.1 of loc. cit.
shows that there is a universal torsor over X0 with a point everywhere locally.
By Proposition 4.4, we are done.

Colliot–Thélène points out that the following variant of Th. 3.8.1 of loc.
cit. is valid, where X̃ denotes a smooth compactification of X0 (for example, the
blow–up of the nodes of X).

Lemma 4.6 Suppose that Z is a projective variety over K with only nodes and
that dimZ ≥ 2. Denote by Z0 its smooth locus and Z̃ → Z the blow–up of the
nodes. Then the natural map Br(Z̃)→ Br(Z0) is an isomorphism.

PROOF: We first prove this when K = K.
Brauer groups are torsion, so it is enough to prove this for the n–torsion

subgroups. The Kummer sequence shows that then it is enough to prove the
surjectivity of H2(Z̃, µn)→ H2(Z0, µn). Let E =

∑
Ei be the exceptional locus

in Z̃ and j : Z0 → Z̃ the inclusion. Then the purity theorem shows that j∗µn =
(µn)Z̃ , R

1j∗µn is locally isomorphic to (µn)E and that Rqj∗µn = 0 for q ≥ 2.
Since each Ei is simply connected, it follows that H1(Z̃, R1j∗µn) = 0. Now the
Leray spectral sequence Epq

2 = Hp(Z̃, Rqj∗µn)⇒ Hp+q(Z0, µn) gives the result.
The general case then follows from the facts that Br(V )/Br(K) is natu-

rally isomorphic to H1(GalK ,Pic(VK)) and that the homomorphism Br(Z̃K) →
Br(Z0

K
) is GalK–equivariant.

Proposition 4.7 (Colliot-Thélène.) If there is no Brauer–Manin obstruction
using Br(X̃) to the existence of a K–point on X, then there is none using Br(X0).

PROOF: Choose a finite set A1, . . . ,An of representatives of the elements of the
finite group Br(X0)/Br(K). Over an open subscheme Spec(O) of the spectrum
of the ring of integers of K, the variety X0/K has a model X 0/O such that
X 0(Ov) 6= ∅ for each v ∈ Spec(O), and such that each Ai extends to an element
of Br(X 0). Using Harari’s “formal lemma” (Lemme 2.6.1 of [H], but see also p.
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225 of [CT–San2]) and the hypothesis that there is no Brauer-Manin obstruction
on X̃, we find a finite set S of places, which we may assume contains all places
not in Spec(O), and local points Mv ∈ X0(Kv) for v ∈ S, such that∑

v∈S

invv(Ai(Mv)) = 0

for each i = 1, . . . , n.
Now pick any set of integral points Mv ∈ X 0(Ov) for v /∈ S. Then for each

i ∈ {1, · · · , n}, the sum
∑

v invv(Ai(Mv)) vanishes (the sum is over all places of
K), thus completing the proof.

5 Weak approximation
Recall that a variety V over K satisfies weak approximation (WA) if for every
finite set S of places of K, V (K) is dense in

∏
v∈S V (Kv). If V is complete, this

is equivalent to V (K) being dense in V (AK). Moreover, we say that the Brauer–
Manin obstruction to WA on V is the only one if V (K) is dense in V (AK)Br.
This is equivalent to the density of V (K) in the image of V (AK)Br under every
projection V (AK)→

∏
v∈S V (Kv), for every finite set S.

Now assume that X and K are as in Section 4.

Lemma 5.1 X0(AK)Br is dense in X(AK)Br.

PROOF: This is Corollary 1.2 of [CT–Sk].

Proposition 5.2 Assume that W lies in the index 2 subgroup S3 × S3 of Γ.
Then the only obstruction to weak approximation on X is the Brauer–Manin one.

PROOF: Take a point (Pv) ∈ X(AK)Br. By the lemma, we can approximate
(Pv) by (Mv) ∈ X0(AK)Br. By the version of descent given in Proposition 1.3 of
[CT–Sk], there is a universal torsor π : T → X0 such that (Mv) lifts to a point
(M̃v) ∈ T (AK). We know that T is K–birational to the cone over a cubic 7–fold
Z, and that Z is singular along a double–three. The hypothesis on the Galois
group means that the double–three splits into two threes, so that Z has three
conjugate singularities. Since this gives WA for Z, by [CT–Sal], T then satisfies
WA, so that there exists t ∈ T (K) close to (M̃v). Then x := π(t) ∈ X0(K) is
close to (Mv), and then x is close to (Pv).

6 Computing the Brauer group and obstructions

Suppose that X is a 9–nodal cubic 3–fold over K and X̃ its blow-up at the nodes.
Put Pic(X0 ⊗K) = P . Then, by Lemma 4.6 and the Hochschild–Serre spectral
sequence, Br(X0)/Br(K) is isomorphic to H1(GalK , P ) = H1(W,P ).
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Proposition 6.1 Br(X0)/Br(K) is either trivial or of order 3.

PROOF: Pick a general projection π : X → P1
K , so that the generic fibre Xη is

a smooth cubic surface and all geometric fibres are irreducible. Put K(P1) = L.
The main result of [SD1] is that Br(Xη)/Br(L) is a subgroup of either (Z/2Z)2

or (Z/3Z)2.
We show first that the natural homomorphism

φ : Br(X0)/Br(K)→ Br(Xη)/Br(L)

is injective. For this, suppose that α ∈ Br(X0) restricts to π∗β in Br(Xη). For
any closed point M of P1

K , the image of α under the residue map ∂π−1(M) :
Br(K(X)) → H1(K(π−1(M)),Q/Z) is zero. Since K(M) is algebraically closed
in K(π−1(M)), it follows that ∂M(β) = 0, so that β ∈ Br(P1

K) = Br(K). So φ is
injective.

Suppose next that there is 2–torsion in Br(X0)/Br(K). Then the same
is true after any base extension of odd degree, so that we can assume that
X has a K–rational node. Then X is K-rational, so that, by Lemma 4.6,
Br(X0)/Br(K) = 0, contradiction. So Br(X0)/Br(K) has odd order.

Since Γ ∼= S3 oS2, we can assume thatW is non-trivial and lies in the unique
Sylow 3-subgroup of Γ, which is A3×A3. So, up to Γ–conjugacy, there are three
possibilities for W : A3 × 1; the diagonal copy ∆ of A3 in A3 ×A3; and A3 ×A3.

Recall that P is generated by the Lij subject to the relations Ri − Cj = 0.
We consider the three possibilities separately.

(1) W = A3 × 1. Put P1 = ⊕j 6=3Z.Lij. This is a permutation W–module and
there is a short exact sequence

0→ Z.(C1 − C2)→ P1 → P → 0.

Since H2(W,Z) ∼= Z/3Z and H i(W,P1) = 0 for i = 1, 2, it follows that
H1(W,P ) is isomorphic to Z/3Z.

(2) W = ∆. Put T = s − 1, where s = ((123), (123)) is a generator of ∆,
and N =

∑
si. So, for any W–module B, H1(W,B) ∼= kerNB/ imTB ∼=

Tors(cokerTB). Let F denote the free Z-module on the Lij, so that there
is a short exact sequence

0→ Q→ F → P → 0

of W -modules, which defines the submodule Q of F . Inspection shows
that for i 6= j Lii − Ljj = ±T (Lii) or ±T (Ljj) and Lik − Lkj = ±T (Lik) or
±T (Lkj). HenceQ ⊆ im(TF ), so that cokerTP ∼= F/(Q+imTF ) ∼= cokerTF .
Since H1(W,F ) vanishes, so does H1(W,P ).
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(3) W = A3 × A3. By Lemma 5 of [SD1] Br(Xη)/Br(L) is then of order at
most 3, so the same is true of Br(X0)/Br(K).

Proposition 6.2 Suppose that W ⊆ A3×A3. Then Br(X0)/Br(K) ∼= Z/3Z if
W is Γ–conjugate to either A3×A3 or A3×1, and is trivial otherwise. Moreover,
when Br(X0)/Br(K) is non–trivial and K contains a cube root of unity, there is
an explicit description (given in the course of the proof) of a non–trivial element.

PROOF: We use the results and notation of [SD2], especially Lemma 2 of loc.
cit.

Assume that Br(X0)/Br(K) is non–trivial. There is a cubic extension
K1/K over which the divisors L11, L22, L33 are defined. The image W ′ of GalK1

in Γ is of order 3 and is generated by σ = ((123), 1). Choose a hyperplane section
H defined over K and put D =

∑
Lii − H. Then

∑
j σ

j(D) is principal; say∑
σj(D) = (f), with f ∈ K(X). Then, according to loc. cit., there is a non–

trivial element A of Br(X0) such that, for every adelic point (Pv) on X0, with
no Pv in the support of (f),

∑
v invv(A(Pv)) =

∑
v(f(Pv), K1/K)v, where the

summands on the right are the norm residue symbols.

7 An aside: weak approximation for 10 nodes
Coray has shown [C] that a 10-nodal cubic threefold X has K-points. We show
here that also weak approximation holds.

We start by recalling a construction from [D–O]. There the ground field is
C, but this part of loc. cit. is valid over any field K, or even over Z.

Regard T = G6
m,K as the group of 6 × 6 diagonal matrices acting in the

obvious way on the 6–dimensional K–vector space V . Let U be the standard
2–dimensional representation of SL2 over K. Then G = (SL2 × T )/µ2 acts on
the space M = U ⊗ V ∼= A12 of 2× 6 matrices, where µ2 is embedded diagonally.
Regard SL2 as acting on the left and T on the right. Let M0 be the locus of
matrices of rank 2; then SL2 acts freely on M0 and there is a geometric quotient
SL2\M0 isomorphic to the punctured cone G̃r over the Grassmannian Gr(2, V )
in its Plücker embedding. If M00 is the locus of matrices where no column is
zero and no 3 columns are proportional, then G acts freely on M00. There is a
geometric quotient M00/G, which is isomorphic to the smooth locus Σ0 of the
Segre cubic 3-fold Σ given by

∑6
1 x

3
i =

∑6
1 xi = 0. We can identify Σ0 = M00/G

with (SL2\M00)/S, where S = T/µ2 with µ2 embedded in the diagonal copy of
Gm in T . It follows that the S-torsor G̃r → Σ0 is a universal torsor over Σ0.
The basic geometry of Σ is described in [S–R], p.169. It is the image of P3 under
the rational map defined by the linear system of quadrics that pass through five
given points in general position. It has 10 nodes and 15 planes, all defined over
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Q, and over Q it is the unique 10-nodal cubic threefold. That is, every 10-nodal
cubic threefold X over K is a twist of Σ.
Lemma 7.1

(1) Aut(Σ) = Aut(Σ⊗ Q̄) ∼= S6.
(2) Every 1-cocycle GalQ → Aut(Σ) is a homomorphism.
(3) Every 10-nodal cubic threefold X over K is the twist of Σ by a homo-

morphism GalK → S6.
(4) Given such an X over K, there is a separable sextic K-algebra L such

that X is defined in P(L) by the equation Tr(z) = Tr(z3) = 0.
PROOF: (1) The projective dual of Σ ⊗ Q is a quartic threefold T that is the
Satake compactification of the moduli space of principally polarized Abelian sur-
faces with level 2 structure. The Satake boundary is Sing T , which is a (153, 153)
configuration of points and lines. The automorphism group of this is clearly
Sp4(F2) ∼= S6, so that there is a homomorphism f : Aut(Σ⊗Q) → S6. Restrict
f to the copy of S6 in Aut(Σ) ⊆ Aut(Σ⊗Q); this is clearly an isomorphism, so
that f is split. Since the lines in Sing T are the images of the planes in Σ, any
s ∈ ker f preserves every plane in Σ. Since each node of Σ is (in many ways) the
intersection of two of these planes, s fixes every node. It is then clear that s = 1.

(2) This follows at once from Lemma 2.1 and the definition of a 1-cocycle.
(3) and (4) are now immediate.
Now suppose that X/K is a 10–nodal cubic 3–fold with smooth locus X0.

We have just seen that X is K–isomorphic to a twist Σρ of Σ by a homomorphism
ρ : GalK → S6. Then the construction above can be twisted to show that X0 is
the geometric quotient M00

ρ /Gρ.
Proposition 7.2 There is a universal torsor T0 over X0 whose total space is
isomorphic to G̃r.
PROOF: The morphism G̃r → Σ0 can be twisted by ρ. The twist of Gr by ρ is
Gr(2, Vρ), which is isomorphic to Gr, by Hilbert’s Theorem 90. It is also possible
to twist the action of the torus S on G̃r by ρ, and we are done, since G̃r has
trivial Picard group.

Corollary 7.3 Every universal torsor T over X0 is K-birational to a line bundle
over a twist of Gr.
PROOF: Given T0, the other universal torsors overX0 are classified byH1(K,S).
Since S acts by right multiplication on Gr and the Plücker line bundle O(1) over
Gr is S-linearized, the result follows.

Corollary 7.4 Both the Hasse principle and weak approximation hold for every
universal torsor T over X0.
PROOF: Every twist V of Gr is homogeneous under its automorphism group,
and the point stabilizers are connected. Hence the Hasse principle and weak
approximation hold for V , and then for line bundles over it.
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Theorem 7.5 The only obstruction to weak approximation on X is the Brauer–
Manin one.

PROOF: Exactly as for the class of 9–nodal cubics that we handled earlier, in
5.2.
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