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ABSTRACT. Ind-varieties of generalized flags have been studied for two decades. How-
ever, a precise statement of when two such ind-varieties, one or both being possibly
ind-varieties of isotropic generalized flags, are isomorphic, has been missing in the liter-
ature. Using some recent results on the automorphism groups of ind-varieties of gener-
alized flags, we establish a criterion for the existence of an isomorphism as above. Our
result claims that, with only two exceptions, isomorphisms of ind-varieties of general-
ized flags are induced by isomorphisms of respective generalized flags. The exceptional
isomorphisms correlate with a well-known result of A. Onishchik from 1963.

1. INTRODUCTION

If X and Y are two finite-dimensional flag varieties, possibly one or both being finite-
dimensional varieties of isotropic flags, the problem of whether X and Y are isomorphic
is easily solvable. One can approach it in different ways, one of which is to look at the
automorphism groups of X and Y. This yields an elegant proof of the following theorem,
for whose statement we need to introduce some notation. If X = Fl(ay,...,a; V) is the
variety of flags with dimension sequence (ay,...,a;,a;1; = dim V') in a finite-dimensional
vector space V with dim V' > 2, we say that X is of general type. If X = F1O0(ay,...,a;,V)
is a connected variety of isotropic flags with dimension sequence (ay, ..., a;, a;+1 = dim V)
in an orthogonal space V with dim V' > 5, we say that X is of orthogonal type. If X =
FlS(ay,...,a;,V) is a (automatically connected) variety of isotropic flags with dimension
sequence (ay,...,a;, a;1; = dim V) in a symplectic space V' with dim V' > 6, we say that
X is of symplectic type.

Theorem 1.1. Let X and Y be two flag varieties of the same type as above. Then
X and Y are isomorphic if and only if their dimension sequences coincide, or both X
and Y are of general type and their respective dimension sequences (ai, ..., a;, a;v1) and
(b1, ...,b;,bj41) satisfy i =j, aiy1 = biy1, and ay = a;41 — by, for ke {1,...,i}.
If X and Y are of different types, then the only possible isomorphisms are as follows:
e FI(1,C?") = FIS(1,C*");
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e F10(n — 1,C*" ') 2 F1O(n, C*").

This theorem can be considered a corollary of Onishchik’s result [5] claiming that the
connected component of unity of the automorphism group of a flag variety X, or a variety
of isotropic flags, is the centerless adjoint group corresponding to the variety, except when
X is isomorphic to FIS(1,C?") or FIO(n — 1,C?*~!). Indeed, since the algebraic groups
SL(n) for n > 2, SO(m) for m > 4, Sp(r) for even r > 4, are pairwise non-isomorphic,
Onishchik’s result reduces the problem to comparing two flag varieties of the same type
for the same vector space V. The proof of Theorem 1.1 gets then easily completed by
comparing the grassmannians, or isotropic grassmannians, to which our flag varieties
project.

In the present paper we prove an exact analogue of Theorem 1.1 for ind-varieties of,
possibly isotropic, generalized flags. These ind-varieties are homogeneous ind-spaces for
the groups GL(0c0), O(c0), Sp(co), and have been studied quite extensively in the last
twenty years [1, 2, 3, 7, 8]. Nevertheless, a precise statement of when two such ind-varieties
are isomorphic has been missing in the literature.

First, let us note that Theorem 1.1 does not imply directly any statement of isomor-
phism or non-isomorphism of ind-varieties of generalized flags, since two non-isomorphic
ind-varieties may admit exhaustions with pairwise isomorphic finite-dimensional varieties,
and conversely, an ind-variety may admit two exhaustions by pairwise non-isomorphic
finite-dimensional varieties. Next, we recall that the automorphism groups of ind-varieties
of, possibly isotropic, generalized flags have been computed in [3]. However, since the
question of when two such groups are isomorphic as abstract groups has not yet been
addressed (and may be quite hard), we are unable to produce an argument as direct as in
the outline of proof of Theorem 1.1 given above. Instead, we rely on a combination of the
description of automorphism groups given in [3] and a technique developed in the papers
[7, 8]. This technique turns out to be very useful also in the problem of isomorphisms.

The precise statement of our main result is Theorem 2.5 below. In Section 3 we have
collected preliminaries on finite-dimensional flag varieties. Sections 4 and 5 are devoted
to the proof of Theorem 2.5.

Acknowledgement. We thank Valdemar Tsanov for providing with the reference [4]
and explaining its relevance.

2. STATEMENT OF RESULT

2.1. Short review of ind-varieties of generalized flags. The base field is the field of
complex numbers C. Let V' be a countable-dimensional vector space, possibly equipped
with an orthogonal (i.e., non-degenerate, symmetric) or symplectic (i.e., non-degenerate,
antisymmetric) bilinear form w. By E we denote a basis of V. In the presence of a form
w, we make the following definition.
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Definition 2.1. Assume that V is equipped with an orthogonal or symplectic form w.
A basis F is said to be isotropic if it is equipped with an involution ig : E — E with at
most one fixed point, such that w(e,e’) # 0 if and only if ¢’ = ig(e). Then:

e If w is symplectic, then g cannot have a fixed point, and the basis F is said to be
of type C.

e If w is orthogonal and ir has one fixed point, then the basis E is said to be of
type B.

e If w is orthogonal and 7z has no fixed point, then FE is said to be of type D.

In [1], the homogeneous spaces of the form G/P have been described, where G is one
of the classical ind-groups SL(oco) (or GL(00)), SO(o0), Sp(o0), and P C G is a splitting
parabolic subgroup. Here the adjective “splitting” means that P contains the Cartan
subgroup of transformations inside G which are diagonal in some basis F (isotropic in
the case of SO(o0) and Sp(c0)) of the underlying space V.

The description is by means of the notion of generalized flag.

Definition 2.2. (a) A generalized flag of V' is a collection F of subspaces of V' which is
totally ordered by inclusion and such that

e cvery F' € F has an immediate predecessor F” or an immediate successor F” in
I

e every vector v € V' \ {0} belongs to F” \ F’ for a unique pair of consecutive
subspaces (F', F") of F.

(b) In the case where V is equipped with an orthogonal of symplectic form w, we say
that F is isotropic if there is an involution iy : F — F such that iz(F) = F* for all
F € F, where F+ stands for the orthogonal subspace to F' with respect to w.

(c) If E'is a basis of V, then F is said to be compatible with E if each subspace F' € F
has a basis formed by elements of F. We say that F is weakly compatible with E if
it is compatible with some basis E’ which differs from E by finitely many vectors, i.e.,
#E\(ENE)=#F\(ENFE') < +oc0.

In [1], an equivalence relation called E-commensurability is introduced on generalized
flags. Then, given a generalized flag F compatible with a basis F, one defines F1(F, E, V)
as the set of all generalized flags in V' which are F-commensurable with F. If F and E
are isotropic, one defines instead Fl,(F, E, V) as the set of all isotropic generalized flags
in V' which are E-commensurable with F. It is shown that FI(F, E, V) and Fl,(F, E, V)
have natural structures of ind-varieties. We will recall these structures later on. In what
follows, whenever we write FI(F, E, V) or Fl,(F, E,V), we assume that the generalized
flag F is compatible with the basis E.

We will adopt the following notation:

e If w is a symplectic form on V', then E is of type C and we set FIS(F, E, V) =
Fl (F,E, V).
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e If w is an orthogonal form on V', then E is of type B or D, and we set in both
cases FIO(F, E,V) = Fl,(F, E,V), with the following exception. If F contains a
subspace F such that F* = F (which implies that £ has to be of type D), then
Fl,(F,E,V) consists of two isomorphic, connected components, and we define
FIO(F, E,V) as either one.

Ind-grassmannians correspond to quotients G/P with P maximal:

o If F={{0} C F C V} then we set Gr(F,E,V)=FI(F,E,V).

e In the case where V is equipped with an orthogonal or symplectic form w, a
minimal isotropic generalized flag will be of the form F = {{0} c F Cc F+ C V}
(where F' and F* may coincide), and we set GrO(F, E,V) = FIO(F,E,V) or
GrS(F, E,V) = FIS(F, E, V) depending on whether w is orthogonal or symplectic.

e When using the notation GrO(F, E, V), we exclude the case when dim F+/F = 2.
Instead, we consider FIO(F, E,V) where F = {{0} Cc FC F Cc F- Cc V}, F
being one of the two maximal isotropic spaces containing F'.

Remark 2.3. If V is an orthogonal space, then V' admits isotropic bases E; and Fs
of respective types B and D. Accordingly, maximal isotropic subspaces F' of V are of
two types: either dim F+/F =1 or '+ = F. As we will see below, the corresponding
ind-grassmannians GrO(Fy, By, V) for dim Fit/F; = 1 and GrO(Fy, By, V) for Fy- = Fy
are isomorphic as ind-varieties. This property is an infinite-dimensional analogue of the
isomorphism stated in the second bullet point of Theorem 1.1.

2.2. Main result.

Definition 2.4. (a) Let F and G be generalized flags of countable dimensional spaces V'
and W, respectively. Without further assumption, we say that F and G are isomorphic
if there exists a linear isomorphism ¢ : V' — W such that G = {¢(F) : F € F}.

(b) In the case where V and W are equipped with symplectic forms (resp., orthogonal
forms) w and W', we assume that F and G are isotropic generalized flags and say that
they are isomorphic if the isomorphism ¢ preserves the forms: w'(¢(x), d(y)) = w(z,y)
for all (z,y) e V x V.

If 7 ={Fy:0 € O} is a generalized flag in a countable-dimensional vector space V,
compatible with a basis F of V, then we define its orthogonal as the chain F+ = {F;- :
0 € ©} where Fj- is the annihilator of Fy in the space (E*), and E* denotes the system
of linear functionals on V' dual to the basis E. If V is equipped with an orthogonal or a
symplectic form w and the basis F is isotropic, then we use this form to identify V' and
(E*). Moreover, the above definition of an isotropic generalized flag F is equivalent to
the requirement that F = F+.

Theorem 2.5. Let X and Y be ind-varieties of, possibly isotropic, generalized flags as
above. In other words, X = FI(F,E,V), or X = FIO(F, E,W) for some orthogonal space
W, or X = FIS(F,E,Z) for some symplectic space Z, and similarly Y = FI(G, E', V'),
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or' Y = FIO(G,E'\W'), or Y = FIS(G,E",Z"). Then the ind-varieties X and Y are
isomorphic whenever F and G, or F and G*, are isomorphic, possibly as isotropic flags.
The only additional isomorphisms X =Y are the following:
e X =Gr(F,E,V),Y =GrS(G,E', Z"), where dim F = dim G = 1.
o X =GrO(F,E, W), Y = GrO(G, E',W"), where dim F+/F =1 and G+ = G.

Remark 2.6. Note that two ind-varieties of isotropic generalized flags FIO(Fy, E1, V)
and F1O(F,, Ey, V) of types B and D may be isomorphic also beyond the special case of
Remark 2.3. This is a consequence of the observation that a given isotropic generalized
flag F may be compatible with two different isotropic bases E; and E5 of respective types
B and D, as illustrated by the following example.

Example 2.7. Consider an isotropic flag F in an orthogonal space V', with the property

that Wx := > F has infinite codimension in its orthogonal. Then there exist two

FeF
FCFL

isotropic bases E; and FEs, of respective types B and D with which F is compatible and
EyNWg = Ey; N Wg. Consequently, FIO(F, Ey, V) = FIO(F, Ey, V).

3. A REVIEW ON EMBEDDINGS OF FLAG VARIETIES

Throughout this section, V' is a finite-dimensional vector space.

3.1. Short review of Picard groups for flag varieties. For an integer 0 < p < dimV/,
we denote by Gr(p; V) the Grassmann variety of p-dimensional subspaces in V. It can
be realized as a projective variety via the Pliicker embedding 7 : Gr(p; V) — P(A” V).
Moreover, the Picard group Pic(Gr(p;V)) of Gr(p; V) is isomorphic to (Z,+), and its
generators are Ogrpvy(1) == 7 Opprvy(1) and Ocrpivy(—1) = 7 Opprv)(—1). Here
Op(prvy(—1) stands for the tautological bundle of P(A” V) and Op(prv)(1) stands for its
dual.

For a sequence of integers 0 < p; < ... < pp < dim V', we denote by Fl(py,...,px; V)
the variety of (partial) flags

Fl(pr,...,o65 V) ={(V1,..., V&) € Gr(p;; V) x - -+ X Gr(p; V) : V1 C ... C Vi }.
We have
Pic(Fl(py,...,pr; V) = ZF.
More precisely, if we denote by L; the pull-back
L; = pr; Ocrpv) (1)
along the projection
pr; : Fl(p1,...,px; V) — Gr(p; V)

(fori =1,...,k), then [L4],...,[Ls] is a set of generators of the Picard group, which we
will refer to as the set of preferred generators.
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If V' is a vector space endowed with an orthogonal or symplectic form w, we assume
that the sequence (p1, ..., px) satisfies

Di + Dk—iz1 =dimV  forallt=1,... k.

Symplectic case: If the form w is symplectic, we denote by FIS(py,...,px; V) C
Fl(p1,...,pr; V) the subvariety of isotropic flags, i.e., flags (Fy C ... C F}) such that
Ft = F,_;41 for all i. Morever, we set GrS(p; V) := FIS(p,dimV — p; V) if dim V # 2p,
and GrS(42Y; V) := FIS(42Y; V).

Let ¢ = [%]. Then PicFIS(p1, ..., px; V) = Z*, and the pull-backs L; := prs;Ocus(p:v) (1)
by the projections prs; : FIS(p1,...,pr; V) — GrS(p;; V), for i € {1,...,¢}, yield a set

of generators [Ly],...,[L¢] of PicFIS(py,...,pr; V), which again we refer to as preferred
generators.

Orthogonal case: Here we assume that the form w is orthogonal. If % ¢ {p1,..., Pk}
(which is automatic when dim V' is odd), we define F1O(py,...,px; V) C Fl(p1,...,px; V)
as the subvariety of isotropic flags. If @ € {p1,...,pr} (which means in particular that
dim V' is even), the subvariety of Fl(py,...,px; V) of isotropic flags consists of two irre-
ducible components, and we define F1O(py, ..., px; V) as either of these two components.

Moreover, as it is well known every isotropic subspace of dimension % —1 is contained

in exactly two Lagrangian subspaces, so that we lose no generality in considering only
sequences (p1, . .., px) which satisfy the condition

dim V dim V
5 —1e{p,....,pe}t =

€ {p17 s ka}

As in the symplectic case, we denote GrO(p; V) := F1O(p,dim V —p; V) if p ¢ {dipV dimV

1} and GrO(42Y: V) := FIO(42Y: V), assuming that dim V' is even in the latter case.
We do not define an orthogonal grassmannian for p = — 1 as we consider instead
Flo(dirgv _1, din;V’ dir;ﬂ/ F1V).

Let ¢ = L%J If di%v —1 ¢ {p1,...,px}, then it still holds that the pull-backs
L; := pro;Ocro(p,;v)(1) by the projections pro; : FIO(pi,...,pr; V) — GrO(p; V), for
i € {1,...,0}, is a set of generators of the Picard group PicF1O(py,...,px; V), which
again we call preferred generators. If % —1e{p1,...,px}, that is di%v —1=pe1,
then the preferred generators L; are as above except for ¢ = ¢ — 1, and the (¢ — 1)-th

dim V.
2

preferred generator is by definition ( /\W—l Se_1)* where Sy_; is the tautological bundle
of rank % — 1 on F1O(py,...,px; V).

We close this subsection with the following well-known fact.

Lemma 3.1. Let M be a line bundle on Fl(py, ..., pi; V), F1O(p1, ..., pr; V), or FIS(py, . ..
and assume that the equality

(M| =nq[Lq] + ...+ ng[Lg] withny,...,ng €Z

7pk7v)7
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holds in the Picard group. Then, the following conditions are equivalent:
(i) M is very ample;
(ii) M is ample;
(iii) n; > 0 for alli € {1,...,k}.

3.2. Embeddings of flag varieties. In this section, we denote by X one of the flag
varieties

Fl(p177pK7v)7 Fls(pluapK7V)7 FlO(plaupKaV>7
and by Y a respective flag variety

Fl(qi,...,qu; W), FIS(q1,...,q0; W), FlO(q1,...,q; W)
of the same type as X. Consider an embedding (i.e. closed immersion) of flag varieties
p: X =Y,
together with the group homomorphism on Picard groups
¢* :PicY — Pic X

which it induces. Let [Lq],. .., [L] and [M], ..., [M,] be the respective sets of preferred
generators of Pic X and PicY (in the sense of the previous subsection), where k = K and
{=1L,ork= L%J and { = L%J, depending on whether a flag variety of general type or a
variety of isotropic flags is considered.

Lemma 3.2. For all j € {1,...,(}, we have ¢*([M,]) € Z>o|L1]) + ... + Z>o[Ly).

Proof. Since ¢ is an embedding, if M is an ample line bundle on Y then ¢* M should be
an ample line bundle on X. In view of Lemma 3.1, we must have

P (Zso[My] + ...+ Zso[My]) C Ziso[Ln] + ... + Zso[Ly].
The claim of the lemma follows. O

We now recall from [8] the notion of linear embedding, standard extension, and factor-
ization through direct product.

Definition 3.3. Let ¢ : X — Y be an embedding of flag varieties as above.
(a) We say that ¢ is linear if

¢ Ml =0 or @ [M;] € {[L],.... [Lal}
for all j € {1,...,¢}.
(b.1) We say that ¢ is a strict standard extension if there are

e a linear monomorphism « : V <— W and a decomposition W =Ima ¢ K;

e a nondecreasing sequence of subspaces Ko ={0} C K; C K, C ... C K, = K

e a surjective, nondecreasing map « : {0,1,...,¢} — {0,1,...,k} such that, for all
1€ {1, . ,E}, K,1=K;,= H(Z — 1) < H(Z),
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e in the case where V' and W are equipped with nondegenerate symmetric or anti-
symmetric forms w and ¢, respectively, then the monomorphism « is compatible
with the forms in the sense that ¢(a(v1), a(vy)) = w(vy, v9) and the decomposition
W =Ima® K is orthogonal;

so that ¢ can be expressed as
o (Fo=A{0}, F1 ..., Fy) — (a(Fuq) @ K, ... a(Fye) @ Ky).

(b.2) When X = Fl(py,...,pp; V) and Y = Fl(qy, ..., qe; W), we say that ¢ is a modified
standard extension if ¢ equals the composition § o ¢ of a strict standard extension ¢ :
X =YV :=Fl(dimW — ¢, ...,dim W — ¢;; W*) with the isomorphism

6§ YV =Y, (Zy,....Z) — (ZF,...,Z]).

(b.3) We say that ¢ is a standard extension if ¢ is a strict or a modified standard
extension.

(c) We say that ¢ factors through a direct product if there are s > 2, a decomposition

{p1,...,pr} = R1 U...U R, into nonempty subsets, and exponents ty,...,ts > 1 such
that ¢ factors as the composition

X BI[Fr(R: V) Sy
i=1
where 1y is the canonical embedding and 1) is an embedding, and the notation F1’ means
Fl or Fl, depending on whether X is consists of general or isotropic flags.

(d.1) Assume that W is endowed with an orthogonal or, respectively, symplectic form
so that V' is an isotropic subspace of W. Then, there are natural embeddings

X:Fl(pla7pkvv)(_>FlO(p177pkaW) and XV%FIO(pb?pkaW)a
respectively,
X =Fl(py,...,pe;V) = FIS(p1,...,pi; W) and XY — FIS(p1,...,pr; W),

which we call isotropic extensions.
(d.2) A combination of standard and isotropic extensions is an embedding of the form

t ¢
F1O(p1,....pe; V) = Fl(pr, ..., pe; V) = Fl(qi, ..., qi V')
X F1O(q1,...,qe; W) & FlO(rq, ..., rm; W),
respectively,
¢
Fls(ph <oy Pk V) CL Fl(plv <o Pk V) — Fl(q17 < 4y, V,)
A FIS(QD - qes W) (i) FIS(TIJ cees Tmy W/)7

where t is the tautological embedding, (, ¢ are standard extensions, and y is an isotropic
extension.
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The following proposition is based on [8, Proposition 2.3].

Proposition 3.4. Letp : X =Fl(p1,...,pe; V) =Y =Fl(qq,...,qe; W) be an embedding
of flag varieties.
The following conditions are equivalent.
(i) ¢ is linear.
(ii) There are
e a partition {1,... 0} =ToU L U... U, with I; # 0 for i #0,
e a sequence of linear embeddings ¢li] = (¢i;)jer : Gr(pi; V) — [1;cp, Grg;; W),
for 0 <i <k, and if Iy # 0 a constant map X, := {pt} — [, Gr(g; W)

J€lo
such that the following diagram commutes

X = Fl(pl,...,pk;V)(LY =Fl(q1,...,q6 W)

m ™
k ¢ Il ¢ )
XO X Hi:l Gr(pzv V) Hj:l Gr(ij W)7

where the vertical arrows are the natural embeddings.
A similar result holds in the symplectic and orthogonal cases.
Proof. (i)=-(ii) is shown in [8, Proposition 2.3]. (ii)=-(i): for every j € {1,..., ¢}, assum-
ing that j € I; with ¢ # 0, we have

[(ﬂ- © 90>*pr;OGr(qj;W)<1)] = [M*prjgp[z]*prjOGr(q],W)(1)]
€ {0, [pri Ocrpav) (DI} = {0, [Li]}

by the assumption that ¢[i] is linear. If j € Iy, then

[(mo @)*Pr;ocr(qj;vv)(l)] = [M*PFS@[O}*PF;OGr(qj;W)(1)] = 0.

The conclusion follows. U
A key result is now the following:

Theorem 3.5 (|7, Theorem 1], [8, Theorem 4.2]). (a) Let ¢ : X — Y be an embedding of

flag varieties. Assume that @ is linear, does not factor through a direct product, and all

the maps [i| of Proposition 3.4 are standard extensions. Then p is a standard extension.

(b) Assume that X and Y are grassmannians of the same type. In addition, in the

orthogonal case suppose that X and Y are of the form GrO(p; V) with p ¢ {d‘%‘/ —

1 ),

(i) In the case where X and Y are of general type, then ¢ : X — Y is a standard
extension if and only if is linear and does not factor through a projective space.

(ii) In the case where X and'Y are of orthogonal or symplectic type, then ¢ : X — Y

1s a standard extension or a combination of standard and isotropic extensions if
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and only if p s linear and does not factor through a projective space and, in the
orthogonal case, also not through a quadric.

3.3. Additional lemmas.

Lemma 3.6. (a) The composition of two standard extensions is a standard extension.
(b) The composition of two standard extensions w1 and s is strict if and only if pq
and o are both strict or both modified.

Proof. Straightforward. O
Lemma 3.7. Let

XFl(nl,...,nK Fl(¢1, ..., qm; W) =2
- /

Y = Fl(pb s 7pﬁ;v)

be a commutative diagram of strict standard extensions. Assume that

e © corresponds to o : U — V', a decomposition V = Ima & K, a nondecreasing
sequence of subspaces Ky = {0} C Ky C ... C Ky = K, and a surjective map
k:{0,...,0} —{0,...,k}, in the sense of Definition 3.3 (b.1).

e ) corresponds similarly to B :V — W, W =Im@® L, Ly C ... C L, = L,
A:A{0,...,m} —{0,...,0};

e \ corresponds similarly toy: U — W, W =Im~y@& M, My C ... C M,, = M,
w:{0,...,m} —{0,... k}.

Then we have = ko X\, M; = L; ® B(K;) for alli € {1,...,m}, and up to modifying (3
we can assume that x = (o a.
Similar statements hold in the symplectic and orthogonal cases.

Proof. Since x = o, for all F = (Fy,..., Fg) € X, alli € {1,...,m}, we have
(1) Y(Fu@y) © My = Ba(Faag)) © B(Kxe) © Li
Since () ey Flui) = 0, we must have

M; = B(Kys) ® L; foralli=1,...,m.

Then, since the dimensions of Fy,..., F} are pairwise distinct, for dimension reasons (1)
implies that
(i) =rkoA(i) foralli=1,...,m.
Take ig € {1,...,m} minimal such that (i) # 0. Then .y FlGo) = U and we must
have
Imy® M,;, =ImBoad M,.
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Up to replacing 8 by some 3 such that 3(z) — 3(z) € M;, for all z € Im o (which will not
affect the map 1), we can assume that

Im~y=ImpGoa.

Then by projecting (1) to Imy = Imf o a, with respect to the decomposition W =
Im~ ® M, we get

’y(F#(i)) =fo Oz(FM(i)) foralli=1,...,m,all F € X.
Up to multiplying 3 by a scalar, we can assume that the equality v = 3 o a holds. O

4. CONSTRUCTION OF ISOMORPHISMS

In this and the next section we prove Theorem 2.5. Here we show that all pairs of
ind-varieties that are claimed to be isomorphic in Theorem 2.5 are indeed isomorphic.
We start with the following known fact.

Lemma 4.1. (a) Let F be a generalized flag of V' compatible with two bases E and E'.
Then the ind-varieties FI(F, E, V) and FI(F, E', V) are isomorphic.

(b) Moreover, in the case where V is endowed with an orthogonal (respectively, a
symplectic) form w, F 1is isotropic, and E and E’ are isotropic, then the ind-varieties
FIO(F,E,V) and FIO(F,E", V) (respectively, FIS(F,E,V) and FIS(F,E',V)) are iso-
morphic.

Proof. Tt suffices to construct a linear automorphism « : V' — V such that
a(E)=F', VF e F, o(F)=F,

and « preserves the form w in the situation (b) of the lemma. Then « clearly induces an
isomorphism G +— «(G) between the two considered ind-varieties.
(a) For F € F, we denote Ep == {e € E: e € F} and Ep := Er\U,, . Er. We
F/CF
define similarly E% and EA%‘ Since the generalized flag F is F- and E’-compatible, we
have
F=(Ep)=(Ep)® » F forall F€F.
FleFr
F/CF
This yields decompositions E = | |~ Ep, E' = U per E}, and, moreover, |Ep| = |E}| =
dim F/(32,,_ F') for all F' € F. Next, for every F' € F, we can choose a bijection
F/CF
ap : Ep — E}; This defines a bijection | |p.rap : E — E', whose corresponding
automorphism « : V' — V stabilizes each subspace of F.
(b) We adapt the construction made in (a) in the following way. The generalized flag
F is equipped with the involution F + F*, and the bases E and E’ are equipped with
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involutions i : £ — E and ip : B/ — E’ satisfying the conditions of Definition 2.1. For
every F' € F such that F C F'*+ we have

(Bp) =F C F+ = (Ep.) CV = F- @ (ig(Er))

and for all ' € F we have either zE(EF) NEpr =0 or zE(EF) = EF; the latter case
holds for at most one F, namely the one, if it exists, such that '+ C F are consecutive
subspaces in F. The same applies to £’. Then we have decompositions

E= || ig(Br)UEr, E'= || ip(Ep)UEL

FeF FeF

Fcrl FCFRL
Now for all F € F we can find a bijection ap : ig(Ep) U Ep — ig(FE}) U E} such that
ap(ig(e)) = ip(ap(e)) for all e. Whence a bijection o : E — E’ and, up to replacing
the elements in £’ by suitable scalar multiples, we can assume that the corresponding
automorphism « : V' — V preserves w. We have in addition o(F') = F for all F € F, and
this concludes the proof of the lemma. Il

Next we show that FI(F, E,V) and F1(G, E’, V') are isomorphic whenever

(A) F and G are isomorphic in the sense of Definition 2.4 (a), or
(B) F is isomorphic to the dual generalized flag G*.

Assume first that F and G are isomorphic, hence there is an isomorphism ¢ : V. — W
such that ¢(F) = G. Then E” := ¢(F) is a basis of V', moreover G is compatible with
E"  and the map ¢ induces an isomorphism of ind-varieties

FI(F,E,V) = FUG,E" V'), F'— ¢(F).

Thanks to Lemma 4.1, we have an isomorphism F1(G, E” V') 2 FI(G, E',V"). Altogether,
we get an isomorphism FI(F, E, V) = FI(G, E', V') as desired.

The case (B) is a a consequence of (A), Lemma 4.1, and the fact that the map G’ — G'*
clearly defines an isomorphism FI(G, E', V') = FI(G+, E™*, V) where E’* is the dual family
of B/ and V] = (E™) C V'™

The same reasoning shows that FIO(F, E, W) and FIO(G, E', W') (resp., FIS(F, E, Z)
and FIS(G, E’, Z')) are isomorphic ind-varieties whenever F and G are isomorphic in the
sense of Definition 2.4 (b). Note that in this case we have F+ = F and G+ = G.

We now turn our attention to the additional isomorphisms from Theorem 2.5. First,
since in a symplectic space every line is isotropic, the isomorphism between X = Gr(F, E, V),
Y = GrS(G, E’, Z'), where dim F' = dim G = 1, is obvious.

Finally, the isomorphism between X = GrO(F,E, W), Y = GrO(G, E',W’), where
Ft+ = F and dimG+/G = 1, is also easy to verify. The key observation is that the
well-known isomorphism GrO(n — 1,C?"!) = GrO(n,C*") is compatible with standard
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extensions. More precisely, assume that W is endowed with an orthogonal form w, and
let
E ={ej, €| ea,€5, ... en,€, ...}

be a basis of type D in W, with involution ig : €; — €,. Let F = (e; : i > 1) so that
F=F*.

Consider also

E' ={e1+¢€), 60,6y, ... 6n,€, ...}

which is a basis of type B in a subspace W’ C W of codimension one, with involution
ip:e — el foralli>2andig(e;) =e). Let G = (e;:i>2), thus dimG+/G = 1.

Let X = GrO(F, E,W) and Y = GrO(G, E', W’) be the corresponding ind-varieties of
maximal isotropic subspaces. Thanks to Lemma 4.1 we only have to show X =Y.

Let W,, = (e1,€},...,en,el) and W/ = (e; +¢€),ea,€,,...,e,,€). We have exhaustions

- GrO(n, W,) <5 GrO(n + 1, Wyiy) — -+ — X
and
- — GrO(n — 1,W)) o GrO(n, W, ;) — - =Y
where a, : L— L ® (ep1) and G, : M — M @ (e41).
For every n, there is an isomorphism
én : GrO(n — 1, W) — GrO(n,W,,), M — (the unique Lagrangian subspace
M € GrO(n,W,,) containing M).

Moreover, the diagram

GrO(n,W,) <5 GrO(n+1,Wni1)
T d’n T ¢n+1

GrO(n — 1,W/) & GrO(n, Wy 14)

is commutative. Indeed «, o ¢, (M) is a Lagrangian subspace in GrO(n + 1, W) con-
taining M and e, 1, thus containing M & (e, 11) = 3,(M), and therefore coinciding with
Gnt1 0 Bp(M). Hence X and Y are isomorphic.

5. NON-EXISTENCE OF OTHER ISOMORPHISMS

In this section we complete the proof of Theorem 2.5. This is done by proving the
following two statements.

Theorem 5.1. Assume that X, Y is a pair of ind-varieties of generalized flags of the
same type (general, orthogonal, or symplectic), different from the pair

GrO(F,E,V), GrO(G,E'\W) with dim F+/F =0, dim G+ /G = 1, or vice versa.

Consider two arbitrary (possibly isotropic) generalized flags F € X and G € Y. Then X
is isomorphic to Y if and only if F is isomorphic to G or to G*.
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Theorem 5.2. Assume X, Y are two ind-varieties of generalized flags of different types.
Then X is isomorphic to Y if only if X, Y (orY, X) is the pair

(2) Gr(F,E,V), GiS(G,E'\W) withdim F =dimG =1 or dimV/F = dim G = 1.

The direct implications in Theorems 5.1-5.2 are shown in Section 4. It remains to prove
the reverse implications.

We start with some auxiliary results. By P" we denote the n-dimensional projective
space and by P> we denote the infinite-dimensional projective ind-space: P> = lim P".

—

Proposition 5.3. Let X, Y be two ind-grassmannians, so X = Gr(F,E,V), X =
GrO(F,E,V), or X = GiS(F,E,V), and Y = Gr(G,E',W), Y = GrO(G,E',W), or
Y = GiS(G,E',W). If Y = GrO(G, E', W), we assume that diim G+ /G ¢ {0,1}. Then
X is isomorphic to Y if and only if one of the following condition holds.

(A) X =Gr(F,E,V) andY = GrS(G, E',W) with dim F = dimG = 1 or dimV/F =
dim G =1 (or vice versa).

(B) X and Y are of the same type with dim F' = dim G, or X = Gr(F,E,V) and
Y = Gr(G, E',W) with dimV/F = dim G < oo (or vice versa,).

Proof. The case where X is different from GrO(F, E, V) with dim F+/F € {0, 1} is treated
in [7, Theorem 2]. Hence it remains to show that X 2 Y whenever X = GrO(F, E,V)
with dim F+/F € {0,1} and Y either of general or symplectic type or of the form Y =
GrO(G, E', W) with dim G+ /G > 2.

We will do this by the same method used in [7]. Indeed, using results in [4, Section 4],
it is not difficult to check that through any point € X, there is a family P? consisting
of maximal 3-dimensional linearly embedded projective subspaces of X, and a family P>
of maximal linearly embedded infinite-dimensional projective ind-spaces. Moreover, the
intersection of any space in P3 with a space in P> is isomorphic to P2,

We claim that this type of configuration of maximal linearly embedded projective spaces
passing through a point does not appear on any ind-grassmannian Y. Indeed it is well
known that Y admits a linear embedding into an ind-grassmannian of general type (this
embedding being the identity of Y itself is of general type). Using an appropriate such
embedding it is easy to check that the complete list of ind-grassmannians Y having a
family of maximal linearly embedded projective spaces P? and a family of maximal linearly
embedded projective spaces P> passing through a fixed point y € Y is

e Gr(F,E,V) where dim F' = 3 or dim V/F = 3,
GrO(F, E,V) where dim F' = 3,

GrO(F, E,V) where dim F+/F € {6, 7},
GrS(F, E,V) where dim F' = 3,

GrS(F, E,V) where dim F+/F = 2.
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However, in all these cases, the intersection of a maximal linearly embedded space P? and a
maximal linearly embedded ind-space P> passing through the same point y is isomorphic
to P! or is the point ¥ itself. This proves our claim. O

Lemma 5.4. Let X = FI(F, B,V), X = FIO(F,E,V), or X = FIS(F, E,V), and let
m: X — Y be an Aut X -equivariant, smooth, surjective morphism, where Y is another
ind-variety of generalized flags. Then Y is isomorphic to FI(F', E', V"), FIO(F', E', V'),
or FIS(F', E", V"), where F' is a generalized subflag of F.

Proof. Consider an exhaustion of X by standard extensions
ces Xy e X oo X
and a corresponding exhaustion of Y
(3) =Y i=m(X,) = Yo = 1( X)) & - = Y

It follows from [3] that any automorphism of X, extends to an automorphism of X.
Therefore, each projection 7, : X,, — Y,, is Aut X,-equivariant. Through the theory of
finite-dimensional flag varieties, this implies that Y, is isomorphic to a shorter flag variety
X, of same type as X,, so that m, corresponds to the natural projection X,, — X/. The
standard extensions X,, — X,,;1 then induce an exhaustion through standard extensions

/ / /AT /
.(HXTL(HXTLJ’_]‘(H...(_)X‘_IEHXTL

which commutes with the exhaustion (3) via the isomorphisms Y,, = X!. Therefore, Y
is isomorphic to the ind-variety of generalized flags lim X/, of the form indicated in the

statement. O
We can now prove Theorems 5.1 and 5.2.

Proof of Theorem 5.2. First we suppose X = FI(F,E,V) and Y = FIS(G, E',W). By
Lemma 5.4, for every nonzero proper subspace F' € F there is an isotropic subspace
G € G such that Gr(F, E, V) = GrS(G, E', W), and for every nontrivial isotropic subspace
G’ € G there is a subspace F' € F such that GrS(G', E', W) = Gr(F’, E,V). Since an
isomorphism Gr(F, E,V) = GrS(G, E',W) can exist only if dimG =1 and dim F' = 1 or
dim V/F =1 (see Proposition 5.3), we get that G must be of the form G = {{0} C G C
G+ c W} with dim G = 1, while F can be only of the form F = {{0} C F C V} with
dmF =1lordimV/F =1 or F={{0} C F} C I, C V} with dim F}, = dim V/F, = 1.
The latter situation being impossible (since, for otherwise, we would have Pic X = Z? %
Z = PicY'), we get the conclusion of the theorem.

Next we suppose X = FI(F,E, V) or FIS(F,E,V) and Y = F10(G, E',W). Arguing
as in the first case, it suffices to note that an isotropic ind-grassmannian GrO(G, E', W)
is never isomorphic to an ind-grassmannian Gr(F, F,V') or GrS(F, E, V). Thus again the
claim follows from Proposition 5.3. Il
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Proof of Theorem 5.1. Assume that two ind-varieties X and Y as in the statement of
Theorem 5.1 are isomorphic. Fix an isomorphism £ : Y — X. In the case of ind-varieties
of orthogonal generalized flags, we first assume that F and G do not contain any isotropic

subspace F with dim F+/F < 2.
The existence of the isomorphism £ implies the existence of a commutative diagram

X,C 91 X,C ..
A
¢l ¢/ (b/

where all the maps are embeddings and the rows are exhaustions of X and Y, respectively,
by standard extensions.

We claim that y; is a standard extension for all 7+ > 1. Since ¢; = & o x; and ¢; is
a standard extension, we deduce from Theorem 3.5 that yx; does not factor through a
direct product nor a maximal quadric (in the orthogonal case). Note also that, thanks to
[7, Lemma 3.8 and Remark 3.9], x; cannot be a combination of isotropic and standard
extensions. Therefore, for verifying the claim, by Theorem 3.5 it suffices to show that y; is
linear. To do this, we analyse the maps on the Picard groups. Since fox; , = ¢;" while ¢;*
is surjective, we have that £ is surjective. Letting [M] be one of the preferred generators
of PicY;, there is a € Pic X;;1 with {*a = [M]. Due to Lemma 3.2, we can choose a = [L]
where [L] is one of the preferred generators of Pic X;.;. Then x[M]| = ¢}[L] should be 0
or a preferred generator of Pic X;, because ¢; is linear. This establishes the claim.

Arguing in the same way, we can show that &; is a standard extension for all 4.

In the isotropic case, y; and &; are strict standard extensions.

Let us show that in case where X and Y are of general type, we can reduce the problem
to the case where y; and &; are strict standard extensions. Indeed, note that there is also
the diagram

(4)

(5) Y, ¢ i Y, < 2 Y5C &

Nlal ”l% Nlag
¢/\/ ¢/\/ ¢{V
}/1\/ 1 }/2\/( 2 }/BV( 3

where Y;¥ and d; are as Definition 3.3 (b.2); the bottom line of the diagram forms an
exhaustion of F1(G*, E*, (E")) (see the notation in Section 2.2). Up to composing
the two diagrams (4) and (5), thus dealing with FI(G*, E™ (E™)) = limY," instead

of FI(G, E', V'), we can assume that x; is a strict standard extension. Then it follows
from Lemma 3.6 (b) that every map x;, & is a strict standard extension.
Let V. =U,5; Vo, and V' =, Vil be exhaustions such that X, and Y, are varieties

of flags of V,, and V| respectively. By Definition 3.3 (b.1), the strict standard extensions



ON ISOMORPHISMS OF IND-VARIETIES OF GENERALIZED FLAGS 17

in (4) are induced by a diagram of linear embeddings of the corresponding spaces

(6) ViV 2 Uy 2

b1 T

Ly 2> L

Vi Vs Vs

(where ¢, : V, = Viqq and ¢, : V) — V', are simply the inclusion maps). Moreover,
by Lemma 3.7, up to modifying f3;, as, Ba, i3, (3, . . . we can assume that the diagram (6)
is commutative. Therefore, this diagram induces a linear isomorphism « : V' — V' such
that G = a(F). In the isotropic case, a can be chosen compatibly with the bilinear forms
since this is so for every «;. The argument is then complete.

It remains to consider the orthogonal case where

X =FIO(F,E,V) and Y =FIO(G, E, V')

and where one of the generalized flags F or G contains a maximal isotropic subspace. If F
or G contains a subspace F' with dim F/F = 2, then we assume automatically that F or
G contains also one of the two maximal isotropic subspaces containing F. Furthermore,
there is no loss of generality in assuming that F and G are isotropic generalized flags in
the same orthogonal space (V,w) and X # GrO(F, E,V) and Y # GrO(G, E', V).

Let ¢ : X — Y be an isomorphism of ind-varieties with ¢(F) = G. Consider first the
case where F = {{0} ¢ F C F C F* C V} where dim F'//F = 1 and F* = F. Then
Pic X = 72 and hence G = {{0} C G € G C G+ € G+ C V} with dim G+ /G € {0,1}. If
G is not isomorphic to F, then dim G/G > 2 or dim G/G = 1. In both cases Y admits a
proper smooth surjection to GrO(G, E’, V'), while the only orthogonal ind-grassmannian
to which X admits a proper smooth surjection is GrO(ﬁ ,E, V) where FL = F. Since
GrO(G, E', V) is not isomorphic to GrO(F, E, V) by Proposition 5.3, this case is settled.

Now we consider the case of arbitrary orthogonal generalized flags F and G containing
respective maximal isotropic subspaces. Define projections as follows:

e x : X — X where X := FlO(ﬁ, E,V) is the ind-variety of generalized flags
associated to F := F\ {F,F+: F e F, dimF'/F <2},

ey : Y — Y where YV := FIO(G,E’ ,V) is the ind-variety of generalized flags
associated to G := G\ {G,G+ : G € G, dimG*/G < 2},

We can assume without loss of generality that X and Y are both proper ind-varieties of
generalized flags (not points) because otherwise we land in the case already considered.
(The case of X = FIO(F, E,V) with F = {{0} C F C F C F* C V} wheredim F/F = 1
and Fr = F, and Y = GrO(G, E', V) where G = {{0} € G ¢ G* ¢ V} with dim G*-/G =
1 is ruled out by the existence of the isomorphism ¢ because Pic X = Z? and PicY & Z.)
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By Lemma 5.4 the isomorphism ¢ induces an isomorphism ¢ : X — Y with 4,5(]:" )= G.
Now the first part of the proof allows us to conclude that ¢ induces an automorphism

¢y 1 V — V, preserving w, such that G = ¢y (F).

We claim that ¢y (F) = G, implying that the isotropic generalized flags F and G are
isomorphic. Indeed, the maximal isotropic space F' " € F is the union of all subspaces
F” C F with the property that F” belongs to some point F” € X and has codimension 2
or more in F. A similar statement applies to the maximal isotropic space G € G = o(F).
Therefore, G equals the union of the spaces ¢y (F”) and hence coincides with ¢y (F). The

same argument applies to spaces F' € F of codimension 1 in F and G € G of codimension
1 in G, if they exist, i.e., ¢y (F) = G. Therefore, ¢y (F) = G. O
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