PROJECTING LATTICE POLYTOPES ACCORDING TO THE
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VICTOR V. BATYREV

ABSTRACT. The Fine interior F(P) of a d-dimensional lattice polytope P C R?
is the set of all points y € P having integral distance at least 1 to any integral
supporting hyperplane of P. We call a lattice polytope F-hollow if its Fine interior
is empty. The main theorem claims that up to unimodular equivalence in each di-
mension d there exist only finitely many d-dimensional F-hollow lattice polytopes
P, so called sporadic, which do not admit a lattice projection onto a k-dimensional
F-hollow lattice polytope P’ for some 1 < k < d — 1. The proof is purely combi-
natorial, but it is inspired by Q-Fano fibrations in the Minimal Model Program,
since we show that non-degenerate toric hypersurfaces Z C (C*)¢ defined by zeros
of Laurent polynomials with a given Newton polytope P have negative Kodaira
dimension if and only if P is F-hollow. The finiteness theorem for d-dimensional
sporadic F-hollow Newton polytopes P gives rise to finitely many families F(P)
of (d — 1)-dimensional Q-Fano hypersurfaces with at worst canonical singularities.

1. INTRODUCTION
Let P C R? be an arbitrary d-dimensional convex polytope.

Definition 1.1. For a nonzero lattice vector a = (ay, ..., aq) € Z%\ {0} consider
the integral supporting hyperplane of P:
d n
Ha = = go ooy ERd zz:M = i i Yi
P x = (11 zq) | ;ax inp(a) min ;ay
If ged(ay, ..., aq) = 1 we call the number
distz(y, Hap) := Zaiyi — Minp(a) >0
i=1
the integral distance between a point y = (yi,...,%4) € P and integral supporting
hyperplane H, p.

Definition 1.2. [10, 21] Let P C R? be an arbitrary d-dimensional convex polytope.
The set F'(P) of all points in P having integral distance at least 1 to any integral
supporting hyperplane H, p is called the Fine interior of P, i.e.,

F(P):={y e R? | disty(y, Hap) > 1, Vac Z%\ {0}}.

Remark 1.3. If the affine span of every facet of P is a integral supporting hy-
perplane, then Gordan’s lemma shows that among countably many inequalities
distz(y, Hap) > 1 defining F(P) only finitely many a € Z¢ are necessary. In
particular, F'(P) C P is a rational polytope (or empty set) if all vertices of P belong
to Q¢. We explain more details concerning this fact in Proposition 3.1. Lattice
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polytopes P, i.c., polytopes having vertices in Z¢, are main objects of our study.
However, for some technical reasons it will be convenient to consider the Fine in-
terior F'(P) of rational polytopes P and the Fine interior F'(AP) of their arbitrary
real positive multiples AP (A € R.).

Remark 1.4. If P C R? is a d-dimensional lattice polytope, then every interior
lattice point m € Int(P) N Z? necessarily belongs to F(P), and we obtain the
inclusion

Conv (Int(P)NZ%) C F(P)
which is in fact equality for lattice polytopes P of dimension d € {1,2} [8].

Recall some standard definitions.

Definition 1.5. Two lattice polytopes P, P, C R are called unimodular equi-
valent if there exists a lattice-preserving affine isomorphism ¢ : R? — R¢ such that

() = P,

Definition 1.6. A k-dimensional lattice polytope P’ C RF (1 < k < d) is called
lattice projection, or Z-projection, of a d-dimensional lattice polytope P C R?

if there exists an affine map 7 : R? — R¥ inducing a surjective map of lattices
7 2% — 7% and n(P) = P'.

Remark 1.7. Since every epimorphism 7 : Z% — ZF splits, we can choose a
splitting Z? = Z* @ Z"* such that the Z-projection 7 has the standard form:

m(xy, ..., xq) = (T1,...,75) € R¥ V(zy,... 24) € RL
Definition 1.8. We call a d-dimensional polytope P C R? F-hollow if F'(P) = 0.

Remark 1.9. Let P’ C R* be a lattice projection of a d-dimensional polytope
P C R?, then the lattice epimorphism 7 : Z? — Z* allows to lift every integral sup-
porting hyperplane of P’ to an integral supporting hyperplane of P. In particular,
the condition F(P") = @) implies F(P) = (). This fact allows to construct infin-
itely many pairwise unimodular distinct d-dimensional F-hollow lattice polytopes
P whose lattice projections are equal to a given lower-dimensional F-hollow lattice
polytope P’.

Definition 1.10. We call a d-dimensional F-hollow lattice polytope P sporadic, if
P does not admit any lattice projection = : P — P’ onto a k-dimensional F-hollow
lattice polytope P’ (1 <k <d—1).

The present paper shows that in any fixed dimension d, apart from finitely many
unimodular equivalence classes of d-dimensional sporadic F-hollow lattice polytopes,
every d-dimensional F-hollow lattice polytope P admits a Z-projection to some
lower-dimensional F-hollow lattice polytope P’

Theorem 1.11. In each dimension d there exist up to unimodular transformations
only finitely many d-dimensional sporadic F-hollow lattice polytopes P.
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T~
countably many F-hollow polygons a sporadic polygon

Remark 1.12. Theorem 1.11 is a purely combinatorial contribution to the theory
of lattice polytopes but its motivation comes from birational algebraic geometry
[8, 22]. Recall that a lattice P is called hollow if P contains no lattice points in its
interior. By 1.4, any F-hollow lattice polytope P is hollow. In dimension d € {1, 2}
the inverse statement is also true. Therefore, for d < 3, Theorem 1.11 follows from
a result of Treutlein [22] which was later generalized by Nill and Ziegler for hollow
lattice polytopes in arbitrary dimension d [20]. In case d > 4, Theorem 1.11 does
not follow from Theorem of Nill and Ziegler because hollow lattice polytopes P of
dimension > 3 need not be F-hollow. For instance, there exist up to unimodular
equivalence exactly 9 examples of 3-dimensional hollow lattice polytopes which are
not F-hollow [11, Appendix BJ.

2. THE PROOF OF THEOREM 1.11

The proof of Theorem 1.11 uses standard combinatorial notions from the theory
of toric varieties [13]. We consider two dual to each other lattices M = Z<¢ and
N := Hom(M,Z) together with their scalar extensions Mg := M @R, Ng := N®R
and the natural pairing

<>I<,>I<> : MR X NR%R
Every d-dimensional rational polytope P defines a convex piecewise linear function

Minp : Ng = R, y+— mi1r31<u,y>
ue

whose domains of linearity form a complete rational polyhedral fan Y p, a collection
of rational polyhedral cones ¢ in Ng, which is called the normal fan of P.

Using the above notations, the Fine interior F/(P) of a polytope P C Mg can be
equivalently reformulated as follows:

Definition 2.1.
F(P):={x € Mg | (z,v) > Minp(v) +1, Vv € N\ {0}}.

Our first idea in the proof of 1.11 is to consider a positive number p = pu(P)
attached to P:

Definition 2.2. Let P C Mg be a d-dimensional rational polytope. We call the
number

u(P):=inf{\ € Ryy | F(AP) # 0}
the minimal multiplier of P.
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Remark 2.3. If P C My is a d-dimensional lattice polytope, then it follows from
standard properties of Ehrhart polynomials that the lattice polytope (d+1)P always
contains at least one interior lattice point and hence F'((d + 1)P) # (. This implies
the inequality

w(P) <d+1

for all d-dimensional lattice polytopes P. Note that the inequality is sharp, because
p(P) = dim P + 1 if P is the d-dimensional lattice simplex spanned by 0 € Z¢ and
by the standard lattice basis e1, ..., eq of Z.

Remark 2.4. It is clear that u(P) < 1 if and only if P is not F-hollow.

We will use the following property of the minimal multiplier p(P) which will be
proved later in Propositions 3.2 and 3.4:

Proposition 2.5. Let P C My be a d-dimensional rational polytope. Then the
following statements hold:

(i) The number u(P) is rational.

(ii) For a positive rational number X, one has X = u(P) if and only if

0 <dimF(AP) <d-—1.
(iii) If dim F(uP) = 0, then the convex hull Q) := Conv(Sr(uP)) of the set
Sp(pP) :={v € N | Mingp)(v) = Min,p(v) +1} C N
18 a d-dimensional lattice polytope in Ng having a unique interior lattice point 0 € N.

Finally, we need Theorem of Hensley [15] and some its generalizations due to
Lagarias and Ziegler [19].

Theorem 2.6. [15] For any given positive integers k,d, there exists a constant
C(k,d) depending only on k and d such that the volume vol(P) of any d-dimensional
lattice polytope having exactly k interior lattice points is bounded from above by
C(k,d).

Theorem 2.7. [19, Thm. 2| If a d-dimensional lattice polytope P has volume
vol(P) <V, then P is unimodular equivalent to a lattice polytope in the d-dimensional
lattice cube

(xeR | 0<z; <n-nlV,i=1,...,d}

In particular, a family of d-dimensional lattice polytopes P; (i € I) contains only
finitely many unimodular equivalence classes if and only if there exists a constant

C > 0 such that
vol(P;) < C Viel.
Proof of Theorem 1.11. Let P C Mg be a d-dimensional F-hollow lattice poly-

tope. We put u := p(P). By 2.5(ii), we have 0 < dim F(uP) < d — 1. Consider two
cases (two pictures below illustrate the case d = 2).



PROJECTING LATTICE POLYTOPES ACCORDING TO MMP 5

.

-

]IV}

Case 1. 1 < dim F(uP) < d—1. We define the sublattice N C N consisting
of all v € N such that (x,v) = (2/,v) for any two points x,2’ € F(uP). Then
N/N' has no torsion elements and N’ because if [v € N’ for some positive integer
[, then (x,lv) = (', lv) for any two points x,z" € F(uP), hence (x,v) = (', v), i.e.,
v € N'. Therefore N’ is is a direct summand of N, and the embedding N’ — N
defines a lattice projection m : M — M’ := Hom(N',Z), where

1 <rtk(M')=d—dim F(uP) <d—1.

Consider the lattice polytope P’ := 7(P). It remains to show that F(P') = 0.
By definition of N', w(F(uP)) is some rational point ¢ € Mg. Moreover, one has
q = F(ur(P)) = F(uP'). Since p > 1, by monotonicity of Fine interior [8, Remark
3.7], the polytope F'(P’) must be strictly smaller than the point ¢ = F/(uP’). Hence
F(P") =0, ie., P"is F-hollow. In fact we have shown that u(P") = pu(P) = p and
dim F'(uP") = 0.

Case 2. dim F(uP) = 0. By 2.5(i), F(1uP) is a rational point p € Mg and for
any v € Sp(uP) we have

Ming.py(v) = (p,v) =1+ Min,p(v) =1+ 1161ir]13(x, ).
zEp

Equivalently, we have (x,v) > —1+ (p,v) for all z € uP and for all v € Sp(uP), or
(x,v) > =1 Yo € uP —p, Vv € Sp(uP).
The last conditions imply the inequalities
(x,y) > —1 Vo € uP —p, Yy € Q := Conv(Sr(uP)).
and we obtain the inclusion uP — p C Q*, where
Q"= {z € My | (1,9) > ~1, ¥y € Q)

is the rational polar dual polytope of Q. By 2.5(iii), @ C Ng is a d-dimensional
lattice polytope having only one interior lattice point 0. By theorems of Hensley 2.6
and Lagarias-Ziegler 2.7, up to unimodular transformations there exist only finitely
many possibilities for the d-dimensional lattice polytope ). Therefore, there exists
only finitely many possible values for volumes vol(Q*) of the dual polytope of @,
i.e., vol(Q*) is bounded by some constant C'(d) depending only on d. Since pu > 1,
it follows from the inclusion uP — p C Q* that

C(d) > vol(Q*) > vol(uP — p) = vol(uP) = pvol(P) > vol(P).
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Hence, by Theorem 2.7 of Lagarias and Ziegler, up to unimodular equivalence we ob-
tain only finitely many of d-dimensional lattice polytopes P such that dim F'(uP) =
0. O

Definition 2.8. We call a d-dimensional F-hollow lattice polytope P C R? weakly
sporadic, if dim F'(uP) = 0, where p is the minimal multiplier p(P) of P.

Corollary 2.9. In each dimension d there exist up to unimodular equivalence only
finitely many weakly sporadic d-dimensional F-hollow lattice polytopes. Moreover,
if a F-hollow lattice polytope P with minimal multiplier p is not sporadic, then P
admits a canonical lattice projection @ : P — P’, where P’ is a k-dimensional
weakly sporadic F-hollow lattice polytope (1 < k < d — 1) with the same minimal
multiplier pn = u(P) = p(P').

Proof. The statemen immediately follows from Cases 1 and 2 in the proof of Theorem
1.11. OJ

Remark 2.10. If d > 2, one can easily find examples of d-dimensional weakly
sporadic F-hollow lattice polytopes P which are not sporadic F-hollow polytopes,
i.e. P admitting lattice projections onto a k-dimensional F-hollow polytope P’
(1<k<d-1).

Example 2.11. Up to unimodular equivalence there exist exactly three weakly spo-
radic F-hollow lattice polygons P which are not sporadic F-hollow lattice polygons:

Nl
n .

¢
p=2 p=2 p=3

Example 2.12. It follows from the combinatorial classification of all maximal hol-
low 3-dimensional lattice polytopes obtained by Averkov et. al. [1, 2] that the
following three 3-dimensional weakly sporadic F-hollow lattice with the minimal

multipliers p € {Z,2,3}:

A; := Conv{(0,0,0),(2,0,0),(0,3,0),(0,0,6)}, u=

A, := Conv{(0,0,0),(2,0,0),(0,4,0),(0,0,4)}, u=

A; := Conv{(0,0,0),(3,0,0),(0,3,0),(0,0,3)}, =

are in fact sporadic F-hollow polytopes.

Wl kot

Remark 2.13. We will see in the last section that every d-dimensional weakly
sporadic F-hollow polytope P defines a family F(P) of non-degenerate (d — 1)-
dimensional Q-Fano toric hypersurfaces with at worst canonical singularities. For
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example, three lattice tetrahedra A;, ¢ € {1,2,3} from Example 2.12 are Newton
polytopes of smooth Del Pezzo surfaces of the anticanonical degree i € {1,2,3}
naturally imbedded into 3-dimensional toric weighted projective spaces P(1, 1,2, 3),
P(1,1,1,2), and P(1,1,1,1) respectively. We expect that the complete list of all
unimodular classes of 3-dimensional weakly sporadic F-hollow lattice polytopes P
must have reasonable length. We draw attention to the fact that this list includes not
only Ay, Ay, Az but also 31 more 3-dimensional weakly sporadic F-hollow polytopes
P with p(P) = 2 arising from 3-dimensional Gorenstein polytopes of index 2 which
were classified in [7].

3. THE MINIMAL MULTIPLIER pu(P)

Let P C Mg be a d-dimensional rational polytope. Theory of toric varieties asso-
ciates with the normal fan ¥Xp a d-dimensional projective toric variety Xp together
with the ample Q-Cartier divisor

Lp = Z —Minp(v)D,,

IIEZP[H

where D, (v € Xp[1]) are torus invariant divisors on Xp corresponding to primitive
lattice generators v of 1-dimensional cones in ¥ p, and we have

P={xe My | (x,v)>Minp(v), Vv € Sp[1]}.

Theory of toric varieties allows to describe the Fine interior F'(P) as rational
polytope associated with the adjoint divisor on some smooth projective toric variety
Ys, obtained by a regular refinement ¥ of the normal fan Xp. More precisely, one
has

Proposition 3.1. Let p : Y = Yy — Xp be a projective desingularization of the
toric variety Xp corresponding to a reqular simplicial refinement 33 of the normal fan
Yp. Denote by D, ,...,D,, the torus invariant divisors corresponding to primitive
lattice vectors in X[1] = {v1,...,vs}. Then the Fine interior F(P) is the rational
polytope defined by s inequalities

(x,v;) > Minp(y;) + 1, 1 € {1,...,s}

corresponding to the adjoint divisor on Y :

Ky +p*(Lp) = ) _ (=1 —Minp(v)) D,,.

veX[l]

Proof. Let v € N an arbitrary nonzero lattice vector. Then there exists a minimal
regular simplicial cone ¢ € ¥ containing v. Without loss of generality, we can
assume that vy, ..., € X[1] (r < d < s) are generators of 0. Then v =Y., Liy;
for some positive integer coefficients l1,...,[,. Since ¥ is a refinement of X p, there
exists a minimal 7’-dimensional cone ¢’ € ¥p containing o (r < 7’ < d). The cone
o’ is dual to some (d — 7’)-dimensional face © < P and we have

Mil’lp(VZ') = <I,V¢>, Vx € @/, Vi = 1, o, T
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Since Minp(-) is linear on o C o', we obtain

Minp(v) = Minp <Zl IJZ> = ZliMinp(yi),
i=1

and r inequalities appearing in definition of F(P)
(x,v;) > Minp(y;) + 1, 1€ {1,...,r}

imply that
(x,l/>:Zl(:L' Vi) >ZlM1np Vi) Zl = Minp(v Zl > Minp(v) + 1,
i=1 i=1

and the equality (z,v) = Minp(v) + 1 for some x € F(P) can happen only if r =1
and v = vy € X[1]. Therefore, s inequalities

(x,v;) > Minp(v;) +1, 1 €{1,...,s}

are already sufficient to obtain the Fine interior F'(P). Finally, we note that the
canonical divisor of toric variety Y = Y5 equals —>"7 | D,, and Q-Cartier divisor
p*Lp equals — Y7 Minp(v;)D,,. Therefore, the rational polytope F(P) corre-
sponds to the adjoint divisor Ky + p*Lp of Y. O

Proposition 3.2. Let Xp be projective toric variety corresponding to a d-dimensional
rational polytope P. Consider any projective toric desingularization p : Y =Yy —

Xp asin 3.1. Denote by Aeg(Y) C Pic(Y)r the closed cone of effective divisors of
the smooth projective toric variety Y. Let L := p*Lp € Pic(Y)q be the pullback of
the ample Q-Cartier divisor Lp. Then

u(P) =inf {\ € Rog | [Ky]+ A[L] € Aeg(Y)},
is a rational number and for p := u(P) one has

0 < dim F(uP) < d.

Proof. Using Cox coordinates on Y one easily obtains that the cone of effective
divisors Aeg(Y) C Pic(Y)gr is a rational polyhedral cone generated by the classes
[D,] (v € X[1]) of torus invariant divisors. The class [L] represenst the class of
a semiample big Q-Cartier divisor p*(Lp) on Y which defines a rational point
[p*(Lp)] € Pic(Y)g in the interior of the cone Aeg(Y). On the other hand, the
canonical class [Ky| € Pic(Y)gr of toric variety Y does not belong to the cone
Ceg(Y), because Y is a rational toric variety. Therefore, the ray

{[Ky] + )\[p*Lp] | AE Rzo} C PIC(Y)R

with the rational origin [Ky| having the rational direction [p* Lp| must hit the ratio-
nal polyhedral cone Aqg(Y') in some rational point [Ky|+ p[p*Lp] € Aeg(Y') located
at the polyhedral boundary dA.g(Y") contained in some proper rational polyhedral
facet I' < Aeg(X). Since the intersection point [Ky| + u[p*Lp| of the rational ray
[Ky| + A[p*Lp] with the facet I' has rational coordinates, the number p must be
rational. Now we use the fact that the class [D] of a Q-divisor

D= Zb | € Pic(Y)g, b; €Q,
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represents a point in A.g(Y) if and only if the rational polytope
Pp:={zxe Mg | (z,v;) > —b;, Yie{l, ..., s}}

is not empty. Moreover, [D] represents an interior point in Aez(Y') if and only if
the rational polytope Pp has maximal dimension d. Applying 3.1 to the adjoint
Q-divisor

D :=Ky +pp*Lp =Ky +p'ulLp = Ky + p*L,p,
we obtain that F'(uP) is not empty and dim F(uP) < d. O

Definition 3.3. Let P C Mg be an arbitrary d-dimensional rational polytope.
Assume F(P) # (). Then we call the set

Sp(P):={v € N | Mingpp)(v) = Minp(v) + 1}

the support of the Fine interior of P. It follows from 3.1 that Sgp(P) is always
a finite set whose positive convex span R>¢Sp(P) equals Ng since

F(P)={x € Mg | (x,v) > Minp(v)+1 Vv € Sp(P)}
is compact.

Proposition 3.4. Let P be a d-dimensional rational polytope with dim F(P) = 0.
Then the conver hull Q) := conv(Sg(P)) C Ng is a d-dimensional lattice polytope
containing in its interior only one lattice point 0 € N.

Proof. Let p :== F(P) € Mg. Note that the shifted polytope P, := P — p has the
Fine interior 0 € M, and the sets Sp(P) and Sp(P,) are the same, since F(FPy) =
F(P) — p. Hence we can assume F(P) = p = {0} C Int(P). The lattice polytope
Q) = conv(Sp(P)) is d-dimensional, since

0=FP)={re Mg | (z,v) >0 Vv e Sp(P)}.

Using the upper convex piecewise linear function Minp : Ng — R, we obtain the
dual to P rational polytope

P* = {y € NR ’ Mlnp(y) > —1}

Since Minppy(v) = (0,v) = 0 for all v € N, we obtain Sp(P) = dP* N N, where
OP* := {y € Ng | Minp(y) = —1} is the boundary of P*. The d-dimensional
rational polytope P* has only 0 € N as interior lattice point, because Minp(r) < —1
for all v € N\ {0}. Hence the d-dimensional lattice subpolytope @ C P* has also
only 0 € N as its interior lattice point. 0

Remark 3.5. We note that the minimal multiplier (P) has naturally appeared in
the arithmetical problem of counting rational points of bounded height on algebraic
varieties [3]. The close relation between the boundary point [Ky + pL] € Aeg(Y)
and the Minimal Model Program was observed in [4]. Fano fibrations of smooth
toric varieties Y associated with adjoint divisors Ky + uL were considered in [5, 6].
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4. TORIC HYPERSURFACES WITH NEWTON POLYTOPE P

Let A C M = Z% be a finite subset such that the convex hull P := Conv(A) C
Mg = R is a d-dimensional lattice polytope. Take an arbitrary field K and consider
P as Newton polytope of a Laurent polynomial

F) =) emt™ e K[tF', .. 15,

mecA

that is, ¢y # 0 for all vertices m € P. The zero locus
Z = {f(t) =0} C T% := Spec K[, ..., tF"]
we call affine toric hypersurface.

Remark 4.1. Note that the affine toric hypersurface Z := {f(t) = 0} C T? deter-
mines its defining non-constant Laurent polynomial f uniquely up to multiplication
by a nonzero monomial at™(a # 0) which shifts the Newton polytope of f by
lattice vector m € M. So it will be convenient to refer to P as Newton poly-
tope of the toric hypersurface Z C T¢. Moreover, it is natural to consider Newton
polytopes P of toric hypersurfaces Z C T up unimodular equivalence, since the
group of affine linear transformations Aff(Z?) = GL(d,Z) x Z* acts on Laurent
polynomials f via automorphisms Aut(T¢) = GL(n,Z) of the algebraic torus T
and via multiplication by monomials t™ = ¢ ...¢}"*. An unimodular isomorphism
¢ € Af(Z?) = GL(d,7Z) x Z* transforms an affine toric hypersurface Z; C T¢ with
the Newton polytope P; into the isomorphic affine hypersurface Z, C T¢ with the
Newton polytope P, = p(P;).

Now let us consider the geometric meaning of lattice projections 7 : P — P’
from view point of toric hypersurfaces Z C T¢ with the Newton polytope P.

Remark 4.2. Let P be the Newton polytope of a Laurent polynomial f. Assume
that P admits a standard lattice projection onto a k-dimensional lattice polytope
P’ C R* (0 < k < d). Then we can view P’ as Newton polytope of the Laurent

polynomial f considered as element of the Laurent polynomial ring R[t,. .., ]
whose coefficients ring is another Laurent polynomial ring R := (C[tfil, N

Using the splitting T¢ & T* x T?* and the ring embedding R < R[t], ... ], we
obtain the surjective morphism T?¢ — T * = Spec(R) whose restriction to Z is a
dominant morphism Z — T%* such that general fibers are affine toric hypersurfaces
in k-dimensional torus T* having P’ as Newton polytope.

Consider some examples of lattice projections.

Example 4.3. Assume that a d-dimensional lattice polytope P has width 1, that
is, P has a lattice projection on the unique hollow (also F-hollow) lattice segment
[0,1] C R. The lattice projection m : P — P’ = [0, 1] means that the d-dimensional
lattice polytope P C R? is unimodular equivalent to a lattice polytope in R¢ con-
tained between two parallel integral affine hyperplanes {z4 = 0} and {z4 = 1}. Up
to this unimodulal isomorphism, we obtain the corresponding Laurent polynomial
fty,... ta) € K[tF, ...t in the form:

Flt, oo ita) = golte, - tacr) + tagi(tr, - taa),
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for some Laurent polynomials g, g1 € K[ti',...,t;',]. Since the polynomial f(t)
defining Z C T? is linear with respect to the last variable t4, we can rationally
eliminate t; from this equation f = 0 by the formula

_g()(tla S 7td—1)
gl(tla s 7td—1)

and obtain a birational isomorphism Z b Af{l over K, i.e., Z is an irreducible
K-rational algebraic variety.

tqg =

The following conjecture proposes a natural ”inverse statement” to last example.

Conjecture 4.4. Let P C R? be a d-dimensional lattice polytope. Assume that
for any field K any toric hypersurface Z C (K*)® with the Newton polytope P is
wrreducible and birational to Af{l over K. Then the Newton polytope P admits a
lattice projection onto [0, 1].

Example 4.5. In case d = 2, the conjecture can be easily verified. Indeed, the
rationality of general curve Z C T? with Newton polygone P implies that P has no
interior lattice points, i.e., P is hollow. Up to unimodular isomorphisms, the unique
sporadic hollow lattice polygon is the triangle

Q := Conv((0,0),(2,0),(0,2)) C R

which is the Newton polytope of a general conic C' C A% defined by a quadratic
equation

ap.o + al,otl + a0,1t2 + a270t% + CLthth + ao,gtg = 0, (ai’j < K)

If K = C, then C is birational to A{. However, we can take K = R consider the
conic
1+t;+1t=0

is not birational to AL. Moreover, we can consider the conic (1 + ¢;)? —t3 = 0 over
any field K with the Newton polygone T consisting of two irreducible components.

More generally, if a d-dimensional Newton polytope P hypersurface Z C T? has
a lattice projection onto @), then the toric hypersurface Z becomes birational to a
conic bundle over (d — 2)-dimensional algebraic torus. Note that the corresponding
toric hypersurface Z C T¢ might be non-rational variety even over the algebraically
closed field C (see Example 4.6 below).

Example 4.6. Let K; C P™! be smooth projective d-dimensional Klein cubic given
by the homogeneous equation

2 2 2 2
202] + 2125 + 0+ 242500 + Za125 =0, d > 2,

which is invariant under the cyclic permutation of the homogeneous coordinates
20,21, -+, Za+2- LThe Newton polytope Pyq of K4 is a weakly sporadic (d + 1)-
dimensional F-hollow lattice simplex with the minimal multiplier p = (d + 2)/3
having no other lattice points besides its vertices. The affine equation of ICyNA4*! C
AT = Lo =1}
4 tats +toty +taty + -+ tay =0

considered with respect to the pair of variables x; and x5 defines a conic C' from Ex-
ample 4.5. Note that the lattice (d+ 1)-simplex Py4; admits several different lattice
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projections onto 2-dimensional simplex @) := Conv((0,0), (2,0), (0,2)) defining cor-
responding different conic bundle structures on the Klein cubic Cy. If the dimension
d = 2k is even, then Py admits a lattice projection onto [0, 1] which sends k + 1
lattice vertices of Py 1 corresponding to cubic monomials z%z; 4 (0 <i<k)tothe
lattice point 0 and the remaining k + 1 lattice vertices of Py to the lattice point
1. By 4.3, we see that any even-dimensional Klein cubic K is rational over any
field K. Note that it is rather nontrivial to show that the 3-dimensional Klein cubic
ICs is not rational over C (see [12]). Moreover, a still open conjecture claims that
the Klein cubic Kyxy; is not rational over C in all odd dimensions d = 2k +1 > 3
(see [18]). This conjecture is supported by the fact that the 2k-dimensional empty
lattice simplex Py has no a lattice projection onto [0, 1] for all integers k > 2. We
note that any d-dimensional toric hypersurface Z C T%! with the Newton polytope
Py is irreducible and smooth for d > 3.

5. NON-DEGENERATE TORIC HYPERSURFACES AND Q—FANO FIBRATIONS

Definition 5.1. Let Z C T% be an affine toric hypersurface given as zero locus of
a Laurent polynomial

&)= cmt™ e K[ti', ... 13"]

meA

with the Newton polytope P = Conv(A). The toric hypersurface Z is called non-
degenerate if Z is smooth over the algebraic closure K, and for any face © < P
(0 < dim© < d) the affine toric hypersurface Zg C T¢ defined as zero locus of the
Laurent polynomial

fo(t) == Z Crt™

meANO

is reduced and smooth over K as well.

Example 5.2. Let P be a d-dimensional lattice simplex. Denote by A the set of its
d + 1 vertices. Assume that char K = 0. Then the non-degeneracy of Z C T¢ given
by > e Cmt™ is equivalent to the nonvanishing condition

Hcm%().

meA

Now we want to explain why Theorem 1.11 is inspired by the Minimal Model
Program for non-degenerate toric hypersurfaces Z C T¢ with Newton polytope P.

It was proved in [8] that if the Fine interior F(P) of a d-dimensional lattice
polytope P is not empty, then every non-degenerate toric hypersurfacAe 7 C T¢ with
the Newton polytope P has a minimal model, i.e., a projective model Z with at worst
Q-factorial terminal singularities and semi-ample canonical Q-divisor. Moreover, the

~

Fine interior F'(P) allows to compute the Kodaira dimension x(Z) by the formula:

#(Z) = min{d — 1, dim F(P)}.
Now we are interested in birational geometry of non-degenerate toric hypersurfaces
Z C T? with F-hollow Newton polytope P.
Our main result is the following.
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Theorem 5.3. Let P be a d-dimensional weakly sporadic F-hollow lattice polytope
P with the minimal multiplier ;v = p(P) > 1. Denote by Py« the canonical toric
Q-Fano variety whose defining fan is spanned by faces of the canonical Fano polytope

Q := Conv(Sr(uP)).

We denote by 7 the Zariski closures in Po- of a non-degenerate toric hypersurface

Z C T? with the Newton polytope P. Then Z is a normal variety and the following
adjunction formula holds:

~ w—1
Kz = (Kpo. +2)|7 = (T) Krq.l7-
Furthermore,~2 has at worst canonical singularities and ample anticanonical Q-
divisor, i.e., Z is a (d — 1)-dimensional canonical Q-Fano hypersurface in Pg-.

In the proof we need the following technical statement.

Lemma 5.4. Let P be as in 5.5. Denote by L(P) C C[ti',...,t;"] the linear
system on the canonical toric Q-Fano variety Py« spanned by all monomials t™
corresponding to lattice points m € P C Q* N M. Then no codimension-2 torus
orbit in Py is contained in the base locus of L(P).

Proof of Lemma 5.4. Take an arbitrary 1-dimensional edge E < () of the canonical
Fano polytope Q C Ni. Let o C Ny be the 2-dimensional cone over F in the fan
Yo+ defining the canonical toric Q-Fano variety Pg-. Since the lattice polytope @
has only one interior lattice point 0 € N, the lattice polygon Conv(0, £') C ) has no
lattice points other than 0 and N N. This means that o is unimodular equivalent
to the 2-dimensional cone o, C R? spanned by lattice vectors (1,0) and (1,%) for
some k > 1. Let {eg,e1,...,ex} := ENSp(uP) be the lattice vectors corresponding
under the above equivalence to lattice vectors

(1,0), (1,1),...,(1,k) € 0.

Denote by N’ C N the sublattice in N spanned by eg,e1,...,e,. Then N’ is a
direct summand of N since each pair e;, e;,1 forms a part of Z-basis of N for every
i€ {0,1,...,k —1}. Take a Z-basis v1,vs,...,v4 of N such that v; = eg, vy = €3
and consider the standard lattice projection

g M — M':= Hom(N',Z) = 7

together the identification of lattice vectors e; € N’ with (1,i) € Z? for all i €
{0,1,...,k}. Denote by Py C R? the lattice polygon mx(P). Using a shift by an
appropriate lattice vector m € M, we can assume without loss of generality that
Minp(eg) = Minp(e;) = 0, that is, both hyperplanes (z,eq) = 0 and (z,e;) = 0
are integral supporting hyperplanes for the lattice polytope P and for the rational
polytope pP. Since F(pP) is just a rational point p € Mg, we obtain

(p, e0) = Minp(,py(eo) = Mingpy(e1) = (p,e1) =1,
and by linearity of (p,*) we obtain
<p7€i> :MinF(;LP)(ei> = 17 Vi S {Oalvuk}
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Since all lattice points eg, e1,...,ex € E < () are contained in Sg(uP), we obtain
Min,p(e;) =0 Vi€ {0,1,...,k},

i.e., the linear equations (z,e;) = 0 define integral supporting hyperplanes for pP
and for P.

In order to show that the codimension-2 torus orbit corresponding to og is not
contained in the base locus of L(P), we have to show that the (d — 2)-dimensional
linear subspace lp C Mg,

lp = {(x,e;) =0, Vie{0,1,...,k},

contains at least one lattice vertex of P, or equivalently, the lattice mg-projection
P}, = m5(P) C R? contains the origin (0,0) = 75(lg) € R?. We consider two cases.
Case 1: k > 2. Then mg-projection of P is a lattice polygon P, C R? contained in
the cone

Ck = {(.I'l,l'g) € RQ ‘ T Z O,l’l + kl’g 2 0}

The supporting integral hyperplane (x,e;) = 0 for P must contain at least one
vertex of P. On the other hand, 7mg-projection of this hyperplane is the line in R?
with the equation z; + 25 = 0, and it has only the origin (0,0) as common point
with the cone C}.

Case 2: k = 1. Then 2-dimensional cone oy C R? is regular, i.e., its generators
e, €1 € Sp(pP) form a Z-basis of N'. Assume that (0,0) ¢ Py, = mg(P). Then one
of two generators (0,1) and (1, —1) of o; must belong to Py, since otherwise the
lattice polytope Py would be contained in the convex set

B := Conv({o; N Z*}\ {(0,0),(0,1), (1,—-1)})

and the lattice point (1,0) = wg(F(uP)) would not be in the interior of pPj =
me(pP) C pB for ;> 1. So we obtain Minp(eg+e;) = 1 and Min,p(eg+e1) = p > 1.
However, we have Ming,p)(eq + e1) = Ming(,p)(eo) + Mingpy(e1) = 1 +1 = 2.
This implies

Mingg.py(er + €2) — Mingp(e; +e2) =2 — p < 1.
The latter contradicts the definition of Fine interior F'(uP).

Proof of Theorem 5.3. Let IP’(QQ) C Pg- be the Zariski open toric subvariety obtained
from Py+ by deleting all torus orbits of codimension at least 3 in Pg+«. The Goren-
stein toric variety ]P’g) has a minimal crepant toric desingularization p : IP)(QQ) — IP’S)
by resolving of possible A;_;-singularities along codimension 2 strata in IP)(Q) . Apply-

ing Lemma 5.4, we obtain that the Zariski closure Z® of the non- degenerate toric

hypersurface Z in IP’EQ) is smooth, and the Zariski closure Z® of Z in IF’( . is Goren-

stein, and it has at worst Aj_-singularities along the transversal 1ntersect10ns of the

non-degenerate quasi-projective toric hypersurface Z® c IP’S) with codimension-2

torus orbits in Pg) Thus we obtain that the singular locus of (d — 1)-dimensional
projective hypersurfaces ZC P+ has codimension at least 2 and, by Serre’s crite-
rion for normality, 7 is normal. Now we can relate the canonical classes of Z and

Py~ by the adjunction formula on the Gorenstein quasi-projective toric variety ]P’é?)
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Let dim F(uP) = 0 and p = F(uP). We consider the shifted rational polytope
Py := pP — p such that F(Fy) = {0}. Let Yg+[1] be the set of generators of 1-
dimensional cones in the fan defining the canonical toric Q-Fano variety Pg- . Then
Yo+[1] € Sp(pP) and we have Minp, (v) = —1 for all v € X-+[1].

The lattice polytope P defines on Py« a toric Weil divisor

Lp:= )Y _ (~Minp(v))D,
I/EZQ*[].]
such that QQ-Cartier divisor pLp is rationally equivalent to the anticanonical class
—KPQ* of Pg-, since
Kp,. = Y =D,= Y Minp(w)D,= > (uMinp(v)— (p,v)) Dy,
Z/EEQ*[l] I/EZQ*D] I/EEQ* [1]
and for any p € Mg the Q-divisor
> (pv)D,
VEEQ*[I]
is a principal Q-divisor of Py+. We write the adjunction formula on the Gorenstein
toric variety Pg) in the form

Kz = (Kpy. +Lp)lz =(—pLp+ Lp)|z = <MTl) Kp,. |z

In particular, the canonical divisor of Z is a Q-Cartier divisor. It order to show
that singularities of Z are at worst canonical, we use a result of Khovanskii that a
non-degenerate toric hypersurface with Newton polytope P always admits smooth
projective birational model W in a smooth toric variety defined by a regular re-
finement ¥ of the normal fan ¥p [17]. We can always choose a regular refinement
Y of ¥p which is simultaneously a regular refinement of ¥, so that we obtain

for smooth toric hypersurface W C Py with a birational morphism p : W — Z
together with a formula

KW :p*K2+ Z a,,(Dl,ﬂW),

veX[l]
where a, = 0 if v € Sp(uP), or it D, "W =0, and a, = (—1 — Minp,(v)) > 0 for
all v € Sp(uP). Thus Z has at worst canonical singularities. O

Corollary 5.5. Let P be a d-dimensional F-hollow lattice polytope and dim F'(uP) =
k > 1. Denote by 1 : P — P’ the lattice projection onto (d — k)-dimensional
weakly sporadic F'-hollow lattice polytope P' with p(P') = u(P) = u constructed in
1.11. Then 7 defines a dominant morphism ¢ : Z — T whose general fibers are
non-degenerate hypersurfaces with the (n — k)-dimensional weakly sporadic F-hollow
lattice polytope P’ admitting Q-Fano projective compactifications.

Proof. We use Theorem 5.3 in relative situation by considering the (n—k)-dimensional
fan ¥’ C Ng, where N’ C N is the (n — k)-dimensional sublattice from Case 1 in
the proof of Theorem 1.11. The fan 3’ is spanned by faces of (n — k)-dimensional
canonical Fano polytope @', where Q' = Conv(Sp(uP)) N N'). We can identify
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the finite set Sp(pP)) N N’ with the support Sp(uP’) of the (n — k)-dimensional
weakly sporadic F-hollow lattice polytope P’ = 7(P) C Mg with the minimal mul-
tiplier u = p(P') = pu(P). By Theorem 5.3, each general fiber of the dominant
morphism ¢ Z — T* admits a natural Q-Fano projective compactification which
can be obtained in the following way.

Using [8, Theorem 6.3], we embed the non-degenerate toric hypersurface Z C T¢
into d-dimensional (Q-Gorenstein toric variety P associated with the Minkowski sum
F(uP)+C(uP), where C(uP) is the d-dimensional rational polytope containing uP
defined by the inequalities:

C(pP) :={x € Mg | (x,v) > Min,p(v), Yv € Sp(uP)}.

Since F(uP) is a Minkowski summand of P, the normal fan & 5 contains the (n—k)-
dimensional fan 3’ as a subfan describing toric Q-Fano fibers of the toric morphism
a: P — Pr(.p), where Pr(,p) is k-dimensional toric variety correspondlng to k-
dimensional rational polytope F(uP). By restricting a to the Zariski closure Z of Z
in IP’ we obtain the Q-Fano fibration ¢ : 7 P F(pp) Which extends the dominant
morphism ¢ : Z — T% C Pp(,p) to the hypersurface Z C P. O

Corollary 5.6. A non-degenerate hypersurface Z C T with Newton polytope P has
negative Kodaira dimension if and only if P is F-hollow.

Proof. It F(P) # (Z) then Z C T? has a minimal model which can be constructed

as Zariski closure Z in some simplicial torus embedding T¢ C V. In particular, the
Kodaira dimension of Z is non-negative [§].

If F(P) = (), then, by Theorems 1.11 and 3.4, if P is either weakly sporadic and
Z C T¢ is birational to a Q-Fano hypersurface in the canonical Q-Fano variety Pg-,

or, by 5.5, Z is birational to a Q-Fano fibration 7 = Pr(.p) over a k-dimensional

toric variety. Therefore the projective toric hypersurface Z has negative Kodaira
dimension. ]
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